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Frictional-collisional regime for granular suspension flows down an inclined channel

Christophe Ancey and Pierre Evesque
Cemagref, division ETNA, Domaine Universitaire, Boıˆte Postale 76, 38402 Saint-Martin-d’He`res Cedex, France
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Here granular suspensions refer to very concentrated suspensions of particles within a Newtonian fluid.
Under certain conditions given in the paper, the bulk stresses mainly result from the combination of frictional
and collisional interactions at the particle scale. The corresponding flow regime is called the frictional-
collisional regime. The constitutive equation adapted to this regime is not well known. We propose a consti-
tutive model based on the balance between frictional and collisional interactions. We have applied this model
to granular flow down an inclined channel. It is shown that the mass flow rate is proportional to the flow depth.

PACS number~s!: 45.70.2n, 45.50.2j, 83.20.2d
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I. INTRODUCTION

In a previous paper referred to as paper I hereafter@1#, we
suggested that very concentrated mixtures of noncollo
solid particles within a fluid should be called ‘‘granular su
pensions.’’ The introduction of this notion is motivated b
the peculiar role played by the solid concentrationf ~defined
as the ratio of solid volume to total volume!, as the motion of
particles through the bulk is increasingly impeded as
solid concentration increases. When it exceeds a crit
value ~sometimes called the random loose packing conc
tration! similar to a dynamical percolation yield (fc), a con-
tinuous network of particles in contact forms throughout
bulk @2#. The formation of this network causes significa
changes in the flow behavior: dilatancy, the ordering
particles in layers~for simple shear flows!, rearrangement o
stress components, the appearance of a minimum in the
curve, and so on. These abrupt changes aroundfc have been
shown by several numerical simulations on various syste
@3# together with rheometric work@4#. Generally, the authors
found that the critical concentrationfc is close to the con-
centration of a face-centered-cubic arrangement for sus
sions made up of identical spherical particles:fc5p/6
'0.52 (fc5p/4'0.785). A second critical value of th
solid concentration exists: it corresponds to the rand
solid concentrationfm , above which it is not possible to ad
particles without bending them. In the case of monosiz
sphere mixtures, numerical simulations have shown that
concentration isfm50.635 @5#. As a consequence, in th
range of concentration@fc ,fm# particle suspension flow
exhibit many peculiarities due to the formation of a partic
network, which preclude inferring the bulk behavior b
merely extrapolating from dilute or moderately concentra
suspension behavior. Specific theories are needed to m
granular suspension flows. Furthermore, owing to the h
concentrations, bulk behavior is chiefly dictated by partic
particle interactions~collision, lubricated contacts, friction
colloidal forces, etc.!. According to the type of predominan
contact, various types of bulk behavior are observed@6#.

The constitutive equation of granular suspensions of p
ticles is known only for limiting flow conditions, where onl
one type of particle contact prevails. Examples include
PRE 621063-651X/2000/62~6!/8349~12!/$15.00
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netic theories used to infer motion equations for rapid
sheared flows of particles@7#. In this case, we consider tha
the main interactions between particles are collisions and
part played by the fluid phase in the generation of stress
be disregarded. Likewise, the frictional behavior exhibited
very low shear rates is usually modeled using the phen
enological law of Coulomb@8–10#. In this case, it is shown
that the bulk stresses result from sustained contacts betw
particles, which carry frictional forces throughout the bu
@11#; the role of the fluid phase is mainly limited to the flu
pressure in the pores.

In many cases of interest, the flow regime is intermedi
between these two limiting regimes; in other words, bo
frictional and collisional contacts play a role. For instance,
a geophysical context, gravity-driven flows, such as sto
debris flows or rock falls, are presumed to belong to
frictional-collisional regime. In this case, the constitutiv
equation is poorly delineated. It is now well established t
asymptotic theories~such as kinetic theories based on pure
collisional interactions! can no longer be used to suitab
represent the behavior of frictional-collisional regimes fo
wide range of flow conditions@12#. In neighboring scientific
areas concerned by the present issue, such as geoph
scientists are not always convinced themselves of the dif
ences between frictional-collisional and~purely! collisional
regimes, and Bagnold-like constitutive models or mod
adapted from kinetic theories are used.

The development of constitutive equations suitable for
scribing the frictional-collisional regime has received litt
attention. As far as we known, the first attempt is due
Savage@13#. In order to fit experimental data obtained on
annular shear cell, he proposed to divide the total shear s
into a part due to a Coulombic frictional contributio
~namely, rate-independent part! and a collisional contribution
~depending on the square of the shear rate!. Further develop-
ments were introduced by Johnson and Jackson@14#. Follow-
ing the suggestion by Savage, Johnson and Jackson
pressed bulk stress as the sum of a collisional contribu
and a frictional term. More recently, a very similar approa
has been used by Jyotsana and Rao@15# to study dry granular
confined flows through hoppers. An alternative point of vie
have been proposed by Mills, Loggia, and Tixier@16#. These
8349 ©2000 The American Physical Society
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8350 PRE 62CHRISTOPHE ANCEY AND PIERRE EVESQUE
authors have modeled dry granular flows as the motion
network of transient solid chains through an assembly
particles behaving as a viscous fluid. In addition to the
constitutive equations examined for particular flow con
tions, we can quote the more general tensorial expres
obtained by Berker and VanArsdale@10# or the original ap-
proach proposed by Savage@17#.

From an experimental point of view, little is known abo
the frictional-collisional regime and, more generally, gran
lar suspension flows. To date, not many experiments h
been carried out. Published experimental works have
deavored to measure a few quantities~velocity profile, den-
sity profile, etc.! in a narrow range of flow conditions with
out providing a comprehensive picture of flow pattern~flow
regimes, discharge equation, etc.!. This perhaps explains
why they are not always consistent when compared w
each other. For instance, in the case of dry granular flo
down inclined channels, some authors found that, fo
steady uniform flow, the discharge equation wasq}h2.5

