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[1] Avalanche dynamics models are increasingly used to estimate the features of
extremely rare events for avalanche zoning. They employ a frictional coefficient, which
reflects something close to snow viscosity. As this coefficient is more conceptual than
physical, it cannot be measured and must be fitted by matching avalanche dynamics model
results and field data. However, most of the time, the historical record is not long
enough to fit this coefficient for extremely rare events. Here we propose a deterministic
inversion method to obtain the probability density function of this coefficient. The method
has been applied to two avalanche paths in the French Alps, each with a sustained
avalanche activity over the last century. For applications the Voellmy avalanche dynamics
model has been used with no loss of generality. It is shown that the friction coefficient is a
random variable whose marginal probability distribution varies rapidly and exhibits two
or more peaks. INDEX TERMS: 1863 Hydrology: Snow and ice (1827); 3210 Mathematical

Geophysics: Modeling; 3260 Mathematical Geophysics: Inverse theory; KEYWORDS: avalanche, inverse

problem, Tikhonov regularization, conceptual model
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1. Introduction

[2] The catastrophic avalanches of winter 1999 in Europe
(Montroc, France, 12 deaths; Evolène, Switzerland, 12
deaths; Galtür, Austria, 39 deaths) have renewed the interest
in developing scientific methods for avalanche zoning.
Basically, an engineer in charge of avalanche zoning at a
given site wishes to estimate the avalanche deposit bounda-
ries and potential impact pressure for different periods of
return [Mears, 1992; Hopf, 1998]. Two classes of tools are
currently available but they are far from being satisfactory
in engineering and zoning applications.
[3] Deterministic models reduce avalanche physics to a

set of equations of motion, usually involving mass and
momentum balance equations [Hopfinger, 1983; Hutter,
1996; Ancey, 2001]. The main criticism made of the current
deterministic models is that they use ad hoc assumptions on
the rheological behavior of snow [McClung and Schaerer,
1993]. Despite various attempts to find physical justifica-
tions for their expressions [see, e.g., Salm, 1993], the
constitutive relationships used so far remain speculative
and empirical. Given the severe difficulties faced with snow
rheometry, the physical calibration of constitutive parame-
ters used in these models will remain unfeasible for a long
time. An alternative approach to fitting parameters involves
comparing the model outputs and field data such as the
velocity at a given point and the point of furthest reach
(runout distance) [see, e.g., Schaerer, 1974; Buser and
Frutiger, 1980; Dent and Lang, 1980]. The resulting fitted
values have been proposed as default values in engineering
guidelines (e.g., Swiss guidelines on the so-called Voellmy-
Salm-Gubler method [Salm et al., 1990] or the USGS
handbook [Mears, 1992]). Although practitioners are gen-

erally confident of these values, recent studies have pointed
out weaknesses in the values proposed by the current
guidelines. For instance, when comparing the predictions
of various deterministic models and field data on five
European sites, Barbolini et al. [2000] have found that the
friction parameter values could be very different from the
default values. Another shortcoming when applying these
models to avalanche zoning is that they do not include the
notion of period of return.
[4] In the black box approach, no explicit attempt is made

to capture the physics of avalanches. The basic idea stems
from the pioneering work of Lied and Bakkehøi [1980]:
assuming a regional homogeneity in avalanche behavior for
a given mountain range, they pooled the data from various
paths in a common database. In this way, using regression
techniques, they obtained the relationship between the run-
out distances and a number of key variables of the path
profile. This methodology has been applied to different
mountain ranges throughout the world [see Bakkehøi et
al., 1983; McClung and Lied, 1987; Fujizawa et al., 1993]
and extended to introduce the period of return as a parameter
of the problem [McClung, 2000, 2001]. In Alpine countries,
where most of the time the avalanche paths of the same
mountain range exhibit no similarity in their shape, the
fundamental assumption of avalanche homogeneity on a
regional scale is doubtful [Ghali, 1996]. A major drawback
of this approach is that it depends a great deal on the quantity
and quality of available data. Since most of the time the only
available information is the runout distance, this approach is
unable to provide estimates of the potential impact pressure.
Moreover, in many cases, the historical record of runout
distances is not long enough and the resulting fitted prob-
ability distribution must be extrapolated to evaluate the
runout distance of a long return period avalanche. However,
extrapolation is far from easy and proper due to the non-
smoothness of the distribution (M. Meunier et al., Proba-
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bilistic predetermination of avalanche runout distances,
submitted to the Journal of Glaciology, 2002).
[5] In-between these two classic approaches has emerged

a new class of models that can be referred to as conceptual
models [Barbolini et al., 2000; Barbolini and Savi, 2001;
Bozhinskiy et al., 2001; Harbitz et al., 2001]. They can be
viewed as the combination of different modules (or sub-
models) describing the different processes occurring from
snowfalls to avalanche deposition. Due to the large complex-
ity in the elementary processes and their interplay, this
combination is nothing but an idealized mathematical
description of the steps believed to be crucial in the release
and course of avalanches. In order to mimic the avalanche
activity over long periods, conceptual models are based on
Monte Carlo simulations and, at least, two submodels: one to
quantify the occurrence of avalanche release and another to
compute the avalanche motion and deposition. Though they
erase some of the intrinsic disadvantages of fully determin-
istic and statistical approaches, they must still cope with a
difficult problem: the calibration of (conceptual) parameters
using the scarce physical data available. For instance, due to
the lack of long series of data, Barbolini and Savi [2001]
collected data from several paths to deduce the probability
density functions of the two parameters involved in their
propagation submodel; therefore the same criticism as the
one pointed out above for statistical models arises:
the resulting probability density functions reflect more the
spatial variability of the friction coefficients from one path to
another than the variability with time at a given site.
[6] In all these approaches, model calibration is needed

but, surprisingly enough, little attention has been given to
providing correct estimates of the model parameters without
depending too much on assumptions such as regionaliza-
tion. This article presents a preliminary investigation into
the determination of the probability distribution of random
input parameters used in conceptual models. The method
proposed here enters the more general class of techniques
for solving inverse problems. Here the originality lies in the
fact that we need not use the physical observable variables
to calibrate the model but their probability density function.
In this respect, the method lies midway between determin-
istic techniques used for inverse problems and probabilistic
search methods (e.g., Bayesian inference). If a formal
relationship between the probability density functions of
conceptual and observable variables can be established, then
the model can be easily calibrated. In this way, even short
series of field data can be used insofar as it is possible to
properly define their probability density function.
[7] We begin by presenting a typical conceptual model.

