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13.1 Introduction

Over the last century, mountain ranges in Europe and North America have seen
substantial development due to the increase in recreational activities, trans-
portation, construction in high altitude areas, etc. In these mountain ranges,
avalanches often threaten man’s activities and life. Typical examples include
recent disasters, such as the avalanche at Val d’Isère in 1970 (39 people were
killed in a hostel) or the series of catastrophic avalanches throughout the North-
ern Alps in February 1999 (62 residents killed). The rising demand for higher
safety measures has given new impetus to the development of mitigation tech-
nology and has given rise to a new scientific area entirely devoted to snow and
avalanches. This paper summarises the paramount features of avalanches (for-
mation and motion) and outlines the main approaches used for describing their
movement. We do not tackle specific problems related to snow mechanics and
avalanche forecasting. For more information on the subject, the reader is referred
to the main textbooks published in Alpine countries [1,2,3,4,5,6,7,8].

13.1.1 A Physical Picture of Avalanches

Avalanches are rapid gravity-driven masses of snow moving down mountain
slopes. With this fairly long definition, we try to characterise avalanches with
respect to other snow flows. For instance, a snowdrift involves transport of snow
particles, driven not by gravity but by wind. The slow slide and creep of the
snow cover is driven by gravity but with a slow kinetic (typical velocities are in
mm/day). Likewise, the slide of a snowpack down a roof cannot be considered
an avalanche.

13.1.2 Avalanche Release

Successive snowfalls during the winter and spring accumulate to form snow cover.
Depending on the weather conditions, significant changes in snow (types of crys-
tal) occur as a result of various mechanical (creep, settlement) and thermo-
dynamic processes (mass transfer). This induces considerable variations in its
mechanical properties (cohesion, shear strength). Due to its layer structure, the
snow cover is liable to internal slides between layers induced by gravity. When
the shear deformation exceeds the maximum value that the layers of snow can
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undergo, a failure arises, usually developing first along the sliding surface, then
propagating throughout the upper layers across a crack perpendicular to the
downward direction. This kind of release is very frequent. In the field evidence
of such failures consists of a clear fracture corresponding to the breakaway wall
at the top edge of the slab and a bed surface over which the slab has slid (see
Fig. 13.1). If the snow is too loose, the failure processes differ significantly from
the ones governing slab release. Loose snow avalanches form near the surface.
They usually start from a single point, then they spread out laterally by pushing
and incorporating more snow.

Fig. 13.1. Slab avalanche released by gliding wet snow

The stability of a snow cover depends on many parameters. We can distin-
guish the fixed parameters related to the avalanche path and the varying pa-
rameters, generally connected to weather conditions. Fixed parameters include:

• Mean slope. In most cases, the average inclination of starting zones ranges from
27◦ to 50◦. On rare occasions, avalanches can start on gentle slopes of less than
25◦ (e.g. slushflow involving wet snow with high water content), but generally
the shear stress induced by gravity is not large enough to cause failure. For
inclinations in excess of 45◦ to 50◦, many slides (sluffs) occur during snowfalls;
thus amounts of snow deposited on steep slopes are limited.

• Roughness. Ground surface roughness is a key factor in the anchorage of
the snow cover to the ground. Dense forests, broken terrain, starting zones
cut by several ridges, ground covered by large boulders generally limit the
amount of snow that can be involved in the start of an avalanche. Conversely,
widely-spaced forests, large and open slopes with smooth ground may favour
avalanche release.



13 Snow Avalanches 321

• Shape and curvature of starting zone. The stress distribution within the snow-
pack and the variation in its depth depend on the longitudinal shape of the
ground. For instance, convex slopes concentrate tensile stresses and are gener-
ally associated with a significant variation in the snowcover depth, favouring
snowpack instability.

• Orientation to the sun. The orientation of slopes with respect to the sun has
a strong influence on the day-to-day stability of the snowpack. For instance,
in winter, shady slopes receive little incoming radiation from the sun and con-
versely lose heat by long-wave radiation. It is generally observed that for these
slopes, the snowpack is cold and tends to develop weak layers (faceted crystals,
depth hoar). Many fatalities occur each year in such conditions. In late winter
and in spring, the temperature increase enhances stability of snowpacks on
shady slopes and instability on sunny slopes.

Among the varying factors intervening in avalanche release, experience clearly
shows that in most cases, avalanches result from changes in weather conditions:

• New snow. Most of the time, snowfall is the cause of avalanches. The hazard
increases significantly with the increase in the depth of new snow. For instance,
an accumulation of 30 cm/day may be sufficient to cause widespread avalanch-
ing. In European mountain ranges, heavy snowfalls with a total precipitation
exceeding 1m during the previous three days may produce large avalanches,
with possible extension down to the valley bottom.

• Wind. The wind is an additional factor which significantly influences the sta-
bility of a snowpack. Indeed it causes uneven snow redistribution (accumu-
lation on lee slopes), accelerates snow metamorphism, forms cornices, whose
collapses may trigger avalanches. On the whole, influence of the wind is very
diverse, either consolidating snow (compacting and rounding snow crystals)
or weakening it.