~with h the flow depth andq the flow rate! @18#, whereas
others found a relation in the form ofq}h @19#. Another
example includes the direction of free surface wave of gra
lar avalanches, which can propagate downwards or upw
depending on the experimental conditions as reported
Douady, Andreotti, and Daerr@20#. Our opinion is that all
experimental and theoretical aspects are not necessaril
reconcilable, but, on the contrary, constitute various asp
of a complex flow pattern. To date, the theoretical mod
~quoted above! fail to describe the observed flow pattern a
the paramount features of the frictional-collisional featur
In order to gain insight into the behavior of granular susp
sions, we suggest studying a granular suspension flow
simple flow geometry. Here we shall study the case
gravity-driven flows down an inclined, rough, infinite plan
Our model focuses on simple granular suspensions, mad
of noncolloidal monodisperse, solid, spherical partic
within a Newtonian fluid. First, we outline the definition o
the frictional-collisional regime using dimensionless nu
bers. The second part of the paper is devoted to an overv
of the microstructural approach applied to the friction
collisional regime. In our case, computation of the avera
stress tensor is limited by poor knowledge of the cont
distribution within the bulk. Here we propose a simple mod
based on a physical analysis of the behavior at the par
level. Emphasis is given to the characteristic times associ
with each type of interaction and interplay between them
a similar way to what was done in the earlier stages of
bulence theory~boundary layer and energy cascade theorie!,
we shall use dimensional arguments and approximate ev
ations of physical mechanisms to gain insight into t
frictional-collisional regime. As in turbulence or kineti
theories, the constitutive equation must be coupled with
~kinetic! energy balance equation for the motion equat
system to be closed. In the third part of this paper, we
amine the particular case of gravity-driven flow down
inclined channel. Such a geometry is very appropriate,
cause the normal and shear stress distribution is perfe
known in a steady uniform flow.

The main distinctive feature in comparison with previo
models is the peculiar role ascribed to the kinetic ene
balance in the interplay between particle interactions. Inde
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in agreement with most theoretical models developed for
frictional-collisional regime, we find that the shear stresst is
not a simple one-to-one function of the shear rate, but m
also depend on the normal stresssn and the granular tem
perature~i.e., the root mean square of the velocity fluctu
tions! T: t5t(ġ,sn ,T). But whereas most of the avail
able theoretical models have expressed the bulk shear s
as the simple sum of a collisional contribution and a fr
tional term and have admitted that both elementary contri
tions are independent, here we explore the possibility o
strong relationship between these two contributions. This
lationship is sought via the energy balance equation.

II. TOWARDS A DEFINITION OF THE
FRICTIONAL-COLLISIONAL REGIME

In paper I, we showed that, when a granular suspens
flow can be regarded as a one-phase flow at the macrosc
level ~namely, when there is no significant difference b
tween the mean velocities of each phase!, the constitutive
equation of the equivalent continuum depends on the typ~s!
of predominant contact. We define thefrictional-collisional
regime in the following way. It is mainly characterized b
the predominance of frictional and collisional interactio
between particles within the bulk. Indirect particle intera
tions~such as lubricated contact! and viscous stresses may b
ignored.

It is worth noticing that friction and collision are based o
very similar mechanisms at the microscopic level@21#. Their
distinction is meaningful only at the particle scale where it
possible to distinguish them by their effects. The treatm
of binary contacts is fairly simple. A collision may be de
fined as a very brief contact whose effect is an exchang
momentum between particles. Thus the contact law is ge
ally sought in the form of a discontinuous change in veloci
Conversely, friction is a sustained contact; the long durat
of contact requires a force to be applied to keep the t
particles in close contact and accordingly the contact law
expressed as a relation linking the components of the app
force. The treatment of multibody contacts~involved in
granular suspension flows! is less straightforward and espe
cially for collisional contacts. Here we suggest defining
collision as a brief exchange of momentum during the imp
of two ~or more! particles regardless of what happens af
the impact~propagation of elastic waves, rebound, friction
contact, sticking!. Likewise, we consider friction as a long
range interaction.

On the basis of the above comments, it is possible
propose criteria defining the frictional-collisional regime u
ing dimensionless groups@6,22#. The occurrence of direc
contact between particles is conditioned by the collapse~at
least in part! of lubricated contacts. In paper I, we suggest
employing the Bagnold number defined as the ratio of p
ticle inertia to the work the lubrication force,

NBa5
rpR2G

m

d/R

ln d/R
, ~1!

wherem is the fluid viscosity,G the mean shear rate,rp the
particle density,R the particle radius, andd the mean
particle-to-particle distance. For lubrication effects to be n
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PRE 62 8351FRICTIONAL-COLLISIONAL REGIME FOR GRANULAR . . .
ligible with respect to collisions, the Bagnold number mu
satisfy NBa@1. Likewise, in paper I, we have defined th
Coulomb number as the ratio of collision magnitude to
typical stressS acting on particles:

NCo5
rpR2G2

S
. ~2!

Introducing dimensionless numbers to characterize b
behavior of granular suspensions is not new. Many differ
versions of key dimensionless numbers have already b
proposed. For instance, the number that we suggest ca
the Bagnold number@Eq. ~1!# is formally identical to the
Stokes number or the particle Reynolds number, used
other authors.

The frictional-collisional regime is expected to occ
when the corresponding contributions in bulk stress have
same order of magnitude, namely, whenNCo5O(1). Natu-
rally, this is a rather crude classification since many para
eters controlling dynamics have been omitted. For instan
in a viscous surrounding fluid, collisions between partic
involve more complicated mechanisms based on the c
pling between hydrodynamics and elasticity as described
Daviset al. @23#. In this case, another dimensionless num
is required to quantify the capacity of particles to deform d
to the action of lubrication forces. But insofar as we foc
our attention on chief flow regimes, this classification c
provide an approximate and simple way of determining
prevailing particle interactions.

III. CONSTITUTIVE EQUATIONS

A. General expression

In paper I, we showed that the constitutive equation i
frictional-collisional regime may be written as follows. Th
bulk stress is the sum of a fluid contribution and a parti
contribution:

s̄5s̄~ f !1s̄~p!, ~3!

where the fluid part may be written

s̄~ f !52md̄2~12f! p̄f12r f^u8^ u8&, ~4!

whered̄ denotes the strain-rate tensor,p̄f is the mean inter-
stitial fluid pressure,r f is the fluid density, andu8 refers to
velocity fluctuations. We employ brackets and the over
symbol to represent ensemble and volume-averaged qu
ties, respectively. Using the ergodicity assumption, we m
replace the volume-averaged terms by ensemble-aver
terms. Moreover, in most cases, the particle contribution o
weighs the viscous term in the equation, which can there
be neglected. This is usually shown by considering a ge
alized Reynolds number in the formNRe5rp R2G/m or NRe
5S/(mG). Generally, the large value required forNBa ~for a
frictional-collisional regime to occur! implies in turn that
NRe must be very large. The particle contribution may
evaluated as

s̄~p!5s̄col
~p!1s̄frict

~p! 2f p̄f12
1

2
Jp^V8^ V8&2rp^u8^ u8&,

~5!
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wheres̄col
(p) denotes the collisional contribution,s̄frict