Various combinations have been explored by different
authors [see, e.g., Keylock et al., 1999; Barbolini and Savi,
2001; Bozhinskiy et al., 2001; Chernouss and Fedorenko,
2001; Harbitz et al., 2001; Keylock and Barbolini, 2001].
Here, to favor clarity and rapid understanding, we will
present the simplest conceptual framework, without claim-
ing generality and completeness. Then we will specify two
methods for adjusting parameters used in the submodel
devoted to avalanche motion. The methods will then be
applied to two case studies. We will use the Voellmy
avalanche dynamics model as the submodel of avalanche
propagation; naturally the method can be extended to other
avalanche dynamics models without loss of generality

provided they can be inserted into the conceptual frame-
work described in section 2. Since the Voellmy model is a
rough description of avalanche dynamics and, as it stands, it
suffers from unavoidable criticisms as regards its reliability,
the expediency of its use will be discussed. Two case studies
in the French Alps will also be presented.

2. A Minimalist Conceptual Framework

2.1. Structure of the Model

[8] In order to simulate avalanche activity along a given
path over a long period of time, we are looking for a simple
conceptual model with a minimum number of steps (sub-
models). The structure of the model is conditioned by the
number and nature of the measurable physical data at hand.
These usually include the avalanche runout distance (or
elevation) of past events and the meteorological conditions
(snowfall, wind, air temperature, etc.) recorded in a location
close to the avalanche path over a sufficiently long time
(several decades). The runout distance can be viewed as the
response of the studied system and an output of the model
while the meteorological conditions are basically input
parameters of the model. A minimalist conceptual model
includes two modules (see Figure 1).
[9] 1. The first module describes what happens up to the

avalanche release. The avalanche release is largely condi-
tioned by the meteorological conditions during the previous
days, especially the amount of new snow [McClung and
Schaerer, 1993; Ancey, 1996]. For many sites, the key
meteorological parameter explaining an avalanche activity
is the sum of the amount of snow fallen during the previous
three days C3d. Not all the sustained snowfalls give rise to
avalanche. Thus for a given snowfall C3d, one has to specify
the probability of observing an avalanche release p(relea-
sejC3d). The three-day snowfall C3d and the lag between
two snowfalls t are random variables. Their probability
density functions pC(C3d) and pt (t) can be estimated using
classic hydrological methods (renewal, annual series meth-
ods, etc.). Usually, an extreme-value distribution (or Gum-
bel distribution [Gumbel, 1958]) or an exponential
distribution provides good results while a Poisson law can
be used to evaluate the number of snowfalls per time unit
exceeding a given threshold. Evaluation of p(releasejC3d) is
simply achieved using logistic regression techniques
[Hosmer and Lemeshow, 1986].
[10] 2. The second module describes avalanche motion

and deposition. Since the runout distance is not the only
output variable of interest (e.g., the velocity or the impact
pressure can be of interest for engineering applications), we
shall use an avalanche dynamics model. This takes the form
of a set of dynamical equations, basically the mass and
momentum balance equations describing the time variations
of dynamical variables of avalanche motion, usually the
velocity u and flow depth h. A generic expression of this
equation system is: _h = F(h, u) and _u = G(h, u; �), where the
dot denotes the time derivative, F and G are two functions
(not to be specified at this level) of u and h (and, possibly, of
their derivatives), and � = {p1, p2, . . .} a set of mechanical
parameters needed in the mechanical description of motion.
[11] With these two modules, we are able to compute the

runout distance xstop provided that the initial conditions are
known and the mechanical parameters � are specified. This
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also implies that there is a known dependence between the
three-day snowfall and the initial conditions for the equa-
tions of motion. In the following, we express the functional
dependence of the runout distance xstop on � and C3d as
follows: xstop = Y(C3d; �).

2.2. Inverse Problem

[12] The basic question in the inverse problem is: given
xstop and C3d, what are the values of the mechanical
coefficients �? The answer is rather simple if we can invert
the function Y and the dimension of � is unity: p1 =
Y�1(xstop; C3d). However, most avalanche dynamics models
include more than one mechanical parameter. In this case,
one can deduce a single mechanical parameter from the
field data xstop provided that the other mechanical parame-
ters are known: p1 = Y�1 (xstop; C3djp2, p3, . . .). Hereafter
we will refer to this method as the direct method.
[13] This approach requires knowing xstop and C3d pre-

cisely for each event. This difficulty can be alleviated if we
consider the problem differently. Indeed, rather than solving
the equation p1 = Y�1 (xstop; C3djp2, p3, . . .) for each event,
we can solve it globally. To be more specific, we now
formulate the inversion problem in the following manner:
given the probability distributions of xstop and C3d, what is
the probability distribution of the coefficient p1? We will
refer to this formulation as the indirect method.
[14] To answer the question above, we shall assume that

the random variables p1 and C3d are independent. The joint
probability px,p(xstop, p1) can be connected to the joint
probability pp,C(p1, C3d) by the transformation: (xstop, p1)
! (C3d, p1). We denote Jx the Jacobian of this trans-
formation:

Jx¼ det

@xstop=@C3d @xstop=@p1

@p1=@C3d @p1=@p1

2
4

3
5

������
������¼

@xstop
@C3d

����
���� ð1Þ

since @p1/@C3d = 0. Then, using the change in variables and
the independence of variables p1 and C3d, we infer the joint
probability of observing xstop and C3d: px,p(xstop, p1) =
Jx