• Rain and liquid water content. The rain plays a complex role in snow meta-
morphism. Generally, for dry snow, a small increase in the liquid water content
(LWC< 0.5%) does not significantly affect the mechanical properties of snow.
However, heavy rain induces a rapid and noticeable increase in LWC, which re-
sults in a drop in the shear stress strength. This situation leads to widespread
avalanche activity (wet snow avalanches).

• Snowpack structure. A given snowpack results from the successive snowfalls.
The stability of the resulting layer structure depends a great deal on the
bonds between layers and their cohesion. For instance, heterogeneous snow-
packs, made up of weak and stiff layers, are more unstable than homogeneous
snowpacks.

13.1.3 Avalanche Motion

It is very common and helpful to consider two limiting cases of avalanches de-
pending on the form of motion [7]:
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• The flowing avalanche (avalanche coulante, Fliesslawine, valanga radente):
a flowing avalanche is an avalanche with a high-density core at the bottom.
Motion is dictated by the relief. The flow depth does not generally exceed a few
meters (see Fig. 13.2). The typical mean velocity ranges from 5m/s to 25m/s.
On average, the density is fairly high, generally ranging from 150 kg/m3 to
500 kg/m3.

• The airborne avalanche (avalanche en aérosol, Staublawine, valanga nubi-
forme): it is a very rapid flow of a snow cloud, in which most of the snow
particles are suspended in the ambient air by turbulence (see Fig. 13.3). Relief
has usually little influence on this aerial flow. Typically, for the flow depth,
mean velocity, and mean density, the order of magnitude is 10–100m, 50–
100m/s, 5–50 kg/m3 respectively.

Fig. 13.2. Flowing avalanche impacting a wing-shaped structure in the Lauratet ex-
perimental site (France)

The avalanche classification proposed here only considers the form of motion
and not the quality of snow. In the literature, other terms and classifications
have been used. For instance, it is very frequent to see terms such as dry-snow
avalanches, wet-snow avalanches, powder avalanches, etc. In many cases and
probably in most cases in ordinary conditions, the motion form is directly influ-
enced by the quality of snow in the starting zone. For instance, on a sufficiently
steep slope, dry powder snow often gives rise to an airborne avalanche (in this
case no confusion is possible between airborne and powder snow avalanches).
However, in some cases, especially for extreme avalanches (generally involving
large volumes of snow), motion is independent of the snow type. For instance,
wet snow may be associated with airborne (e.g. Favrand avalanche in the Cha-
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Fig. 13.3. Airborne avalanche descending a steep slope (Himalayas)

monix valley, France, on 16 May 1983). Between the two limiting cases above,
there is a fairly wide variety of avalanches, which exhibit characteristics common
to both airborne and flowing avalanches. Sometimes, such flows are referred to as
“mixed-motion avalanches”. The use of this term is often inappropriate because
it should be restricted to describing complex flows for which both the dense core
and the airborne play a role (from a dynamic point of view). In some cases,
the dense core is covered with a snow dust cloud, made up of snow particles
suspended by turbulent eddies of air resulting from the friction exerted by the
air on the core. This cloud can entirely hide the high-density core, giving the
appearance of an airborne avalanche, but in fact, it plays no significant role in
avalanche dynamics. It should be born in mind that the mere observation of a
cloud is generally not sufficient to specify the type of an avalanche. Further ele-
ments such as the features of the deposit or the destructive effects are required.

The current terminology asserts that there are two main types of motion. In
this respect, mixed-motion avalanches are seen as avalanches combining aspects
of both airborne and flowing avalanches, but they are not seen as a third type
of avalanche. The question of a third type of avalanche has been raised by some
experts during the last few years. Indeed, there is field evidence that some events
did not belong either to the group of airborne or flowing avalanches. For instance,
the Taconnaz avalanche (Haute-Savoie, France) on 11 February 1999 severely
damaged two concrete-reinforced structures. The impact pressure was estimated
at (at least) 600 kPa. The assumption of a flowing avalanche is not supported
by the shape of the deposit. Current knowledge of airborne dynamics has a hard
time explaining such a high impact pressure.

To conclude it should be noticed that there is currently a limited amount of
data on real events. Some of the main parameters, such as the mean density in
an airborne avalanche, are still unknown. Thus, many elements of our current
knowledge of avalanches have a speculative basis. Today a great deal of work is
underway to acquire further reliable data on avalanche dynamics. Experimental
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sites, such as la Sionne (Switzerland) or the Lautaret pass (France), have been
developed for that purpose. However a survey of extreme past events shows
that the characteristics of extreme avalanches (involving very large volumes)
cannot be easily extrapolated from the features of ordinary avalanches. In this
respect, the situation is not very different from the problems encountered with
large rockfalls and landslides [9,57]. Many observations that hold for ordinary
events no longer hold for rare events. Examples include the role of the forest,
the influence of the snow type on avalanche motion, etc.