(p) the fric-
tional contribution,V8 the fluctuations of angular velocity
and Jp the inertia moment. The purely viscous contributio
2md̄ in Eq. ~4! may be neglected compared with the partic
late contributions. It may be shown that the particulate c
tribution (s̄col

(p) or s̄frict
(p) ) reflects the effects of local forces a

the particle level and may be deduced by averaging the lo
forces@1,24#:

s̄~p!5
R

V (
m51

N E
Ap

~m!
F^ k dk5Rnd^F^ k&, ~6!

whereF is the contact force,k is the outward normal at the
contact point,dk is the angle aroundk, andnd is the number
density. In the first term of the equality, we use a volum
average of all contact forces acting on the surfaceAp

(m) of N
beads included in a control volumeV. The second equality is
a simple translation of the first one in terms of ensem
average, which is more usual in kinetic theories or hom
enization techniques. In most cases, the ensemble avera
a quantityf (r ,t) is computed as follows@25#:

^ f ~r ,t !&5E
C2

P2~ t;x,y! f& ~2!~x,t;CN!dx dy, ~7!

whereCN denotes the configuration ofN particles~specified
by their positions, linear and angular velocities! in the vol-
umeV, andP2 is thepair distribution functiondefined as the
probability that the centers of two spheres simultaneously
respectively, inx andy,

P2~ t;x,y!5
1

N~N21!
E P~ t;x,y,C~N22!!dC~N22!, ~8!

whereC(N22) denotes the remainingN22 particles. Like-
wise, f& (2) denotes the conditional averaged function wh
the position of two spheres is fixed:

f& ~2!5E
C2

P~ t;N22ux,y! f ~r ,t;CN!dC~N22!, ~9!

where the conditional probabilityP(N22ux,y) is the distri-
bution probability of the remainingN22 spheres when two
spheres are fixed at x and y: P(N22ux,y)
5P(N)/P2(x,y). Most often, it is implicitly assumed tha
the conditional averaged functionf& (2) may be merely re-
placed byf. For dilute suspensions, apart from systems g
erned by fluctuations~critical phase transition!, such an as-
sumption is generally sound. For concentrated suspens
due to the development of strong correlations between ne
boring particles, it is not certain that replacing the conditi
averaged functionf& (2) by f is still meaningful. Investigations
of f& (2) or P2 are still scarce and restricted to limiting regim
~frictional or collisional!. To our knowledge, no work ha
been published on this topic for the frictional-collisional r
gime.

In many cases, in order to close the motion equation
the energy balance equation is needed. We have show
paper I that its general expression is
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s̄:d̄5
3

2

drT

dt
1“•Q1

d«̄

dt
2^n•#su@&, ~10!

wherer5 r̄5f̄rp1(12f̄)r f is the mean local density an
f̄ the mean solid concentration.T is the granular temperatur
(T5^ui8ui8&/3), «̄ the mean internal energy,Q52su8 an
energy flux due to thermal motion, and ]su@ denotes the
discontinuity ofsu through the particle surfaces oriented
the normal vectorn ~due to dissipative contacts!, ands de-
notes the local stress~in the fluid or solid phase!. On the
right-hand side of Eq.~10!, the first term represents the in
crease in random kinetic energy, the second term stand
the diffusion of energy due to thermal motion, the third te
denotes energy loss during inelastic collisions, and the fo
term represents frictional dissipation during slipping co
tacts. In the absence of frictional~slipping! contact, Eq.~10!
is similar to the one found for kinetic theories. It is wor
noticing that most authors using a kinetic theory for study
the frictional-collisional regime have continued to empl
Eq. ~10! without including the frictional dissipation. Thi
omission is not physically sound. Another physical interp
tation of Eq.~10! is provided by integrating it over a contro
volume V. In the case of an isochoric steady flow that w
shall study in the next section, we easily find

E
V

s̄:d̄ dn5E
]V

S 3

2
rTu•n1Q•nDdS

1E
V
~«G 2^n•#su@&!dn. ~11!

The different terms of this equation may be interpreted
follows. The contribution on the left-hand side of the equ
tion represents the energy production rate~supplied to the
volume V by shear work!. There are two types of energ
sink. First, energy may be dissipated by diffusion proces
Two different mechanisms occur. In fact they merely red
tribute energy in the bulk without generally contributing
energy decay. The advection of the granular temperatur
the balance between the incoming and receding gran
temperatures~transported by the mean velocity!. It should be
noted that in a well-established flow~for instance, down a
duct!, this contribution is zero. The energy fluxQ transports
part of the supplied energy to the boundaries of the con
volume, where it may be dissipated. This is the case,
instance, whenever the control volume includes a solid w
A second type of energy sink includes volume dissipat
processes, mainly due to particles. Several elementary
cesses, such as inelasticity or viscous dissipation within
interstitial fluid, are responsible for the energy decrea
Last, contacts between particles constitute another impor
dissipation mechanism: since neighboring particles do
move at the same velocity and exert significant forces
each other, mechanical energy is lost and transformed
heat.

The framework presented above is very general and
cludes most of the available theoretical models dealing w
the frictional-collisional regime. In the earlier model pr
posed by Savage@13# to describe granular flows down in
clined rough channels, the collisional contribution was
for
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ferred assuming that the pair-distribution functionP2 was
the product of Maxwellian single-particle velocity distribu
tions and that particles were smooth, but inelastic with
coefficient of restitutione ~kinetic theory!. He obtainedtcol
5tcol(ġ,T). The frictional contribution was estimated usin
the empirical Coulomb relationshipt frict5p0 sinw, wherep0
denoted a mean normal stress andw the internal friction
angle. To close the motion equations, he needed the en
balance equation~10!, but he did not take the frictional dis
sipation^n•#su@& into account. To solve the resulting mo
tion equations, he assumed further that the ratio of the m
pressure to the dynamic pressure@p0 /(rpT)# was constant at
every depth. His model resulted in linear velocity profil
and a mass flow rate varying asq}h2.5. He also found that
steady flows were possible only within a narrow range
channel inclinations. Compared to the experimental d
such a model is in good agreement~at least qualitatively!
with some experimental observations, but fails to describ
large number of experiments. For instance, the prediction
the mass flow rate contrasts with the experimental trenq
}h. Most subsequent models were based on the same
proach as the one followed by Savage~coupling a kinetic
theory and the Coulomb relationship!, but used different as-
sumptions or boundary conditions. But on the whole, pred
tions of the overall flow features were approximately iden
cal, namely, in partial agreement with all experimental da
This shortcoming may originate in irrelevant approximatio
or an overly simplified approach, which would have d
carded some ingredients. Here, rather than challenge the
tire approach followed so far by most authors, we sugg
exploring a new direction by examining a different interpl
between collisional and frictional contributions while kee
ing the same ingredients as Savage. Indeed, Savage and
sequent authors implicitly admitted that the two contrib
tions s̄col

(p) and s̄frict
(p) can be calculated regardless of ea

other. Here we shall attempt to show that these two con
butions may be related and thereby such a coupling lead
very different flow features from the one exhibited by Sa
age.