�1pC(C3d)pp (p1), where pC(C3d) and pp(p1) denote the
probability density functions of C3d and p1, respectively.
Thus the marginal probability density function of the runout
distance is obtained by integration:

px xstop
� �

¼
Z
Rþ

px;p xstop;p1

� �
dp1 ¼

Z
Rþ

J�1
x pC C3dð Þpp p1ð Þdp1

ð2Þ

If we further assume that xstop = Y(C3d; p1jp2, . . .) can be
inverted to yield C3d = Y�1 (p1; xstopjp2, . . .), we deduce
that the probability distribution pp satisfies a Fredholm
equation of the first kind:

px xstop
� �

¼
Z
Rþ

K xstop;p1

� �
pp p1ð Þdp1 ð3Þ

where K(xstop, p1) = Jx
�1pC (Y�1 (p1; xstopjp2, . . .)) is the

kernel function.
[15] In practice, solving the inverse problem by the direct

method is very simple since it involves finding roots to the
nonlinear equation p1 � Y�1(xstop; C3djp2, . . .) = 0. The
indirect method requires far more work but benefits from
posing the inverse problem in a probabilistic perspective. As
will be illustrated below in the case studies, this formulation
allows us to compute the coefficient p1 even though we
have partial series of xstop or C3d. Moreover, the indirect
method is especially suitable for Monte Carlo simulations,
for which the values of p1 are generated from their
probability density function pp(p1). Naturally, this method

Figure 1. Sketch of the conceptual model used here.
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does not suppress the parametric dependence of p1 on the
other coefficients p2, p3, etc.

2.3. Numerical Implementation of the Indirect Method

[16] The indirect method involves solving a Fredholm
equation (equation 3). Here this is done numerically using
the Tikhonov regularization method. We assume that the
avalanche database contains ND events, whose runout dis-
tance is known. For brevity of notation, in the following we
will replace p1 by p. To begin with, we consider a mesh �
with uniform spacing, over which p varies. Here, we set � =
[0, pmax] where pmax is the maximum expected value of p.
In discretized form equation (3) becomes:

~pCx xið Þ ¼ z
XNK

j¼1

wijK xi;pj

� �
pp pj

� �
1 � i � ND ð4Þ

where pj are the NK discretization points of the interval �,
which are spaced apart by the constant step z = pmax/NK:
pj+1 = pj + jz, j = 1, . . ., NK with p1 = 0. The discretization
points pj shall not be confused with the mechanical
coefficients introduced previously and now considered as
dummy variables of the kernel function. The tilde over px
indicates that the quantity is approximated; the true and the
approximated quantities, respectively px and ~px

C, differ by an
amount that can be estimated on the order of z3 _px, where _px
denotes the first derivative evaluated at an unknown place in
the interval � [Press et al., 1992]. To transform the integral
term into a sum, we have used a quadrature rule. For a
uniform mesh, the simplest scheme is the trapezoidal rule.
In this case, the quadrature coefficients are defined as
follows: for a given rank i (1 � i � ND), w1j = 1/2, wij = 1, 2
� j � NK � 1, wiNK

= 1/2. In matrix notation, the discretized
equation (4) can be written: ~px

C = zWpp, where W is the
matrix defined by Wij = wijK(xi, pj), ~pxC = ( ~p1, ~p2 . . ., ~pND

)
the set of computed values, and pp = ( p1 . . ., pNK

) the
unknown vector. If we choose ND = NK and assume that
the computed values ~px coincide with the measured field
data ~px

M = ( ~p1
M, ~p2

M . . ., ~pND

M ), we have: pp = z�1W�1

~px
C = z�1W�1~px

M and the inverse problem is easily solved.
Otherwise we have NK unknown components for ND

equations.
[17] The simplicity of solving a Fredholm equation is

somewhat counterbalanced by the unexpected oscillations
around the solution that they produce [Baker, 2000]. In
order to reduce fluctuations of the discretized solution, it is
usually better to proceed by imposing a constraint on the
smoothness of the solution. A convenient method is to use
Tikhonov regularization techniques [Kirsch, 1996]. For
instance, to ensure a smooth curve, we can impose that
the sum of the square of the second derivative at the
discretization points, i.e.,

k L2pp k2¼
XNK

j¼1

d2pp

dp2
pj

� �
 �2

ð5Þ

is minimal. In equation (5), L2 is called second-order
derivative operator and k 
 k denotes the vector norm. A
finite difference estimate of the second derivative is p̈p(pi) =
( pp(pi+1) + pp(pi�1) � 2pp(pi))/z

2 + o(z2), for i = 2, 3, . . .,
NK � 1. For i = 1, assuming symmetry of pp leads to:
p̈p(p1) = (2pp(p2) � 2pp(p1))/z2 + o(z2). The boundary

conditions imposed on pp are not too stringent because it is
expected that pp ! 0 when p ! 0 (resp. p ! pmax). We
find that the discretized form of equation (5) is:

XNK

j¼1

d2pp pj

� �
dp2


 �2

¼ G ppð Þ þ o z2
� �

ð6Þ

where G is the quadratic function G(pp) = (Bpp)
T 
 (Bpp),

in which B denotes the NK � NK tridiagonal matrix:

B ¼ 1

z2

�2 2 0 
 
 
 
 
 
 
 
 
 0

1 �2 1 0 
 
 
 
 
 
 0

0 1 �2 1 0 
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.
0 . .

. . .
. . .

.
0 ..

.

0 
 
 
 0 1 �2 1 0
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 0 1 �2 1

0 
 
 
 
 
 
 
 
 
 0 2 �2

2
666666666666666666664

3
777777777777777777775

ð7Þ

B is the discretized expression of L2 and therefore is called
the second-order difference regularization operator. Other
constraints than L2 can be imposed to ensure the
smoothness of the solution. For instance, instead of taking
L2, we can constrain the norm of the solution vector to be as
low as possible to avoid overly large fluctuations. In that
case, the regularization operator is the identity operator and
its discretized expression is B = INK