13.2 Modelling Avalanches

Avalanches are extremely complex phenomena. This complexity has led to the
development of several approaches based on very different points of view. Many
papers and reports have presented an overview of current models. These include
the review by Hopfinger [12] as well as a comprehensive up-to-date review of all
existing models edited by Harbitz [13] in the framework of an European research
programme. Here we shall only outline three typical approaches: the statistical
approach, the deterministic approach, and small-scale models.

13.2.1 Statistical Methods

In land-use planning (avalanche zoning), the main concern is to delineate ar-
eas subject to avalanches. Avalanche mapping generally requires either accurate
knowledge of past avalanche extensions or methods for computing avalanche
boundaries. To that end several statistical methods have been proposed. The
two main models used throughout the world are the one developed by Lied and
Bakkehøi [15] and the one developed subsequently by McClung and Lied [14].
Both attempt to predict the extension (stopping position) of the long-return
period avalanche for a given avalanche path. Generally, authors have considered
avalanches with a return period of approximately 100 year. All these methods
rely on the correlations existing between the runout distance and some topo-
graphic parameters. They assume that the longitudinal profile of the avalanche
path governs avalanche dynamics. The topographic parameters generally include
the location of the top point of the starting zone (called point A) and a point
B of the path profile where the local slope equals a given angle, most often 10◦

(this point is usually interpreted as the deceleration point of the path). The po-
sition of the stopping position (point C) is described using the angle α, which is
the angle of the line joining the starting and stopping points with respect to the
horizontal (see Fig. 13.4). Likewise, β is the average inclination of the avalanche
path between the horizontal and the line joining the starting point A to point
B.

To smooth irregularities in the natural path profile, a regular curve (e.g.
a parabola) can be fitted to the longitudinal profile. Statistical methods have
so far been applied to flowing avalanches. In principle, nothing precludes using
them for airborne avalanches. But in this case, one is faced with the limited
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Fig. 13.4. Topographic parameters describing the profile. The dashed line represents
the fitted parabola

amount of data and their poor quality (airborne avalanches are rare and the
limits of their deposits are hard to delineate in the field). As an example of
statistical models, we indicate the results obtained by Lied and Toppe [16].
Using regression analysis on data corresponding to the longest runout distance
observed for 113 avalanche paths in western Norway, these authors have found
that α = 0.96β − 1.7◦. The regression coefficient is fairly good (r2 = 0.93)
and the standard deviation is relatively small (s = 1.4◦). Many extensions of
the early model developed by Lied and Bakkehøi have been proposed over the
last twenty years either to tune the model parameters to a given mountainous
region or adapt the computations to other standards. For instance, subsequent
work on statistical prediction of avalanche runout distance has accounted for
other topographic parameters such as the inclination of the starting zone or the
height difference between the starting and deposition zones. Although statistical
methods have been extensively used throughout the world over the last twenty
years and have given fairly reliable and objective results, many cases exist in
which their estimates are wrong. Such shortcomings can be explained (at least
in part) by the fact that for some avalanche paths, the dynamic behaviour of
avalanches cannot be merely related or governed by topographic features.

13.2.2 Deterministic Approach (Avalanche-dynamics Models)

The deterministic approach involves quantifying the elementary mechanisms af-
fecting the avalanche motion. Avalanches can be considered at different spatial
scales (see Fig. 13.5). The larger scale, corresponding to the entire flow, leads to
the simplest models. The chief parameters include the location of the gravity cen-
tre and its velocity. Mechanical behaviour is mainly reflected by the friction force
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F exerted by the bottom (ground or snowpack) on the avalanche. The smallest
scale, close to the size of snow particles involved in the avalanches, leads to com-
plicated rheological and numerical problems. The flow characteristics (velocity,
stress) are computed at any point of the occupied space. Intermediate models
have also been developed. They benefit from being less complex than three-
dimensional numerical models and yet more accurate than simple ones. Such
intermediate models are generally obtained by integrating the motion equations
across the flow depth in a way similar to what is done in hydraulics for shallow
water equations.

u

F

u(x,t)
í
p

h(x,t)

u(x,y,t)

ë(x,y,t)

Fig. 13.5. Different spatial scales used for describing avalanches

Simple Models

Simple models have been developed for almost 80 years in order to crude es-
timations of avalanche features (velocity, pressure, runout distance). They are
used extensively in engineering throughout the world. Despite their simplicity
and approximate character, they can provide valuable results, the more so as
their parameters and the computation procedures combining expert rules and
scientific basis have benefited from many improvements over the last few decades.