B. Proposal of a model

If collision and friction involve the same physical mech
nisms at the particle scale~elastoplastic deformations, fric
tional traction during tangential displacement, creep, et!,
they are associated with very different characteristic tim
In a similar way to Mills et al. @16# or Vardoulakis and
Sulem@9#, we consider that, at a given timet, it is possible to
distinguish two populations of particles.

Photoelastic experiments and numerical simulations h
shown the existence of force networks spanning through
granular media@11,26–28#. Although the existence of par
ticle networks and different populations is now well esta
lished, not many experiments or simulations have been
formed to gain insight into the dynamic features of the
networks. In Fig. 1, we have reproduced a typical diagr
showing the distribution of contact forces within a granu
flow down an inclined channel, obtained by numerical sim
lations using a contact dynamics numerical scheme. A
ronov and Sparks@27# performed numerical simulations
which involved arrays of disks sheared by the motion of
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upper boundary~Couette flow!. They considered two type
of boundary conditions. For experiments at constant volu
they observed intermittent networks due to jamming
grains. If the material was free to dilate~free upper boundary
with a constant normal force applied!, particle networks with
two populations of particles were observed. Furthermo
they showed that the density of the sheared material ten
towards a constant value~whatever the initial or flow condi-
tions!. More recently, Cappartet al. @28# performed experi-
ments using an inclined channel with a conveyor belt at
bottom ~recirculating system!. He employed different kinds
of water-saturated mixtures of cylinder-shaped PVC gr
ules. Although they were not able to measure contact for
between grains, they succeeded in measuring the particle
locity and granular temperature at the sidewall. They th
revealed regions where the granular temperature was f
high and mean velocities were not well correlated and ot
regions where correlation in the mean particle velocity w
significantly enhanced and granular temperature was
creased. Here we shall try to describe some dynamic feat
of these particle networks using mainly heuristic argume

This network of particles in close contact evolves contin
ously: at any instant, new branches are created, while s
links are destroyed. The first category~sometimes called the
strong orcompetent fraction! thus includes the particles be
longing to these instantaneous networks. If the relaxa
time (tp) for a particle experiencing a forceS is of the order
of the mean life duration of an instantaneous force netw
(tn), then the network acts as a rigid, ‘‘load-bearing,’’ pe
colating structure and transmits the gravitational force fr
upper to lower layers. The characteristic time (tp) may be
evaluated by considering the motion of a particle~of mass
m and surfaceS! undergoing a typical stressS: mv̇
52 f SS, wheref is the friction coefficient. This leads to a
estimate oftp for a spherical particle:

tp}Arp

R2

S
. ~12!

The time tp is computed as the typical time required for

FIG. 1. Normal force diagram in a dry granular flow~Courtesy
of F. Chevoir, LMSGC, Champ-sur-Marne, France!. The line thick-
ness is proportional to the force strength. The material is made
of polydisperse disks~uniform distribution in size ranging from
0.85R to 1.15R). The channel slope is 18°. The Coulombic frictio
coefficient is f 50.4. The tangential and normal restitution coef
cients are zero@45#.
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particle to travel a distanceR as a result of the action ofS ~if
we assume a zero initial velocity!. Computing the time re-
quired for an angular displacement of approximately 1 r
Tkachenko and Putkradze also found that the particle re
ation time is given by Eq.~12! @29#. The life duration of a
contact networktn is of the order ofG21, whereG is the
typical shear rate of the flow. Indeed, after a timetn , two
particles which belong to two adjacent layers and are initia
in contact must separate. It should be noted that the Coulo
number@Eq. ~2!# may also be seen as the square of the ra
of these two characteristic times:

NCo5S tp

tn
D 2

. ~13!

Seen as the ratio of a particle relaxation time to a flow ch
acteristic time, the Coulomb number can be interpreted as
the Stokes number~see@30#, for instance!. For the frictional
(NCo!1) or the frictional-collisional@NCo5O(1)# regime,
contact is sustained for any particle belonging to the n
work. Consequently, local dynamical processes are dam
and the main interaction between neighboring particles
Coulombic frictional process. For a network particle, the
cal motion is then characterized by the relationship betw
the normal and tangential components of the contact fo
~respectively,N andS!:

uSu5luNu, ~14!

where l is the mobilized friction coefficient, whose valu
depends on the nature of the contact:l5 f for a slipping
contact and 0,l, f for a sticking contact. Equation~14! is
known as Coulomb’s law or Amontons’ law. In the simpli
tic case of an isotropic contact distribution@namely, the
probability of finding contact atdk is nc /(4p) with nc the
mean contact number per unit volume#, it may be inferred
from Eqs. ~6! and ~7! that ~i! there are no normal stres
differences,~ii ! the normal stress issn5ncndRN̄/3, and~iii !
the shear~t! and normal (sn) stresses are linearly linked@1#:

t5hsn , ~15!

whereh is a constant. This relation is known in soil mecha
ics as Coulomb’s law, andh is generally written in the form
h5tanw, wherew is called the internal friction angle. Natu
rally, in most cases, the contact distribution undergoe
strong shear-induced anisotropy during flow as a result of
loss and gain of contacts in privileged directions of deform
tion @11,24#. But even in this case, it is expected that t
shear and normal bulk stresses are linearly linked~due to the
linearity of S̄ andN̄). The linearity coefficienth cannot cur-
rently be computed due to the poor knowledge of the form
the contact distribution and its dependence on the shear
Indeed, various approaches have been attempted to d
mine the pair distribution functionP2 : experimental data
@31#, numerical simulation results@11,26#, empirical approxi-
mations@32#, analogies drawn from the Fokker-Planck equ
tion @33#, etc. But they have so far provided only incomple
results. Here, in the absence of a more accurate theory
friction and in accordance with most soil mechanics theor
a practical way of evaluating the frictional contribution du
to the competent fraction consists of using the phenome

p
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8354 PRE 62CHRISTOPHE ANCEY AND PIERRE EVESQUE
logical Coulomb law~15!. We also admit that the paramet
w is intrinsic to the material~it does not depend on the soli
fraction! @34#. As the particles belonging to a ‘‘load
bearing’’ network carry large forces~larger than the averag
force!, contact is sticking in most cases. This implies th
particle dissipate little energy.