, where INK
is the

identity matrix of dimension NK.
[18] Determining the unknown vector pp by solving

the linear system equation (4) is equivalent to finding the
minimum of the functional: F ppð Þ ¼PND

i¼1

~pCx xið Þ�~pMx xið Þ
~pMx xið Þ

� �2

or in
matrix form: F(pp) = (1ND

� App)
T 
 (1ND

� App), where
Aij = Wijz/~pxM (xj) is an ND � NK matrix and 1ND

is a unity
vector of dimension ND. If we further assume that px defines
a smooth curve, we are looking for a vector that minimizes
the functional H(pp) = F(pp) + lG(pp), where l is a free
parameter (Lagrangian multiplier). It can be shown that the
solution to @H(pp)/@pp = 0 has a unique solution, given by
[Kirsch, 1996]:

pp ¼ ATAþ lBTB
� ��1

AT:1ND
ð8Þ

At this point, it should be remembered that the solution
actually depends on the Lagrangian multiplier l, which is
an adjustable factor that controls the extent to which the
resulting curve is smooth or close to experimental data. The
functional F measures something like the agreement of
the solution curve to the data, while the functional G reflects
the ‘‘smoothness’’ of the curve or the ‘‘stability’’ relative to
variations in the data. The better agreement is obtained
when a ‘‘small’’ value of l is chosen, but in this case, the
solution may be widely oscillating. In contrast, the best
smoothness is produced when using a quite ‘‘large’’ value
of l. In practice, to find a good compromise between
agreement and smoothness, the typical idea is to plot the
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trade-off curve, i.e., F(pp) versus G(pp) for different values
of l in a log linear diagram. Generally, the resulting trade-
off curve is L-shaped. An appropriate value of l is then
chosen by selecting points in the corner of the L curve
[Calvetti et al., 2000]. Hereafter, we will proceed
differently: since the function pp is a probability density
function, it is expected that:

R
ppdp = 1. Thus in the

following, we generally use this condition to select an
appropriate value for l. Another property that the
probability density function must fulfill is pp � 0. Yet, by
imposing smoothness, we may also introduce some
undesirable effects such as the local negativity of the
function pp. Here, to impose pp � 0, we remove all the
negative values from the solution vector pp. A last remark is
that an alternative more rigorous method would have been
to add further constraints to the functional H(pp) to directly
take into account the two conditions pp � 0 and

R
ppdp = 1

[e.g., see Andreotti and Douady, 1999]. However, because
of the low number of field data, we have preferred to use the
approximate method presented here. Indeed, if new
constraints are added to the functional H(pp), other
parameters than l are also introduced. Since, to our
knowledge, there are no parameter selection methods for
problems with several regularization parameters, a study is
needed to evaluate the sensitivity of the result when
modifying the regularization parameters; the existence and
unicity of the solution is not guaranteed.

3. Application

[19] Before applying the proposed method to real cases,
we shall give a few indications on the avalanche dynamics
model. Here we use a Voellmy-like model, which can be
seen as a prototypal avalanche dynamics model. The model
used is very close to the Voellmy-Salm-Gubler [Salm et al.,
1990] (VSG) model, except the approximate method of
solving the equations of motion has been replaced by an
ordinary differential equation, solved numerically. Since the
use of avalanche dynamics models is still controversial, we
will begin by explaining why we chose to use a Voellmy
model. The equations and assumptions used in this model
will then be presented in section 3.2. Field data have been
extracted from a national database (Enquête Permanente des
Avalanches), which in which information on avalanches at a
large number of sites in the French Alps has been gathered
for approximately one century. In section 3.3, the selected
sites will be presented. Section 3.4 will address the
determination of the runout function Y and results will be
summarized in sections 3.5–3.7.

3.1. Selection of an Avalanche Dynamics Model

[20] Avalanches occupy a peculiar position in geophysics
in that, in contrast to lava and debris flows, there is no
sound field or laboratory data available on the basic
processes involved in avalanche release and flow. Therefore
all the avalanche dynamics models proposed so far rely on
analogy with other physical phenomena: typical examples
include the analogies with granular flows [Savage, 1989;
Savage and Hutter, 1989; Tai et al., 2001], Newtonian
fluids [Hunt, 1994], power law fluids [Norem et al., 1986],
and viscoplastic flows [Dent and Lang, 1982; Ancey, 2001].
Nonetheless, even though all these new developments
appear attractive from a physical viewpoint, from a purely

rheological point of view they still rely on a speculative basis.
In fact, most of the time, scientists have attempted to adjust
rheological parameters used in their model to a few field data
(such as the leading-edge velocity and the runout distance)
for their model results to be consistent with observations, but,
obviously, this does not really provide evidence that the
constitutive equation they used is appropriate.
[21] wIn its original formulation, the Voellmy model

belongs to the class of sliding-block models, which present
the advantage of leading to simple ordinary differential
equations, but also the drawback of overly simplifying the
physics of avalanches. Disadvantages and advantages offered
by Voellmy-like models are discussed in a number of recent
papers and monographs [McClung and Mears, 1995; Bartelt
and Gruber, 1997; Bartelt et al., 1999], to which the reader
can refer. More refined models have been developed over
the last two decades, notably those of Eglit [1983, 1984,
1998], Bartelt and Gruber [1997], Bartelt et al. [1999], and
Barbolini and Savi [2001], and have transformed the VSG
model into flow-depth averaged equations of motion
(similar to shallow water equations used in hydraulics),
leading to a set of hyperbolic partial differential equations.
[22] There are several reasons that led us to use a

Voellmy-like model despite its limitations: (1) First of all,
this model, notably in the formulation known as the
Voellmy-Salm-Gubler (VSG) model, is widely used in
Europe for avalanche zoning and engineering. Its success
stems from this model’s long history (applied in Switzerland
and Russia since the 1920s, 30 years before Voellmy
popularized the model) and its simplicity. The method
proposed here provides the practitioner with the means to
tune the model parameters from field data; this seems to us
better than tabulated default values given by the guidelines.
(2) Furthermore, the avalanche dynamics model is an
element of the chain needed to model the physical processes
from snowfall to avalanche deposition. At this stage, we are
mainly interested in finding a simple mathematical model
rather than a sophisticated model, which would be time-
consuming and involve many parameters. Based on an
ordinary differential equation and two mechanical parame-
ters, the VSG model plainly fulfills our objective. (3)
Finally, it is worth mentioning that, in our approach, the
VSG model was used in a conceptual framework with the
objective of mimicking avalanche activity in a given path
over a long period. Thus our approach lies somewhere
between purely deterministic (physically based) models
and statistical (black box) models and, in this respect, is
not very different from the conceptual catchment models
used in hydrology. Since our primary objective is to
compute the runout distance of extreme avalanches, our
use of a Voellmy model appears licit; it is, however, unclear
whether the method can also be applied to compute ava-
lanche velocities and pressures with the same degree of
confidence since no field data concerning these variables
have been used.