Simple Models for Flowing Avalanches. The early models date back to
the beginning of the 20th century. For the Olympic Games at Chamonix in
1924, the Swiss professor Lagotala computed the velocity of avalanches in the
Favrand path [18]. His method was then extended by Voellmy , who popularised
it. Since the model proposed by Voellmy, many extensions have been added. The
Voellmy–Salm–Gubler (VSG) model [17] and the Perla–Cheng–McClung model
[11] are probably the best-known avalanche-dynamics models used throughout
the world. Here we outline the VSG model. In this model, a flowing avalanche
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is considered as a sliding block subject to a friction force:

F = mg
u2

ξh
+ µmg cos θ , (13.1)

where m denotes the avalanche mass, h its flow depth, θ the local path inclina-
tion, µ a friction coefficient related to the snow fluidity, and ξ a coefficient of
dynamic friction related to path roughness. If these last two parameters cannot
be measured directly, they can be adjusted from several series of past events. It is
generally accepted that the friction coefficient µ only depends on the avalanche
size and ranges from 0.4 (small avalanches) to 0.155 (very large avalanches) [17].
Likewise, the dynamic parameter ξ reflects the influence of the path on avalanche
motion. When an avalanche runs down a wide open rough slope, ξ is close to
1000. Conversely, for avalanches moving down confined straight gullies, ξ can be
taken as being equal to 400 or more. In a steady state, the velocity is directly
inferred from the momentum balance equation:

u =
√
ξh cos θ (tan θ − µ) . (13.2)

According to this equation two flow regimes can occur depending on path incli-
nation. For tan θ > µ, (13.2) has a real solution and a steady regime can occur.
For tan θ < µ, there is no real solution: the frictional force (13.1) outweighs the
downward component of the gravitational force. It is therefore considered that
the flow slows down. The point of the path for which tan θ = µ is called the
characteristic point (point P). It plays an important role in avalanche dynamics
since it separates flowing and stopping phases. In the stopping zone, we deduce
from the momentum equation that the velocity decreases as follows:

1
2
du2

dx
+ u2

g

ξh
= g cos θ (tan θ − µ) . (13.3)

The runout distance is easily inferred from (13.3) by assuming that at a point
x = 0, the avalanche velocity is up. In practice the origin point is point P but
attention must be paid in the fact that, according to (13.2), the velocity at point
P should be vanishing; a specific procedure has been developed to avoid this
shortcoming (see [17]). Neglecting the slope variations in the stopping zone, we
find:

xa =
ξh

2g
ln
(
1 +

u2P
ξh cos θ (µ− tan θ)

)
. (13.4)

This kind of model enables us to easily compute the runout distance, the max-
imum velocities reached by the avalanche on various segments of the path, the
flow depth (by assuming that the mass flow rate is constant and given by the
initial flow rate just after the release), and the impact pressure.

Simple Models for Airborne Avalanches. For airborne avalanches, simple
models have been developed using the analogies with inclined thermals or start-
ing plumes. An inclined thermal consists of the flow of a given volume of a heavy
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fluid into a surrounding light fluid down an inclined wall. Buoyancy is the key
factor of motion. To our knowledge, the earliest model was proposed by Tochon-
Danguy and Hopfinger [19], then further developments were made by Béghin and
Hopfinger [20], Fukushima and Parker [21], as well as Akiyama and Ura [22]. But
as for Voellmy’s model, similar models were probably developed in parallel by
other authors, notably Russian scientists [23]. The main difficulty encountered
here is that avalanche volume increases constantly as the avalanche descends.
Thus contrary to simple models developed for flowing avalanches it is necessary
to consider a further equation reflecting changes in volume or mass. To that
end, it is generally assumed that the avalanche volume is a half ellipsoid (three-
dimensional cloud) or a half cylinder with an elliptic basis (two-dimensional
cloud). Changes in volume are due to entrainment of surrounding air into the
airborne avalanche and snow incorporation from the snow cover. Here, for the
sake of simplicity, we only consider two-dimensional flows without snow incorpo-
ration. We further assume that the friction exerted by the ground on the cloud
is negligible compared to the buoyant force.

Fig. 13.6. A thermal is defined as the flow of a constant-volume flow driven by buoy-
ancy (instantaneous release). A starting plume is a constant-supply flow (continuous
release)

It is widely recognised (see [25]) that the inflow rate is proportional to a
characteristic velocity (generally the mean velocity) and the surface area what-
ever the type of the flow (jet, plume, thermal) and the environment (uniform or
stratified). Such an assumption leads to:

d�̄V
dt

= �aα(θ)S U , (13.5)

where V is the cloud volume, U its velocity (velocity of the mass centre), �̄ the
mean bulk density of the “heavy” fluid, �a the density of the ambient (“light”)
fluid, and the surface area S (per unit width) is ks

√
HL with H the flow depth

and L the flow length. We can also express the volume V (per unit width) as
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κHL. We used a shape factor ks defined by: ks = E(1−4k2)/
√
k, where k = H/L

and E denotes the elliptic integral function; likewise, κ is another shape factor:
κ = π/4. In (13.5), we have also introduced α(θ), which is an entrainment
coefficient depending on the inclination θ only. This assumption needs further
explanations. It is usually stated that the entrainment coefficient is a function
of an overall Richardson number, defined here by: Ri = g′h cos θ/u2, where we
introduced the reduced gravity g′ = g∆�̄/�a and ∆�̄ = �̄ − �a is the buoyant
density [24,25,26]. Here the overall Richardson number reflects the stabilizing
effect of the density difference and the relative importance of buoyancy [24].
In the case of a gravity current with constant supply, it is observed that for a
given slope, the mean velocity U reaches a constant value, insensitive to slope
but depending on the buoyancy flux (per unit width) A = g′hU : U ∝ 3

