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Introduction 

An avalanche is a gravitational flow of snow;  this definition matches quite a wide variety of snow 
flows, ranging from the dense snow flow (density over 200 kg/m3) to the powder snow avalanche 
which is similar to a turbidity current (like a gravity current) which follows different flow laws. 

Out in nature, under our temperate climate, dense snow flows are more likely. However, it is hard to 
distinguish between a dust avalanche and a dense avalanche: a ground avalanche (heavy snow) could 
develop into an aerosol whose contribution to the avalanche dynamic will remain negligible.  It is only 
in the case of a fresh and cold snow on a steep slope that a blast also called “aerosol” develops, made 
of great vertical structures which rapidly separate from the flow:  it is the dramatic powder snow 
avalanche which is modeled in a channel by a heavy fluid flow into a lighter fluid (that is where the 
analogy with turbidities comes from).  These avalanches require very special conditions in order to 
develop (meteorology, topography, etc.) That is why they remain less frequent than dense avalanches. 
According to reports, the meteorological scenarios that provoke heavy snow avalanches are of several 
types: 

 huge snow falls; 

 milder snow weather with or without rain. 

In the following pages, we will focus on dense snow flows, whose modelisation is inspired from 
fluvial hydraulics and based on shallow water equations in which the rheological law is chosen as 
Bingham's type.  The notion of dense flow can be extended to any avalanche that does not develop any 
aerosol or to which aerosol makes little or no contribution to the movement of it. 

Physical model 

Two important remarks lead to the construction of a rheological model for snow. These are: 

 The notion of critical depth:  given a slope and a snow cohesion, the natural release of the 
avalanche will happen only if the snow depth is greater than a given depth called the critical 
depth 

 Plug flow:  velocity profile measurements that were taken in laboratory by K. Nishimura and 
N. Naemo in 1989 showed that the snow fall on a slope is made of a very thin zone of great 
shear and a no-shear zone called a plug. 
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Rheological model 

The velocity profile and the existence of critical depth can be understood as characteristics of a 
threshold fluid (Herschel-Bulkley Law) and, more precisely, of a Bingham fluid. The Bingham model 
allows shear stress to be connected to local velocity gradient via the relation: 
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The flow of such a fluid only happens if the shear stress is greater than ߬௖.  And in the static snow 
layer, the stress is given by: 
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Here is only expressed the balance of a block of snow at the height of 	ݖ௙, undergoing its own weight 

and solid friction 
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This gives the critical depth because there is no way that ߬ could be greater than ߬௖. 

Release and snow mechanism 

As long as the depth remains smaller than the critical depth, any release is possible. On the other hand, 
if, thanks to snow fall, to any extra weight or to an increased water content, the shear stress should be 
greater than the critical stress ߬௖, the avalanche could start. On the contrary, in the deposit zone where 
the slope is less steep, friction disperses the momentum and finally stops the avalanche. 

Dynamical equations 

The equations describing the flow are obtained by vertical integration of the Navier-Stokes equations 
assuming that: 

• the repartition of pressure is hydrostatic 
• the rheological model is the Bingham's one 

Thus, we obtain three equations that constitute a non-linear hyperbolic system. These equations are 
known as the Saint-Venant equations (shallow water).  In order to models the friction terms, we 
assume that almost all the flow is a plug, which will allow us to neglect dissipation and gives sense to 
the vertical integration we have just calculated. We eventually reach: 
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where h is the height of the flow at a point and U(u, v, 0) its velocity. ߠ௫ and sin -௬ are the slopes xߠ

wise and y-wise. Ԧ݂ the solid friction which: 

• when at a standstill, compensates as much as it can the force of gravity; 
• when flowing opposes the velocity; 

thus friction stress is: 
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Numerical resolution 

We now have a system of equations that governs the motion of the avalanche.  ln order to study dense 
flows in a particular site, we shall compute the topographic map 



We now have a system of equations that governs the motion of the avalanche.  In order to study dense 
flows in a particular site, we shall compute the topographic map of the domain as a regular mesh that 
will cover all of the surface.  To achieve that, contour lines will be digitized into a computer, then with 
an 'interpolation method, the domain will receive a mesh 

 

Let Th be a discretization of the space (Ox, Oy) built with quadrangles K whose diameter is k.  For 

each element Ki of Th, let i be the edge of Ki; we call ij the common edge of Ki and Kj and Si the 
surface of Ki. 

 

The first order scheme (Godunov) 

We try to approach U = (h, hu, hv) using a distribution constant on each element. We define the spatial 
average of U in the Ki element at ݐ௡ and ݐ௡ାଵ as the projection of U(x, y, t) on Ki.  Then, integrating 
over the volume Ki [ݐ௡ , ݐ௡ାଵ ], we reach the following schema: 
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where S is the contribution of the right-hand member. 

The difficulty lies in the calculation of the double integral over the boundary of Ki.  If we neglect the 
variations of the tangent to the edge direction, we bring the problem back to a monodimensional 
Riemann's, because of an exact flow calculation possible in the unidimensional case. 

• This is Godunov's scheme 

The second order scheme (Van Leer) 

A more accurate version is obtained if one considers a linear distribution for each element. This 
requires two more stages which are the slope prediction stage and the correction stage (in order to 
avoid the generation of local maxima which would result in oscillations that would make the method 
unstable). 

The so-defined numerical model is stable under the condition of Friedrich-Levy- Current less than 0.6. 

• This is Van Leer's scheme. 