3.2. Avalanche Dynamics Model

[23] The VSG model relies on momentum and mass
balance equations for describing avalanche motion [Salm
et al., 1990; Salm, 1993]. Motion is described within the
framework of rigid-body mechanics. The momentum
equation is expressed as follows: m _u = mg sin q � F,
where the dot means the time derivative, q is the path
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inclination, m is the avalanche mass, u its velocity, and F is
the friction force experienced by the avalanche. For an
unconfined avalanche, this force has the form: F = mmg cos
q + mgu2/(xh), where h refers to the flow depth, x and m are
two friction coefficients. The mass balance equation
expresses that the mass flow rate Q holds constant
throughout the run: Q = rlhu = r0l0h0u0, where the subscript
0 refers to the initial conditions (i.e., at the end of the release
phase), l denotes the avalanche width, and r its density.
Here, to simplify, we further assume that the snow density is
fairly constant: r 
 r0. Similarly, it is assumed that there is
no significant change in the avalanche width: l 
 l0.
[24] The VSG model has four input parameters: the initial

conditions h0 and u0, and the friction parameters x and m. It
is assumed that the initial velocity (at the end of release
phase) is: u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh0 cos q0 tan q� mð Þ

p
[Salm et al., 1990],

where q0 denotes the mean slope of the starting zone. The
initial flow depth h0 corresponds to the thickness of the
released snow layer. It is assumed that this thickness is
directly correlated with the amount of snow fallen during
the previous three days C3d: h0 = f (q0)C3d, where f (q0) =
0.291/(sin q0 � 0.202 cos q0) [Burkard and Salm, 1992].
The friction coefficient x reflects the effect of path
roughness. It is assumed to range from 400 to 1000 m/s2

and be intrinsic to the path, that is, it is constant for each
avalanche run in a given path. In contrast, m pertains to
snow fluidity. This parameter may depend on the avalanche
size and/or other parameters. Its lower value given in the
literature is 0.155 and corresponds to extreme avalanches
[Buser and Frutiger, 1980]. In short, we have three effective
input parameters (x, m, C3d), two of which can be considered
as random variables (m, C3d) while the third (x) can be
assumed to be constant (for a given site).
[25] We found no clear evidence in the literature for the

last assumption. However, as shown in section 3.4, insofar
as we are involved in working with xstop and we constrain x
to lie within the prescribed range of 400–1000 m/s2 [Salm
et al., 1990], the precise determination of x is of less
importance since xstop usually depends weakly on x. Thus in
this case, if we apply the inverse problem method to the
parameter p1 = m, the final parametric dependence m(x) on
p2 = x is found to be weak so that, as a first approximation,
it is permissible to make the calculation as if m were really
independent of x. However, if one leaves the VSG
framework, that is, if x can take any real value, the direct
inversion method will provide m values depending on x and
the indirect inversion method will provide the conditional
probability density function pm (mjx).
[26] In the following, we will remain within the spirit of

the VSG method. Thus we want to determine the values of
p1 = m; the second coefficient p2 = x is held constant (see
section 3.4).

3.3. Sites

[27] We have applied the two inversion methods to
different sites in the French Alps. Emphasis was given to
selecting avalanche sites with (1) a nearby meteorological
station and (2) snow and avalanche data over a sufficiently
long period. Here we present the results obtained on two
sites. It will be shown that the indirect inversion method
provides well-behaved results for the first site (Plan de
l’Aiguille) but results only in a qualitative agreement with
the second site (Bessans).

[28] The first site is the Plan de l’Aiguille avalanche path.
It is located above Chamonix (Mont Blanc mountain range).
The path extends between 2150 and 1030 m in elevation
and its length exceeds 1.7 km. The path is slightly confined
and its sides are covered with sparse forests. Figure 2 shows
the variation in the ground slope along the path. Avalanche
data have been recorded since 1901. The avalanche data-
base includes 40 events, but the time series is not complete,
notably during the two world wars, when there was no
record. Uncertainty on the runout distance varies with time.
At the beginning of the 20th century, it probably exceeded
±100 m while nowadays it is expected to be much lower
(±20 m). Figure 2 shows the empirical cumulative proba-
bility distribution of the runout distance along with the slope
of the path profile. The origin, from which the runout
distance is computed, is taken from an arbitrary point in
the starting zone (without loss of generality). Since only the
lower part of the avalanche path (alluvial fan) can be
conveniently observed from the valley, the database
includes events that reached the alluvial fan, that is, those
whose runout distance exceeded 1100 m. Due to the
irregularity of the path slope, a number of avalanches
probably stopped in the upper part of the site and were
not recorded since they could not be observed.
[29] The meteorological station has been recording snow

data since 1960. It is located at an elevation of 1050 m and
is 2 km from the starting zone. We used the moment method
to find the probability density function of three-day sums of
snowfall and tested different probability distributions. The
best agreement with data was obtained with an exponential
distribution. We have found that the probability of observ-
ing an amount of snow fallen within three days is described
by:

pC C3dð Þ ¼ exp � 1

15:0
�C3d � 10

15:0


 �
 �
ð9Þ

in which C3d is expressed in centimeters. Only the snowfalls
exceeding 10 cm were taken into account in this computa-
tion. Figure 3 shows the empirical probability distribution of
C3d in a log linear diagram and the fitted exponential
distribution. We also determined the maximum annual
three-day snowfall: C3d = 47.5 � 18.6 ln (�ln(1 � T�1)
(expressed in centimeters) where T = 1/(1 � PC) is the

Figure 2. Variation in the path slope as a function of the
distance from the starting point (solid line) along with the
cumulative distribution function of the runout distance for
the Plan de l’Aiguille site.
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return period of snowfall (PC =
R
pCdC), expressed in years.