√
A

[24,27]. This also means that the flow adjusts rapidly to a constant Richardson
number (for a given slope). In this case, using approximate equations for the
mass and momentum balances (respectively d(HU)/dx = αU and d(HU2)/dx =
g′h sin θ), we easily deduce that the entrainment coefficient α is a function of the
Richardson number and slope: α = Ri tan θ [24]. Here, although buoyancy supply
is not constant, we assume that the entrainment coefficient α depends only on
the slope.

Using the fact that at any time the mean bulk density can be defined by:

�̄ =
�0V0 + �a(V − V0)

V
, (13.6)

where �0 and V0 denote the initial density and volume of the cloud, we infer the
volume balance equation:

κ
dHL

dt
= α(θ)ks

√
HLU . (13.7)

In the present context, Béghin assumed that the ratio k = H/L remains constant
from the beginning to the collapse of the cloud. Thus, using the fact that d()/dt =
Ud()/dx, where the abscissa x refers to the downward position of the mass centre,
we easily deduce from (13.7) that:

dH
dx

= αH , (13.8)

where αH = α(θ)
√
kks/(2κ). The ambient fluid exerts two types of pressure on

the cloud: a term analogous to a static pressure (Archimede’s theorem), equal to
�aV g, and a dynamic pressure. As a first approximation, the latter term can be
evaluated by considering the ambient fluid as an inviscid fluid in a irrotational
flow. On the basis of this approximation, it can be shown that the force exerted
by the surrounding fluid on the half cylinder is Fdyn = �akvd(UV )/dt, where
kv = 2k is sometimes called the added mass coefficient [28]. Thus the momentum
balance equation can be written as:

d�̄V U
dt

= �̄gV sin θ − �agV sin θ − kv�a
dV U
dt

, (13.9)
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or equivalently:
d(�̄+ kv�a)V U

dt
= ∆�̄gV sin θ . (13.10)

The buoyant term on the right-hand side of (13.10) is constant. Indeed, using
(13.6), we find that:

∆�̄gV sin θ = ∆�̄0V0g sin θ , (13.11)

with ∆�̄0 = �̄0 − �a the initial buoyant density. Moreover, to simplify (13.10),
we can use the Boussinesq approximation, which involves neglecting the excess
in density in front of the inertial terms (�̄ ≈ �a). Thus we infer from (13.10):

dU2

dx
+

4
H(x)

αHU
2 =

2β(θ)
H2(x)

, (13.12)

where β(θ) = g′
0V0 sin θ/ [κk(1 + kv)]. After integrating (13.12), we find that the

mean velocity varies as a function of the abscissa as follows:

U2 =
3H4

0U
2
0 + 6βxH(x) + 2βα2x3

3H4(x)
, (13.13)

where (U0, H0) refer to the initial velocity and depth of the cloud. For large values
of x, the mean velocity behaves asymptotically as: U ∝ 1/

√
x. The velocity of

the front is given by:

Uf =
d
dt
(xf − x+ x) = U +

1
2
d
dt
L = U

(
1 +

αH

2k

)
. (13.14)

Thus the velocity of the front is found to be proportional to the mean velocity.
Asymptotically, the front position varies as:

Uf ≈
(
1 +

αH

2k

)√2βα2

3α4
H

√
1
x
, (13.15)

or equivalently:

xf ≈
(
1 +

αH

2k

)2/3
[
2
3
α2

α4
H

g′
0V0 sin θ

κk(1 + kv)

]1/3

t2/3 . (13.16)

This result is of great interest since it is comparable to other results found using
different approaches. For instance, using the von Kármán–Benjamin boundary
condition at the leading edge – stating that the front motion is characterized
by a constant Froude number Fr = U/

√
gh, i.e. Fr2 = g′/(g Ri) – Huppert and

Simpson [29] developed a very simple model, sometimes called the “box model”
(see also Chap. 8). They considered a two-dimensional gravity current as a series
of equal cross-sectional area rectangles (of length l(t) and height h(t)) advancing
over a horizontal surface: u = Fr

√
g′h and V (t) = h(t)l(t) = V0 where V0

denotes the initial volume (per unit width) of fluid (here Fr =
√
2 inferred from
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theoretical considerations using the Bernoulli equation [30]). Using u = dl/dt
and integrating the volume equation leads to:

l(t) =
(
3
2
Fr

)2/3

(g′V0)1/3t2/3 . (13.17)

Comparison of (13.16) and (13.17) reveals the same asymptotic behaviour, except
that in Béghin’s model, the position depends on the inclination θ. This is both
disturbing and comforting since these two models are based on very different
approximations: Béghin’s model assumes that flow is governed on average by a
momentum balance while Huppert and Simpson’s model states that the flow be-
haviour is dictated by dynamic conditions at the leading edge. Many experiments
have been performed on the motion of a two-dimensional cloud over horizon-
tal surfaces or down inclined planes (e.g. [20,27,29,31,32,33,34,35,36,37,38,39]).
They have confirmed the theoretical trend displayed in (13.15) or (13.16). The
main difference between experimental results concerns the depth increase rate
αH (ranging from 0.01 to 0.02 for θ = 5◦).