A second population~sometimes called theweakor frail
fraction! includes clusters of particles which do not take p
in an instantaneous percolating network. As they do not
dergo large forces, the typical contact duration is brief a
the contact force mainly reflects a momentum exchange

F5
d~mv!

dt
, ~16!

since, over a short timetc ~typically for an elastic collision of
two spherical particlestc}ġ21/5), other volume or surface
forces may be neglected. If we use the bulk stress defini
~6! and assume that the momentum exchanged durin
single collision is proportional tomRġ and the collision rate
proportional toġ21, we may expect the order of magnitud
of the collisional contribution to bulk stress to be

s̄col
~p!}2rpR2ġ2, ~17!

which is consistent with Bagnold’s arguments and pred
tions of kinetic theories.~As a sign convention, we use pos
tive stress to represent tensile stress.! A more accurate cal-
culation of the collisional contribution requires specifyin
the pair-distribution functionP2(r ) fully and must include
the granular temperature. This is achieved by kinetic theo
for dilute particle suspensions@7#. For higher concentrations
several major phenomena preclude simply extrapolating
results obtained for dilute suspensions. Typical examples
clude the development of a layered structure for simple sh
flows and the modifications to the contact law. When
particles organize themselves into layers oriented in the
rection of mean flow, this causes a strong anisotropy in
pair distribution function, which in turn provokes a signifi
cant drop in viscosity@35#. Apart from the contribution by
Campbell and Gong@36# for two-dimensional shear flows o
disks, little work has been done on the formation of a laye
microstructure in the collisional regime and its effect on t
bulk stress. When two elastic isolated bodies encounter,
contact is followed by a rebound. For multibody collision
such a rebound does not necessarily exist. For instance, w
throwing a glass bead against an assembly of beads, n
bound is observed. Likewise, when a bead rolls down
bumpy line made up of juxtaposed beads, it can be sho
that a collisional process without rebound is the main mot
mechanism@37#.

Here we shall not attempt to give more details on the fo
of the collisional contribution and we shall simply assum
that the collisional stress components may be written in
following form:

s̄col
~p!5rpR2ġ2F2K3 K2

K2 2K1
G , ~18!

where Ki are dimensionless parameters to be determin
These parameters are necessarily functions of the Coul
t
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number, since both the contact duration and composition
the bimodal population are functions of this dimensionle
number. To justify this assertion, we can propose the follo
ing physical scheme.~Such a reasoning is not new; it ha
been proposed in plasticity@9#, thixotropy@6#, etc.! Taking
into account the bimodal nature of the particle arrangem
we can define a structure state parameter~z! as the number of
particles in the weak fraction with respect to the total num
of particles. The collisional contribution depends on this p
rameter: s̄col5s̄col(z). At leading order, we can estimat
that the rate of change ofz is the difference between th
number~per unit time! of network chains destroyed durin
shear and the number of particles captured by the netw
The first term is proportional to a numberF ~undetermined!
of particles available for the weak fraction and to the rela
ation time of particlestp . Likewise, the second term is th
product of the network lifetimetn and the numberG of par-
ticles which can be included in the network. The balan
equation may be written

dz

dt
5

F~z!

tp
2

G~z!

tn
. ~19!

Assuming thatF and G are monotonous functions ofz,
we obtain the following relation for a steady state:

F~z!

G~z!
5

tp

tn
⇒z5H~NCo!. ~20!

This demonstrates that the coefficientsK must depend on
the Coulomb number. Particles belonging to the weak fr
tion carry forces much lower than the average force tra
mitted by the network. Contact between particles is m
often slipping. Due to inelastic and frictional dissipation, e
ergy loss is significant within the weak fraction.

Finally, we find that for a simple shear flow in a stea
state, the bulk shear stress can be written ast5k(w)p
1rpR2K2(NCo)ġ

2, wherep still denotes the granular pres
sure, namely, the mean normal stress carried by the com
tent fraction. We introduce the friction coefficientk, which is
equal to tanw in most cases@but other values are possible a
shown in paper I, where we demonstrated thatk5(1
12 tan2 w)21 is possible in some circumstances#. In a man-
ner similar to the fluid pressure for a Newtonian incompre
ible fluid, we have considered that the granular pressurea
priori undetermined. Indeed, owing to the long-range ch
acter of friction, the frictional stress state depends on
boundary conditions. Owing to the difference in energy d
sipation within each population of particles, the coefficie
K2 must adjust so that shear can dissipate the energy
plied to the system by external forces. In the following w
shall investigate a particular class of flow~isochoric steady
gravity-driven flow down inclined planes! to examine how
this principle of adjustment due to energy balance constra
allows us to infer the variation ofK2 with NCo.

IV. APPLICATION TO FLOW DOWN AN INCLINED
PLANE

In this section, we focus our attention on gravity-drive
free-surface flows of granular suspension down an inclin
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plane. It is assumed that~i! a steady uniform regime occur
at an inclinationu to the horizontal,~ii ! the bulk undergoes a
simple shear, and~iii ! the flow is isochoric. The last assump
tion may be criticized since it is well known that granul
flows are dilatant materials. But for dense granular flows,
variations are usually very low~a few percent!. Moreover,
experiments on channels@38#, numerical simulations@27#,
and arguments stemming from soil mechanics~plasticity
theories for large deformations! @9# have shown that the den
sity tends towards a constant value, called thecritical den-
sity.

We use the Cartesian coordinate system of origin 0 an
basisex ,ey ,ez as depicted in Fig. 2. The kinematic field d
pends on the coordinatey alone and takes the following
form:

nx5u~y!, ny50, nz50. ~21!

The strain-rate field is entirely described by the shear rateġ,
defined as a function of the coordinatey and implicitly of the
inclination u:

ġ~y!5S ]u

]yD
u

. ~22!