Assuming that the three-day sum of new snow is the main
explanatory variable in the avalanche release, we have
matched the meteorological and the avalanche databases to
evaluate p(releasejC3d). Using logistic regression techniques
[Hosmer and Lemeshow, 1986], we found that for C3d > 0:

p releasejC3dð Þ ¼ exp �4:0362þ 0:053C3dð Þ
1þ exp �4:0362þ 0:053C3dð Þð Þ ð10Þ

The Hosmer-Lemeshow adjustment test provides a score of
0.5528 while the Pearson test gives a score of 0.9574. Both
tests indicate the reliability of this model to evaluate
p(releasejC3d). Further computations were performed with
other explanatory variables (snow fallen during the preced-
ing 24 h, mean wind intensity, maximal temperature of the
air, etc.). We found that the most meaningful variable was
the three-day sum of snow when a single variable was used.
[30] The second site is above Bessans (Maurienne Val-

ley). The path extends between 3150 and 1700 m in
elevation for a total length exceeding 2.1 km. The cross
section is very irregular: the middle part of the path is
confined in a steep and curly gully while both the starting
zone and the deposition are wide unconfined surfaces. Since
1901, 127 avalanches have been documented. Figure 4
reports the empirical cumulative distribution function of

the runout distance together with the path slope profile. The
meteorological station (1710 m), 2.5 km from the starting
zone, has been recording snow data since 1981. Using the
renewal method, we have found that the probability of
observing a snowfall C3d over three days is:

pC C3dð Þ ¼ exp � 1

17:95

C3d � 47:5

18:6


 �
ð11Þ

The maximum three-day snowfall is described by: C3d =
47.5 � 18.6 ln(�ln (1 � T�1) (C3d expressed in centimeters,
T in years). The release probability was found to be:

p releasejC3dð Þ ¼ exp �4:0065þ 0:038C3dð Þ
1þ exp �4:0065þ 0:038C3dð Þð Þ ð12Þ

The Hosmer-Lemeshow test yields 0.5594 while the
Pearson test provides 0.9505.

3.4. Estimation of the Runout Distance Function Y

[31] For field applications, we need to obtain a numerical
estimate of the runout distance function: xstop = Y(m, C3d; x).
For this purpose we performed Ns

2 simulations using the
VSG model. Typically we took NS = 150. For each
simulation, we varied the initial conditions m and C3d in
the ranges 0.05–0.7 and 0.2–4 m, respectively (with a
uniform spacing), while the friction coefficient x was kept
constant. The simulated runout elevations were then
interpolated by third-order polynomials and a numerical
estimate of Jx was obtained. In a similar way, we
computed the inverse function Y�1 (xstop, C3d; x). For
both avalanche paths, we took x = 800 m/s2. As exemplified
in Figure 5 for the Plan de l’Aiguille site, the variations in
the runout distance are mainly dictated by the value of the
coefficient m; the coefficient x affects the runout distance to a
lesser extent.

3.5. Direct Inversion

[32] For the period for which the meteorological stations
have been in operation, it is possible to directly find the
values of the coefficient m for each avalanche run recorded
in the database. For each event, we sought the amount of
snow fallen over the previous three days C3d in the
meteorological database. When this quantity was nonzero,

Figure 3. Empirical cumulative probability distribution of
three-day sum of snowfall in Chamonix (France).

Figure 4. Variation in the path slope as a function of the distance from the starting point (solid line)
along with the cumulative distribution function of the runout distance for the Bessans site.
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we computed the value m: Y�1 (xstop, C3d; x). For the Plan de
l’Aiguille site, 13 events were recorded over the period
1983–2001 and 9 were consecutive to snowfalls. For the
Bessans site, 24 events were recorded over the period
1980–2001 and 21 events were consecutive to snowfalls.
After deducing the m values, we computed the cumulative
distribution function of m. Figure 6 shows the typical results
obtained for the Plan de l’Aiguille site. The distribution is
not regular but step-shaped, with a first step at m = 0.36 and

a second step at m = 0.56 (see Figure 9 for the complete
histogram of m values). This implies that the probability
density function pm is not a uniformly varying function over
the interval [0, 1], but on the contrary varies abruptly near
the two values m = 0.36 and m = 0.56. A similar trend was
obtained for the Bessans site, except that the peaks are
located at m = 0.31 and m = 0.49 (see Figure 11).
[33] As mentioned above, there is substantial uncertainty

on the runout distance and it is therefore necessary to

Figure 5. Contour plot of the runout distance as a function of m and x for C3d = 1 m in the case of the
Plan de l’Aiguille site.

Figure 6. Empirical cumulative distribution function of the coefficient m when it is assumed that there is
no bias in the recorded runout distance (solid line), there is a systematic shift of 50 m (dashed line), or
there is a systematic shift of �50 m (dotted line). Computations are for the Plan de l’Aiguille site and x =
800 m/s2.
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examine how this uncertainty affects the distribution of m. A
crude way of doing this is to assume that there was a
systematic bias in the measurement of the runout distance.
In this way we should obtain the upper and lower bounds of
the range over which the coefficient m varies. Figure 6
reports the results by assuming a systematic shift of �50 m
or +50 m (±50 is the average uncertainty of the runout
distance measurement). The first part of the empirical
cumulative distribution (up to m = 0.2) has been drawn
though it is likely that it is meaningless from a physical
point of view. A bias of �50 m shifts the distribution of m to
the left without significantly altering the form of the
distribution. A systematic decrease in the runout distance
by +50 m smooths the distribution slightly, but it still rises
strongly at m = 0.36 and m = 0.56. It follows that the
structural features of the m distribution depend a great deal
on the uncertainty on the runout distance.
[34] Figure 7 shows the variation of the m coefficient as a

function of the three-day sum of snowfall for the Bessans
and Plan de l’Aiguille sites. The points located at the axis

origin represent the avalanches which were released,
although there was no snowfall during the previous three
days. No specific dependence of the m coefficient on the
snowfall was detected. At the Bessans site, data are not
scattered but concentrate toward particular values, corre-
sponding to the peak of the probability density function of
m. The same conclusion can be drawn from the Plan de
l’Aiguille site (see Figure 7), but the concentration toward
particular values is less pronounced. There is no clear
explanation of this difference in behavior. When examining
the path profiles (see Figures 2 and 4), it can be seen that for
the Plan de l’Aiguille site the variations in the runout
distance distribution are due to a significant decrease in
the mean slope while the path slope influence is greatly
attenuated for the Bessans site. Figure 7 raises a question on
the reliability of the framework used for modeling the
avalanche activity: it can be seen that many avalanches
occurred as a result of small snowfalls. In fact, the reported
values of snowfall do not really stand for the actual snow-
falls over the starting zone since the meteorological stations
are located more than 1000 m below the release zone.
[35] We have also checked that the results are not sub-