Many field and laboratory observations have shown the significant role played
by particle sedimentation or incorporation of material from the ground into the
cloud. Improvements of existing simple models have been achieved by imple-
menting new procedures taking material entrainment into account. Research on
this topic is still in process. Compared to field data, Béghin’s model usually
provides correct estimates of the mean front velocity (to 20%) but it may sub-
stantially underestimate the impact pressure by a factor 10. The reason why the
impact pressure computed as �u2/2 is underestimated is not clear. Very large
velocity fluctuations inside the airborne avalanche or particles clustering at the
flow bottom may be responsible for very high impact pressures. Another field
observation that cannot be explained by Béghin-type models is the consider-
able acceleration at the early stages of an aerosol; in some cases, acceleration of
6m/s2 over a 40◦ slope has been recorded for more than 5 s. This may also be
related to the controversy on reduced gravity [40]. Indeed, some authors have
claimed that a flow acceleration scaling as g′ is not physical and suggested the
alternative g′′ defined by g′′ = g(�̄ − �a)/�̄. Concerning avalanches, field data
tend to show that avalanche acceleration scales as g′.

Intermediate Models (Depth-Averaged Models)

Simple models can provide approximate predictions concerning runout distance,
the impact pressure, or deposit thickness. However they are limited for many
reasons. For instance, they are restricted to one-dimensional path profiles (the
spreading of the avalanche cannot be computed) and the parameters used are
fitted to past events and cannot be measured in the field or in the laboratory
(rheometry), apart from airborne models if the analogy with turbidity currents
is used. More refined models use depth-averaged mass and momentum equations
to compute the flow characteristics. With such models, the limitations of sim-
ple models are alleviated. For instance it is possible to compute the spreading
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of avalanches in their runout zone or relate mechanical parameters used in the
models to the rheological properties of snow. As far as we know, the early depth-
averaged models were developed in the 1970s by Russian scientists (Kulikovskii,
Eglit [23,41,42]) and French researchers (Pochat, Brugnot, Vila [43,44]) for flow-
ing avalanches. For airborne avalanches, the first stage was probably the model
developed by Parker, Fukushima, and Pantin [45], which, though devoted to sub-
marine turbidity currents, contains almost all the ingredients used in subsequent
models of airborne avalanches. Considerable progress in the development of nu-
merical depth-averaged models has been made possible thanks to the increase
in computer power and breakthrough in the numerical treatment of hyperbolic
partial differential equation systems (see [46] for a comprehensive review on hy-
perbolic differential equations in physics and [47] for a practical introduction to
numerical treatment).

Depth-averaged Motion Equations. Here, we shall address the issue of
slightly transient flows. We focus exclusively on gradually varied flows, namely
flows that are not far from a steady uniform state for the time interval under
consideration. Moreover, we first consider flows without entrainment of the sur-
rounding fluid and variation in density: � ≈ �̄. Accordingly the bulk density
may be merely replaced by its mean value. In this context, the motion equations
may be inferred in a way similar to the usual procedure used in hydraulics to
derive the shallow water equations (or Saint–Venant equations): it involves in-
tegrating the momentum and mass balance equations over the depth. As such
a method has been extensively used in hydraulics for water flow [50] as well for
non-Newtonian fluids (see for instance [45,48] or [49]; see also Chap. 14) we shall
briefly recall the principle and then directly provide the resulting motion equa-
tions. Let us consider the local mass balance: ∂�/∂t + ∇.(�u) = 0. Integrating
this equation over the flow depth leads to:

h(x,t)∫
0

(
∂u

∂x
+
∂v

∂y

)
dy =

∂

∂x

h∫
0

u(x, y, t)dy − u(h)
∂h

∂x
− v(x, h, t) − v(x, 0, t) ,

(13.18)
where u and v denote the x- and y-component of the local velocity. At the
free surface and the bottom, the y-component of velocity satisfies the following
boundary conditions:

v(x, h, t) =
dh
dt

=
∂h

∂t
+ u(x, h, t)

∂h

∂x
, v(x, 0, t) = 0 . (13.19)

We easily deduce:
∂h

∂t
+
∂hu

∂x
= 0 , (13.20)

where we have introduced depth-averaged values defined as:

f̄(x, t) =
1

h(x, t)

h(x,t)∫
0

f(x, y, t)dy . (13.21)
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The same procedure is applied to the momentum balance equation: du/dt =
ρg +∇.σ, where σ denotes the stress tensor. Without difficulty, we can deduce
the averaged momentum equation from the x-component of the momentum equa-
tion:

�̄

(
∂hu

∂t
+
∂hu2

∂x

)
= �̄gh sin θ +

∂hσ̄xx

∂x
− τp , (13.22)

where we have introduced the bottom shear stress: τp = σxy(x, 0, t). In the
present form, the motion equation system (13.20)–(13.22) is not closed since the
number of variables exceeds the number of equations. A common approximation
involves introducing a parameter (sometimes called the Boussinesq momentum
coefficient) which links the mean velocity to the mean square velocity:

u2 =
1
h

h∫
0

u2(y) dy = αū2 . (13.23)

Another helpful (and common) approximation, not mentioned in the above sys-
tem, concerns the computation of stress [50]. Putting ourselves in the framework
of long wave approximation, we assume that longitudinal motion outweighs ver-
tical motion: for any quantity m related to motion, we have ∂m/∂y � ∂m/∂x.
This allows us to consider that every vertical slice of flow can be treated as if it
was locally uniform. In such conditions, it is possible to infer the bottom shear
stress by extrapolating its steady-state value and expressing it as a function of u
and h. A point often neglected is that this method and its results are only valid
for flow regimes that are not too far away from a steady-state uniform regime.
In flow parts where there are significant variations in the flow depth (e.g. at
the leading edge and when the flow widens or narrows substantially), correc-
tions should be made to the first-order approximation of stress [49]. Finally, an
unresolved problem concerns the nature of the front in a transient flow. The
same problem has been already pointed out above in the discussion on Béghin’s
model and “box models”. Some authors have considered it as a shock; in this
case, it is included in the motion equations as a downstream boundary condition
[42,43,44]. In contrast, authors have implicitly assumed that the front has no
specific dynamic role and can be generated by the hyperbolic motion equations
[51]. Other authors considered that the front may be controlled by gravity in-
stability. For instance, numerous experiments performed on viscous and buoyant
gravity currents have revealed that a shifting pattern of lobes and clefts ranges
across the front due to a gravity instability [52,53,54].

Flowing Avalanches. The material is very concentrated in ice particles: gener-
ally the concentration ranges from 20% to 65%. The material is highly compress-
ible (it is frequent to observe snow densities in the deposition zone three times
larger than in the starting zone). This is due to the intrinsic compressibility of
snow as well as dilatant behaviour when the material contains snow balls. The
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rheology of ice/air mixtures is rather complex: significant variations in the mix-
ture composition are caused by minute changes in the air temperature around
0◦ C. This explains the considerable variability of snow consistency: granular
(snow ball), loose, slush-like or pasty snow. The diversity of snow consistency,
along with the size scales, makes any thorough rheometrical examination of snow
involved in avalanches a tricky undertaking. To date, few experimental studies
have been devoted to this topic. The authors (such as Dent [55] or Maeno and
Nishimura [56]), who studied the rheological bulk behaviour of snow, have gen-
erally found that snow is a non-Newtonian viscoplastic material, which depends
a great deal on density. Several constitutive equations have been proposed: New-
tonian fluid, Reiner–Ericken fluid, Bingham fluid, frictional Coulombic fluid, and
so on. For instance, Savage and Hutter assumed that flowing avalanches have
many similarities with dry granular flows [10,48]. They have further assumed
that, as a first approximation, the Coulomb law can be used to describe the
bulk behaviour of flowing granular materials. Therefore they have expressed the
bottom shear stress as: τp = �gh tan δ cos θ, where δ denotes a bed friction angle.
Likewise, the normal mean shear stress can be written as: σ̄xx = −ka�gh cos θ/2,
where the coefficient ka is related to the earth pressure coefficient used in soil
mechanics. Eventually they obtained for flows down inclined planes:

∂h

∂t
+
∂hu

∂x
= 0 , (13.24)

∂ū

∂t
+ ū

∂ū

∂x
= g cos θ (tan θ − tan δ) − kag cos θ

∂h

∂x
. (13.25)

Laboratory tests with dry granular media have shown that such a model captures
the flow features well for steep smooth inclined channels [10,57,58,59]. Similar
models were developed using different constitutive equations. For instance, Eglit
used empirical expressions for the bottom shear stress (in a form similar to
(13.1)) and treated the leading edge using a specific boundary condition [42,41].
Naaim and Ancey used a Bingham constitutive equation in their model [60]. All
these models must deal with the difficult problem of fitting rheological param-
eters. Due to the lack of relevant rheological data on snow, the parameters are
usually adjusted for the runout distance to coincide with field data.