Application of the model 

We are going to focus on the practical set-up of the model.  First of all, the domain should be properly 
delimited. One should take care not to forget any zone that could take part in the phenomenon. Then, 
we shall input the depth of snow layer that will release in the start zone. Finally, we will simply chose 
the parameters (critical stress, density, turbulence coefficients) according to the type of snow. 

Determining and analyzing the path 

To delimitate the work zone, it is useful to have a few notions about the release of dense avalanches. 
Avalanches release most often when the slope is over 30° and the starting zone is usually a leeward 
ridge, or at about 50 m downhill of a break in the slope. Localization of these zones thus consists in 
"reading" the map painting out the zones. In this way, we determine the start lines. 

Secondary starts can occur laterally in the same conditions on the slope after the basal layer is 
disrupted.  Then we must estimate the main avalanche paths among the thalwegs with a few 
modifications in the curves where, because of velocity, the snow goes straight ahead in mainly flat 
zones or sometimes goes up the hill.  As mentioned in documents, some bushes remain untouched 
which leads to the conclusion that the ground they are on is not overflowed by the avalanche (which is 
to be checked on the site by examination of the trees). 

This first approach is completed by a study of recent aerial photos that allow the steep and bare zones 
to be individualized: these zones are a priori avalanche paths. However, there is still something that 
remains unknown, and can only be worked out in the field:  it is the part played by the trees in 
maintaining the snow.  Though conifers are well-known to be safe, it is rather different for deciduous 
trees which will let the avalanche go through. 

Finally, any smoothing of the slope should be considered as a potential deposit zone for the avalanche 
which will spread over by lateral diffusion.  The stopping zone is estimated according to the 
morphology of the site. Generally speaking, there shall be either an important spreading zone on the 
run-out zone (in this case, it is a cone) or a narrow band on which snow has concentrated as in the case 
of a gorge opening on a shelf 



Definition of the triggering path 

The triggering depth is a necessary initial condition for the simulation.  We will take the depth of snow 
Layer which is likely to release in the start zone.  ln the case of a steep avalanche gully, it seems to be 
important to take into account the variation of snow depth as a function of altitude which will allow a 
proper estimation of the start volume.  Several empirical interpolation formulas have been found.  For 
example, E.D.F. uses the following: 
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where E is the snow depth, z and ݖ଴ the altitude. 

Adjustment of the coefficients 

The model is based upon an initial condition (the triggering depth) or, in the case of an artificial 
triggering, upon a second parameter (velocity condition).  Then, a set of friction coefficients is to be 
determined – at least two of them are required: the solid friction coefficient and the coefficient of 
viscous dissipation.   Later on, more coefficients can be taken into account in order to express ground 
conditions, vegetation, etc. The previous coefficients can be modified as a function of the zone the 
avalanche goes through. But, for the time being, we will only use two coefficients and adjust them 
according to the type of snow. Thus, the adjustment will take place on small gullies with fairly simple 
ground. 

Application to the Lautaret gully 

The Lautaret pass (Hautes Alpes) is an interesting site from the point of view of its excellent snow 
coverage because of its altitude (2050 m) as well as its easy approach. Many little gullies have been 
listed and for 20 years information about avalanches has been collected. The measurements concerned 
the leading edge velocity, the dimensions of the run-out zone, the characteristics of the snow, etc.  
Progress made possible by image computing has allowed direct knowledge of the velocity evolution at 
a given point. 

One advantage of the Lautaret site is the small dimension of its gullies (500*100 m). The topography 
is simple (channelled flow, wide run-out zone).  According to this known velocity profile, we will fit 
the coefficient ߬௖/߷. The run-out zone will allow for adjustment of the coefficient of viscous 
dissipation. Then, the model can be tested on dense snow avalanches whose characteristics are known 
(density, humidity, estimation of the critical stress, depth) and the results given by the model are 
compared to the one in situ. 

The Lautaret pass is considered to be a classical case allowing for adjustment of the parameters. To 
validate the model entirely, it will be tested on a gully representative of a classical engineering 
problem with less complete data.  We have chosen the Boulangeard guily (Isère). 

Application to the Boulangeard gully 

The Boulangeard gully is a more imposing gully because of its scale and its activity regarding 
avalanches. Two thousand, four hundred meters long, it begins with a little northern cirque above 2000 
m and ends in the Eau d'Olle valley at an altitude of 810 m. lt has been studied at length because it 
directly threatens the reservoir of the Verney dam. An historical study has shown that avalanches 
could be listed in three main categories: 



•  The yearly avalanche: it brings nearly 70,000 m3 of snow and ends up between 800 and 900 m of 
altitude. 

•  The avalanche which occurs several times a century:   its volume reaches 170,000 m3 of snow and it 
stops at around 830 m. 

• The major avalanches:the estimated volume exceeds 360,000 m3  and it spreads down to the valley 
(at present the retenue of Verney). 

The avalanches of the 9th March 1980, the 20th March 1982, and the 4th March 1923 are avalanches 
representative of each category. 

As a result, a rough idea of the precision of the model can be fixed and we can know if the matters of 
scale can interfere in such a model. The influence that variations in the critical stress and topography 
and the initial conditions can have is tested at the same time in order to evaluate the versatility of the 
model and its possible application in the field of engineering. 

Conclusion 

ln this paper, the main points of the model have been stressed first by displaying assumptions and the 
method which allowed the equations of motion to be found, then by giving an idea of the method used 
for the numerical resolution, and finally by giving a survey of the methodology of adjustment and its 
use in important sites. 

This model is still being studied, but present results are very encouraging, especially since the model 
based on equations of conservation remains very evolutive:  a new rheological law, the variation of 
parameters, will be easily integrated. 

 