stantially influenced by the primary choice of the x value.
Figure 8 shows the empirical probability density function of
the m coefficient for three different values of x in the case of
the Plan de l’Aiguille site: x = 600, 800, and 1000 m/s2. The
deviation from one curve to another is low, demonstrating
that for this path profile, the distribution of the m coefficient
is weakly dependent on the x coefficient. This is a helpful
result in the present context: it shows that we can consider x
as an independent parameter that we can adjust if we have
information on the velocity reached by the avalanches at
certain points of the path profile. Such a result could be
expected since, in the cases treated here (see Figure 5), the
runout distance is more sensitive to the coefficient m than
the coefficient x: @Y/@m � @Y/@x. It is unclear, however, if
this result can be generalized to all avalanche paths.

3.6. Indirect Inversion

[36] To better understand the interest of the indirect
method in the inversion problem, we proceeded in two

Figure 7. Variation of m as a function of the three-day sum
of snow for the two sites.

Figure 8. Empirical cumulative distribution function of the coefficient m depending on the value of x:
x = 800 m/s2 (solid line), x = 1000 m/s2 (dashed line), and x = 600 m/s2 (dotted line). Computations are
for the Plan de l’Aiguille site.
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steps. In the first step, we used the indirect method on the
reduced data sample (corresponding to the period 1981–
2001 for Bessans and 1960–2001 for Plan de l’Aiguille), as
previously. This allowed us to test the method and compare
it to the direct method. In the second step, we used all the
data contained in the avalanche database.
[37] For the first step, in Figure 9 we have reported the

resulting m probability density functions for three different
values of the parameter l for the Plan de l’Aiguille site.
When m takes its value in [0, 1], the constraint

R
pmdm = 1

cannot be achieved but it can be approached. A correct
choice for l turned out to be l 
 103; we found

R
pmdm =

1.29. As apparent in Figure 9 and explained in section 2.3,
the greater the value of l, the smoother the resulting curve.
In the same figure, we have drawn the histogram of the m
values deduced using the direct inversion (same data as in
Figure 6). A simple examination of Figure 9 shows that for
the range of l values tested here the indirect method
provides probability density functions of the m coefficient
that are fairly consistent with the results obtained using the
direct method: the different peaks in the m distribution are
clearly identified, except the last one at m = 0.66. However,
compared to previous results, the probability distribution
function pm(m) is smoother than expected and the peak
amplitude is not respected. This is probably a direct
consequence of our choice of a large value for l. We have
also used l values lower than 101, but the resulting curves
were very noisy, with too many oscillations to provide clear
information on the variations in the m coefficient. In short,
we can draw the following conclusion from this preliminary
comparison of the two methods: the indirect method based
on Tikhonov regularization provides results that are
consistent with those deduced using the direct inversion
method. However, as the empirical probability distribution

function defines an irregular curve made up of four peaks,
the indirect method does not capture the features of this
curve fully: to reduce the noise, we are forced to select large
values of the l parameter; but, at times, this choice involves
smoothing out the rapid variations in the m coefficient. The
fairly good agreement between the two methods may be
somewhat surprising in that it has been stated that not all the
avalanches of the database were consecutive to snowfalls.
Thus the direct method dealt with avalanches released after
snowfalls (9 events out of 13 for the Plan de l’Aiguille, that
is, 69% of the recorded events), while in the indirect method
such discrimination was neither possible nor reflected in the
release probability p(releasejC3d); indeed, in the latter case,
extrapolating equation (10) to C3d = 0 provides a release
probability p(releasejC3d = 0) = 1.8%, far lower than the
value empirically found (31%).
[38] For the second step, in Figure 10 we have reported

the resulting probability density function of the coefficient m
for the Plan de l’Aiguille site: the dashed line represents the
curve obtained with the full set of runout distances while the
solid lined stands for the reduced set (same curve as in
Figure 9). The inset in Figure 10 shows the sensitivity of pm
(m) to changes in the l value by reporting the m probability
density functions obtained for l = 10, 242, and 104. The
value l = 242 is the one for which the constraint

R
pmdm = 1

is fulfilled. For Figure 10, comparing the curves obtained by
using the full and the reduced sets of runout distances
reveals the very similar behavior of the two resulting curves.
The differences between the curves mainly concern the
amplitude of the first peak (at m 
 0.2), which is
significantly reduced, and the number of peaks (7 against
4 found previously).
[39] The same exercise was repeated with the Bessans

data. The same trend as above was also observed for the

Figure 9. Empirical probability density function of the coefficient m depending on the value of l: l =
103 (solid line, area = 1.29), l = 104 (dashed line, area = 1.69), and l = 102 (dotted line, area = 1.74).
Computations are for the Plan de l’Aiguille site with NK = 250 and B = L2. The bars represent the scaled
histogram of the m values deduced from the direct method. In the inlet we have reported the empirical
probability density function of the coefficient when the regularization operator is B = INK

. Computations
are for the Plan de l’Aiguille site with NK = 250 and l = 10�2.425 (area = 1.003).
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Bessans site except it was impossible to fulfill, even
roughly, the constraint

R
pmdm = 1. We found no clear

explanation for this odd behavior of the Bessans data.