Airborne Avalanches. An airborne avalanche is a very turbulent flow of a
dilute ice–particle suspension in air. It can be considered as a one-phase flow
as a first approximation. Indeed, the Stokes number defined as the ratio of a
characteristic time of the fluid to the relaxation time of the particles is low,
implying that particles adjust quickly to changes in the air motion [61]. At the
particle scale, fluid turbulence is high enough to strongly shake the mixture since
the particle size is quite small. To take into account particle sedimentation, au-
thors generally consider airborne avalanches as turbulent stratified flows. Thus,
contrary to flowing avalanches, bulk behaviour is well identified in the case of
airborne avalanches. The main differences between the various models proposed
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result from the different boundary conditions, use of the Boussinesq approxima-
tion, and the closure equations for turbulence. Parker and his co-workers [45]
developed a complete depth-averaged model for turbidity currents. The motion
equation set proposed by these authors is more complicated than the correspond-
ing set for dense flows presented above, since it includes additional equations
arising from the mass balance for the dispersed phase, the mean and turbulent
kinetic energy balances, and the boundary conditions related to the entrainment
of sediment and surrounding fluid:

∂h

∂t
+
∂hU

∂x
= EaU , (13.26)

∂(Ch)
∂t

+
∂(hUC)

∂x
= vsEs − vscb , (13.27)

∂hU

∂t
+
∂hU2

∂x
= RCgh sin θ − 1

2
Rg

∂Ch2

∂x
− u2∗ , (13.28)

∂hK

∂t
+
∂hUK

∂x
=

1
2
EaU

3+u2∗U −ε0h− 1
2
EaURCgh− 1

2
Rghvs (2C + Es − cb) ,

(13.29)
where U is the mean velocity, h the flow depth, K the mean turbulent kinetic
energy, C the mean volume concentration (ratio of particle volume to total vol-
ume), Ea a coefficient of entrainment of surrounding fluid into the current, vs

the settlement velocity, Es a coefficient of entrainment of particles from the bed
into the current, cb the near-bed particle concentration, R the specific submerged
gravity of particles (ratio of buoyant density to ambient fluid density), u2∗ the
bed shear velocity, and ε0 the depth-averaged mean rate of dissipation of tur-
bulent energy due to viscosity. The main physical assumption in Parker et al.’s
model is that the flow is considered as one-phase from a momentum point of view
but treated as two-phase concerning the mass balance. Equation (13.26) states
that the total volume variation results from entrainment of surrounding fluid.
In (13.27), the variation in the mean solid concentration is due to the difference
between the rate of particles entrained from the bed and the sedimentation rate.
Equation (13.28) is the momentum balance equation: the momentum variation
results from the driving action of gravity and the resisting action of bottom shear
stress; depending on the flow depth profile, the pressure gradient can contribute
either to accelerate or decelerate the flow. Equation (13.29) takes into account
the turbulence expenditure for the particles to stay in suspension. Turbulent
energy is supplied by the boundary layers (at the flow interfaces with the sur-
rounding fluid and the bottom). Turbulent energy is lost by viscous dissipation
(ε0h in (13.29)) as well as by mixing the flow (fourth and fifth terms in (13.29))
and maintaining the suspension against sedimentation flow mixing (last term on
the right-hand side of (13.29)). Although originally devoted to submarine tur-
bidity currents, this model has been applied to airborne avalanches, with only
small modifications in the entrainment functions [21,62]. Further developments
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have been brought to the primary model proposed by Parker et al., notably in
order to consider non-Boussinesq fluids and snow entrainment from the snow-
cover [63]. To our knowledge, such models do not currently provide better results
than simple models when compared to field data.

Three-dimensional Computational Models

The rapid increase in computer power has allowed researchers to integrate local
motion equations directly. Compared to the depth-averaged models, the prob-
lems in the development of three-dimensional (3D) computational models mainly
concern numerical treatments. For instance, the treatment of the free surface
poses complicated issues. Naturally, problems linked to the constitutive equa-
tions reliable for snow are more pronounced compared to intermediate models
since the entire constitutive equation must be known (not just the shear and
normal stress). The development of 3D models is currently undertaken mainly
for airborne avalanches generally using finite-volume codes for turbulent flows.
Examples include the models by Naaim [64], Hermann [66], Schweiwiller and
Hutter [65], etc.

13.2.3 Small-scale Models

A few authors have exploited the similarities between avalanches and other
gravity-driven flows. For instance, Hopfinger and Tochon-Danguy used the anal-
ogy between airborne avalanches and saline density currents to perform experi-
ments in the laboratory in a water tank [67]. In this way, examination of various
aspects of airborne dynamics has been possible: effect of a dam, structure of
the cloud, determination of the entrainment coefficients, etc. The chief issue
raised by the analogy with density or gravity currents concerns the similarity
conditions based on both the Froude (or equally the Richardson number) and
Reynolds numbers [12,34,67]. Regarding flowing avalanches, authors have con-
sidered the analogy with granular flows. Various materials (ping-pong ball, sand,
beads) have been used. In engineering laboratory experiments simulating flowing
avalanches offer promising tools for studying practical and complicated issues,
such as the deflecting action of a dam [68] or braking mounds [69]. A few scien-
tists have conducted or are performing experiments studying snow flows down
confined geometries the field [70].
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