Since the variation in density~across the depth! is neglected,
we deduce from the momentum balance equation that

t5s̄xy5g sinuE
y

h

r~y!dy'r̄g sinu~h2y!, ~23!

sn5s̄yy52g cosuE
y

h

r~y!dy'2 r̄g cosu~h2y!,

~24!

where r̄5frp1(12f)r f and g, respectively, denote th
mean material density and the gravitational acceleration.
need to specify the boundary conditions for stress and ve
ity fields at the free surface and at the bottom wall. In o
particular case, a difficulty arises due to the combination
two coupled interactions. Let us imagine a granular susp
sion flow down a rough plane with a sufficiently large flo
depth. At the free surface, it is expected that the part
contribution to the normal stresssn is weak and conversely
the particle velocity is large. Accordingly, the local Coulom

FIG. 2. Definition sketch for steady uniform flow.
e

of

e
c-
r
f
n-

e

number is very large. At the bottom wall, the particle stre
is large and the particle velocity close to zero~for a suffi-
ciently rough plane! so that the Coulomb number come
close to zero. Thus we can deduce from these considera
that two boundary layers exist: the first one near the f
surface is characterized by the predominance of collis
~purely collisional regime!, while the second one close to th
bottom is governed by friction~frictional regime! as shown
in Fig. 3. Due to the complexity of the subject, we ha
assumed as a first approximation that the flow is de
enough for the thickness of each boundary layer to be
glected.~In the Appendix, we present an approximate tre
ment of the free surface layer for the particular case of
granular flow.! Thereby, we assume that there is no slip
the bottom: u(y)50. Furthermore, we assume that there
no interaction between the free surface and the ambient fl
above~except the fluid pressure!. It should be pointed out
that for shallow flows, the no-slip assumption no long
holds true. Due to various phenomena~such as depletion
particle size effect, torque transmission, asymmetry of str
tensor, and so on!, the flow is influenced by the roughnes
~see the numerical tests performed by Campbell@39# on
boundary interactions!. In this case, as pointed out by Brun
et al. @40#, we can expect a slip velocity in the formu(0)
5(h/R)a f (tp), wherea is a parameter tending toward ze
whenh@R andf is a function of the bottom shear stresstp .
Due to the agitation of particles and the weakness of
normal stress, the Coulomb number is large and the regim
probably collisional. We shall not pursue the matter furth
here, but in practice the reader must bear in mind that, in
case of a rough plane, for increasing mass flow rate,
regime is probably first collisional, then frictiona
collisional; this change must be reflected in the discha
equation.

Now we can write the momentum equations for a granu
flow in a steady state@deduced from Eqs.~15! and ~18!#:

usn8u5p1rpR2K1~NCo!ġ
2,

t5k~w!p1rpR2K2~NCo!ġ
2, ~25!

where sn is the normal effective stress~total stress minus
fluid stress!: sn5r8g(h2y)cosu, where r85 r̄2r f
5f(rp2r f) is the buoyant density. In Eq.~25! we have
expressed coefficientsKi as functions of the Coulomb num
ber only. In the present context of gravity-driven flows dow
channel, the normal stress and shear rate vary significa
across the flow depth. Accordingly, we use a local Coulo

FIG. 3. Sketch for the collisional boundary layer at the fr
surface.
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numberNCoy
, whose value is a function of the flow dept

As typical amounts in Eq.~2!, we useS5 r̄g(h2y) andG
5Ag/R.

To close the equations, we need to specify the variatio
the coefficientsKi with respect to the Coulomb number. W
shall use the energy balance equation~10! or its integral
form ~11! for that purpose. First, in the flow geometry co
sidered here~steady uniform flows!, advection of granular
temperature is vanishing. In a molecular system, shear w
is dissipated into heat, in the form of an increase of
random kinetic energy of molecules. This local heat incre
is balanced by a thermal diffusion. In a granular suspens
in a frictional-collisional regime, the generation of granu
temperature is hindered by several phenomena: proxim
of neighboring particles~steric hindrance!, nonoverlapping
condition due to particle rigidity, and the effect of norm
stress, especially for particles belonging to the compe
fraction. Thus it may be expected that the granular temp
ture does not vary in a sufficiently efficient way to be the k
parameter of dissipation and its magnitude is approxima
AT}RG/10. Using Eq.~11!, we can evaluate the ratio of th
energy dissipated at the channel bottom to the energy
plied by shear. We find *]VQ•ndS/*Vs̄:d̄ dV
5O„S(RG/10)/(ShG)…5O„R/(10h)…!1. A third mecha-
nism for energy dissipation (eG ) concerns inelastic loss durin
collisions, but it is unlikely to play a significant role her
Indeed, if we keep the magnitude ofeG that we can find using
kinetic theories, we can evaluate the ratio of the ene
dissipated by inelasticity to the energy suppli
by shear: eG /(s̄:d̄)5O„rp(RG/10)3/R/(SG)…5O„(RG)2/
(103gh)…!1 for thick flows. Another mechanism is fric
tional dissipation during slipping contact@^n•#su@& in Eq.
~10!#. Such a process operates mainly for particles in
weak fraction and can dissipate only a limited amount
energy. Indeed, the energy loss by frictional dissipation is
the order ofzrp(G1V)Rg, whereR(V1G) is the relative
slipping velocity at the point of contact, for particles belon
ing to adjacent layers andzrpVRg for particles of the same
layer. For loose systems of particles (f,fc), the velocity
spin generally equals half the shear rate, but for very c
centrated systems, there is no general relationship betweV
and ġ due to the absence of correlation between part
spins~frustration! @36#.

Thus, from the above arguments, we deduce t
Eq. ~10! reduces tos̄:d̄5tġ'2^n•#su@&5O(zrpVRg)
1O(zrpGRg). This leads to the paradoxical result that,
the whole, we should have (S2zrpRg)G}zrpVRg. That
means that energy dissipation is both correlated to the s
rate and uncorrelated. A reasonable assumption can be
vanced to overcome this difficulty: for a gravity-driven fre
surface flow of a granular suspension in a friction
collisional regime, the mean energy dissipation~per unit vol-
ume! is constant at every depth, whose value~P! depends
only on external forces applied to the flow~gravity, in this
case!. In other words, we may write energy dissipation as

s̄:d̄5tġ5P~u!. ~26!

This expression may be also interpreted as follows. T
strong fraction enduring frictional sustained contacts is
of
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key ingredient in stress generation. The weak fraction ma
dissipates energy through collisional contacts. Equation~26!
means that the shear rate must be adjusted to obtain an
librium between stress generation and energy dissipation
the shear stress is given by Eq.~23!, Eq. ~26! allows us to
deduce the shear rate:

ġ5
P~u!

t
5

P~u!

r̄g~h2y!sinu
. ~27!

At the free surface, the shear rate should tend towa
infinity. In fact, at the same time, the Coulomb number
much larger than unity in this zone and the flow regime m
be collisional. A collisional boundary layer must be cons
ered to properly treat the boundary condition at the free s
face ~see the Appendix!. For thick enough flows, the colli-
sional layer at the free surface may be neglected. To
consistent, Eq.~27! must match the expression deduced fro
momentum equations by eliminating the granular pressu

ġ5A t2kus8u
rpR2~K22kK1!

. ~28!

A simple comparison of Eqs.~27! and ~28! leads to

P~u!5Ar̄g sinuARgcosu~ tanu2kr̄8/ r̄ !,

~K22kK1!5BS rp

r̄ D 2 1

NCoy

3
, ~29!

where A and B are two constants. These expressions h
only for the frictional-collisional regime: NCoy

5O(1). For

very large Coulomb numbers, the coefficientsKi tend toward
the expression found in the Bagnold theory or kinetic the
ries. For vanishing Coulomb numbers, they tend toward ze
The velocity profile is deduced by integration of Eq.~28!:

u~y!52AARgcosu tanu2kr̄8/ r̄)lnS 12
g

hD . ~30!

This expression holds everywhere except near the free
face~see the Appendix!. It is worth noticing that the velocity
profile is self-similar and convex in contrast with predictio
of other models~giving a linear or a concave profile!. This is
in agreement with experimental data published by Sav
@41# on dry granular flow or Lanzoni and Tubino on wate
saturated granular flows@42#. The discharge is found to be
linear function of the flow depth:

q5AhARgcosu~ tanu2kr̄8/ r̄ !. ~31!

This result has many practical consequences. Among oth
it entails that the mean velocity is independent of the m
flow rate. This is in agreement with experimental data o
tained on rough bottom channel@19,41,43#. Furthermore, we
can assume that in a way similar toK22kK1 , the coefficient
K1 satisfiesK15C(rp / r̄)2/NCoy

3 ~where C is a constant!

since the simplest way to haveK22kK1}NCoy

23 is thatK2 and

K1 vary asNCoy

23 . Then we find that the granular pressure is

linear function of the flow depth:
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p5g~h2y!cosu„r̄82A2C~ r̄ tanu2kr̄8!…. ~32!

An examination of Eqs.~32! and~30! reveals that a stead
uniform flow takes place provided the slope ranges betw
two critical angles:

tanu25
r̄8

r̄ S 1

A2C
1kD>tanu>tanu15

r̄8

r̄
tanw. ~33!

For a steady uniform flow to occur, the slope must be
excess of a critical slope (u1) so that the shear stress ou
weighs the Coulomb yield stress. When the slope is
creased, the increase in shear rate implies a decreas
granular pressure and eventually, for slopes in excess
second critical angleu2 , the granular pressure vanishes; t
flow regime is thus collisional again. Such flow partitionin
is in agreement with experimental observations@19,22#.
Slopes belowu1 correspond toimmature sliding flowsand
slopes in excess ofu2 correspond tosplashing flows. The
numerical value found foru1 is in agreement with our ex
perimental data~dry granular flows! @19# and the one ob-
tained by Tubino and Lanzoni~water-saturated granula
flows! @42#.

V. CONCLUDING REMARKS

In this paper, we have presented a frictional-collision
model. In the same way as previous models developed
that purpose, the bulk stress tensor is divided into frictio
and collisional contributions. This combination is not
simple addition since the two contributions are strongly
lated via the kinetic energy balance equation. Stress gen
tion is marked by profoundly nonlocal processes since b
friction and collision are associated with length correlatio
over several particle diameters. For friction, we describe
nonlocal character in the same way as for pressure in inc
pressible fluids by introducing a pressure term, which m
be determined by solving the motion equations. For co
sions, we ascribe a significant role to energy dissipat
Their effects are strongly dependent on the local bala
between competent and weak fractions. As for the thickn
of the viscous boundary layer in a turbulent flow, we ha
considered that the collisional contribution only depends
a dimensionless number~the collisional number!. Their
variations are governed by the kinetic energy balance. C
trary to simple fluids, several mechanisms are involved
energy dissipation. Due to high concentrations, the class
mechanism of transformation from mechanical energy i
heat ~thermal motion! probably has limited effects in th
energy dissipation. Here we have considered an extreme
proximation: the assumption of a constant energy diss
tion rate~per unit volume!. This corresponds to the case
gravity-driven flow down an inclined channel.

For shallow granular flows@namely, forh/R5O(1)#, the
normal stress due to the particle weight is low and acco
ingly it is expected that the regime is collisional. For thi
enough flows (h/R.20), the collisional regime transform
into a frictional-collisional one. In this paper, this is justifie
by considering the dimensionless Coulomb number: for
collisional regime,NCo decreases asH21/2 and thus the
frictional-collisional is achieved for large flow depth. Ande
n
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son and Jackson@12# also found a significant change in th
discharge curve ascribed to the transition from a collisio
regime to a frictional-collisional regime. The main finding
our model concerns the linearity of the relation between fl
rate and flow depth. This point and others are in agreem
with experimental data published in the literature.

The present theory is a very crude mean-field approxim
tion, which tries to capture the expected features of part
networks in granular flows and the chief mechanisms of
ergy dissipation. Improvements or counterarguments sho
be raised by experiments and numerical simulations in
coming months. Notably, such tests should pay attention
the dynamic characteristics of populations~typical times,
evolution, dissipation rate in each population!. Furthermore,
numerical simulations must be able to specify the pair dis
bution functions for each population and provide clues ab
the relationship between these functions and the flow f
tures. Last, the role of the granular temperature both in st
generation and energy dissipation should be better speci
An interesting problem is granular temperature diffusi
within clusters of the weak fraction and its influence on t
strong fraction.
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APPENDIX

At the free surface, the frictional-collisional regime tran
forms into a collisional regime. Here, in a similar way
Johnson and Jackson@14#, we assume that a collisiona
boundary layer is superposed on the remaining flow~in a
frictional-collisional regime!. This boundary layer is charac
terized by the rapid decrease in the solid concentration.
want to find its thickness~d! for a given mass flow rate~q!.
Within this collisional boundary layer, the constitutive equ
tion is given by the following generic expression:

Scol
~p!52~p1mv“•u!112md̄, ~A1!

wherep, mv , andm are, respectively, the pressure, the bu
viscosity, and the effective shear viscosity. These parame
depend on the granular temperature of particles~T!, the solid
concentration~f!, the coefficient of restitution~e!, and the
particle density (rp) and its diameter (D52R):

p5rpf 1~f,e!T, m5rpD f 2~f,e!AT,

Q52rpD f 3~f,e!AT¹T1rpD f 4~f,e!T3/2¹f,

«G 5
rp

D
f 5~f,e!T3/2, ~A2!
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8358 PRE 62CHRISTOPHE ANCEY AND PIERRE EVESQUE
whereQ denotes the thermal energy flux andeG the energy
sink. As usual, we shall assume thatf 450. We assume that
due to the rapid decrease in the solid concentration, the m
solid concentration is low in the boundary layer. Accor
ingly, the kinetic contribution outweighs the collisional pa
in the constitutive equation. For low solid concentrations,
kinetic model developed by Lunet al. @44# is suitable. Keep-
ing only the kinetic part, we can express the functions u
in Eq. ~2! as

f 1~f,e!5f, ~A3!

f 2~f,e!5
Ap

1426e S 1

g0~f!
1

f

4
~11e!~3e21! D ,

~A4!

f 3~f,e!5
2Ap

~19215e!~11e!

3F 1

g0~f!
1

3

4
f~11e!2S 2e1

1

2D G , ~A5!

f 4~f,e!5
3Ape~e21!

2~19215e!

1

fg0~f!

d

dy
@f2g0~f!#,

~A6!

f 5~f,e!5
4~12e2!

Ap
g0f2. ~A7!

Using Eqs.~10!, ~23!, and~24!, we directly deduce

df

dy
5fS g cosu

T
2

T8

T D , ~A8!

ġ5
f 1

f 2

tanu

D
AT, ~A9!

2
tan2 u

D2

f 1
2

f 2
f2T3/21

d

dy F2 f 3AT
dT

dy
1 f 4fATS g2

dT

dyD G
1

f 5

D2 T3/250. ~A10!

At the free surface, the boundary conditions areT8(h)
50 andS•n50 with n5ey the normal to the free surface
At the interface with the frictional-collisional zone, we hav
u(y0)5uFC(y0), f(y0)5f̄. A complete and clearly vali-
dated formulation of boundary conditions~at a solid wall! is
still lacking: complicated and coupled phenomena~such as
torque transmission, depletion, propagation of elastic wa
through the bumpy bottom surface! certainly affect the en-
ergy balance, but the question of how they interact is qu
confused. In most available theoretical treatments, the en
balance is deduced from heuristic considerations and
involves a series of empirical~indeterminate! parameters.
Here we simply assume that the energy balance given by
~10! still holds true, but in accordance with studies on t
motion of a single particle down a bumpy@37#, it is thought
that inelastic dissipation acts as the main sink for granu
temperature. Therefore, as a first approximation, we neg
an
-

e

d

s

e
gy
us

q.

r
ct

the influence of the thermal energy flux~Q! in the energy
balance equation. Finally, we obtaint0ġ05«G y50 , where the
subscript 0 refers to the wall position (y50). The coefficient
of restitution~at wall!, ew , implicitly used is normally dif-
ferent from the one used in motion equations. Using E
~A2!, we finally obtain

T~y0!5T05S D

f 5~f̄ !
f̄ sinugdġFCD 2/3

. ~A11!

As the solid concentration is low, let us introduce a sm
parameter«5d/h ~much smaller than 1! and let us express
the solid concentration and granular temperature as

f5s01«s11«2s21o~«2!, ~A12!

T5t01«t11«2t21o~«2!, ~A13!

wheresi and t i are functions ofy to be determined. Then
using Eqs.~A12! and~A13! in Eqs.~A8!–~A10!, we obtain a
system of differential equations with powers of« as param-
eters. Collecting terms of the same order produces a
quence of equations. For order 0, we have

d2t0
3/2

dy2 50, s085s0

g cosu

t0
2

t08

t0
, ~A14!

and making allowance for boundary conditions, we obtai

t05T0 , s05f̄e2g cosu~y2y0!/T0. ~A15!

To order 1, one obtains

8

5e~12e2! F2
5

2
1

3

2
~11e!2S 2e1

1

2D G t181gs150,

s185
s1g

t0
2s0

t18

t0
2g cosus0

t1

t0
2 , ~A16!

with no trivial solutions. In order to obtain analytical result
we limit the expansion to terms of order 0. Due to the exp
nential decrease in the solid concentration, the approxim
solution does not provide the position of the free surface.
get around this difficulty, we suggest defining the bound
layer thickness as

d5
1

f̄
E

y0

`

f~y!dy5
T0

g cosu
. ~A17!

Using Eq. ~A9!, we deduce the velocity field~to leading
order!

u~y!5uFC1
1426e

Ap
tanu

T0
3/2

g cosuD
~12e2g cosu~y2y0!/T0!.

~A18!

The contribution of the collisional zone to the total dischar
may be expressed as
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y0

`

rpfu~y!dy5rpf̄dS uFC1
723e

Ap
tanu

d

D
AT0D .

~A19!

The shear rate is given by Eqs.~28! and ~29! and the
velocity profile by Eq.~30!. At the interface, these expres
sions may be written as

ġFC5 j ~u!
1

d
~A20!

and

uFC5 j ~u!ln
h

d
, ~A21!

where the total depth ish5y01d and j (u)5P/( r̄g sinu).
The contribution to the total discharge is
.

fe
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g

,

ll
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et

on
o

d

ni-
qFC5rpfE
0

y0
u~y!dy5rpf̄ j ~u!hS 11

d

h
ln

d

h
2

d

hD .

~A22!

Using Eqs.~A10! and ~A15! together with the definition of
the total flow depth and the mass balance leads to a sys
of four nonlinear equations of variablesT0 , y0 , d, andh. It
is worth noticing that the boundary layer thickness is ind
pendent of the mass flow rate~as a first approximation!:

d5
~D j ~u!!2/3

A3 g

~f̄ sinu/ f 5!2/3

cosu
. ~A23!

It follows that the influence of the boundary layer is pa
ticularly marked for low-mass flow rates~in accordance with
experimental observations such as the ones performed
Johnson and Jackson@14#!. For sufficiently large discharges
the error caused by ignoring the boundary layer is negligib
rict.
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