3.7. Discussion

[40] The direct inversion method provides accurate esti-
mates of the m probability density function. However, this
requires working with both the meteorological and ava-
lanche databases. Since in most cases the period covered by
the meteorological database is limited (to typically two
decades, sometimes three or four decades), it is not certain
that rare extreme events are included in the avalanche
database. Thus, probably, this method provides partial
information on the m probability density function and
underestimates the value of m for extreme avalanches.
Typically we found that the lowest values of m were 0.24
for the Plan de l’Aiguille and 0.30 for Bessans; both values
were larger than the typical values (m 
 0.155) given in the
literature [Buser and Frutiger, 1980].
[41] In the indirect inversion method, the time series of

snowfall is replaced by the probability distribution of snow-
fall. This method can be used over the entire period covered
by the avalanche database (typically a century for the
avalanche paths investigated here). Since it is based on a
denoising process (Tikhonov regularization), it slightly
smooths out the rapid variations in the friction coefficient
m. Moreover, the general properties of a probability density
function (positive, normalized) are not automatically taken
into account as further constraints in the primary formula-
tion of the problem. In general, it was not possible to meet
the three following conditions at the same time: pm solution
to equation (4),

R
R+

pmdm = 1, and pm � 0. A proper choice

of the parameter l usually, but not always, allowed us to
find a solution fulfilling the first two conditions while the
third was imposed artificially by removing negative values.
This is probably the greatest drawback of the numerical
method implemented here for solving the Fredholm
equation (equation 3): the curve sought is constrained to
be smooth to a more or less large extent (controlled by the
value given to l) while, obviously, the solution curve is not
smooth over the entire range of possible values for m.
Though the indirect inversion method does not provide the
exact probability density function of m, it can be used to
locate the position of the peak values.
[42] Both methods have shown that the m probability

density function is not a slowly varying function but, on
the contrary, defines a rapidly varying curve, made up of two
or more peaks. It has also been shown that the coefficient m is
likely to be independent of the amount of snowfall preceding
the avalanche release. These results contrast with the usual
assumptions made on the m variations. Indeed, in the primary
formulation of the VSG model [Salm et al., 1990], the m
coefficient is expected to be volume-dependent, that is, it
should depend on the three-day sum of snowfall. However,
Figure 7 reveals no relationship between m and C3d. Other
formulations [e.g., Barbolini and Savi, 2001; Bozhinskiy et
al., 2001] have admitted that the probability density
function of m is a regularly increasing function. This
assumption is not supported by the results in Figures 9–11.
On the contrary, the present work demonstrates that, in a
VSG-like model, the coefficient m is a discrete random
variable rather than a continuous random variable.
[43] Furthermore, the two investigated sites provide the

same overall features in the m distribution even though the

Figure 10. Empirical probability density function of the coefficient mwhen the entire avalanche database
is considered (dashed line, area = 1.02, l = 242) or when only the recent avalanches (period 1983–2001)
are taken into account (solid line, area = 1.29, l = 103). Computations are for the Plan de l’Aiguille site and
with NK = 250. In the inset we have reported the empirical probability density functions of the coefficient m
when the entire avalanche database is considered and the regularization operator is B = INK

. Computations
are for the Plan de l’Aiguille site with NK = 250 and l = 10�2.5 (area = 0.999).
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two curves do not coincide; notably the m values corre-
sponding to the peaks of pm differ substantially from one
site to another. At this stage, our results do not support the
assumption made in the VSG model according to which
the friction coefficient m is a general parameter indepen-
dent of the site. Further investigations are needed to
elucidate this point. Compared to other inversion methods
(e.g., Bayesian approaches), the methods presented here
limit the amount of a priori information on the system
parameters since only one parameter remains unevaluated
(the friction coefficient x). However, they do not cope with
uncertainty in the runout distance distribution. This is
probably the major drawback of these two methods since
the m probability density function is affected to a varying
extent by the uncertainty on xstop. When discussing the
intrinsic nature of the coefficient m, it will be necessary to
determine whether the disparities in the m distributions at
different sites reflect the uncertainty of the runout distance
or a regional effect.

4. Conclusion

[44] In this paper, we have compared two methods for
solving the inverse problem for the VSG avalanche dynam-
ics model (i.e., finding the friction coefficient m). The direct
inversion method involves finding m by directly solving the
nonlinear equation: xstop = Y(m, C3d; x) where xstop is
the runout distance, C3d is the amount of snow fallen during
the previous three days, x is another friction coefficient
expected to be constant. To solve this equation, both the
avalanche and meteorological databases must be used. The

m probability density function is then inferred from the
resulting solutions to this equation computed for each event
recorded in the avalanche database.
[45] The indirect method does not solve this equation

directly but considers a variant form: if xstop, C3d, and m are
three random variables, linked together by the relationship
xstop = Y(m, C3d; x), then their probability density functions
are also linked together. The indirect method uses this
relationship for computing the m probability density
function.
[46] Both methods give similar results. The direct method

is conceptually simpler and easier to implement numeri-
cally. The computer time is fairly low and the accuracy of
the results is high. However, it requires using both the
avalanche and meteorological databases. Consequently, it
can be applied only to sites with a nearby meteorological
station, whose records cover a sufficiently long period. In
contrast, the indirect method is more complicated. Final
results depend to a varying extent on the choice of the
denoising process (Tikhonov regularization), the accuracy
in the numerical estimation of different functions involved
in the computations, etc. However, it has the great advant-
age of handling probability density functions rather than
time series of events. Thus it can be easily applied to
avalanche paths for which only the avalanche database
covers a very long period. Both methods have shown that,
contrary to many statements in the literature, the friction
coefficient m is likely to be independent of the amount of
snow fallen during the days preceding the avalanche release.
Moreover, the coefficient m can be approximated as a
discrete random variable.

Figure 11. Empirical probability density function (dashed line) of the coefficient m when all the events
of the avalanche database are considered (area = 1.00). The solid line stands for the probability density
function evaluated using the indirect inversion method applied to the reduced set of runout distances.
Computations are for the Bessans site, with NK = 250, B = INK

, and l = 10�2.63. In the inset we have
reported the probability density function of the coefficient m when all the events of the avalanche database
are considered and for different values of l: l = 104 (solid line, area = 3.82), l = 103 (dotted line, area =
16.82), and l = 105 (dashed line, area = 1.54). Computations are for the Bessans site with NK = 250 and B
is the second-order difference operator.
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[47] Further investigations are under way to improve the
numerical implementation of the method and its robustness
and to test it to different series of close avalanche paths.
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Edisud, Aix-en-Provence, France, 1996.

Ancey, C., Snow avalanches, in Geomorphological Fluid Mechanics: Se-
lected Topics in Geological and Geomorphological Fluid Mechanics,
edited by N. J. Balmforth and A. Provenzalle, pp. 319–338, Springer-
Verlag, New York, 2001.

Andreotti, B., and S. Douady, On probability distribution functions in
turbulence. part 1. A regularisation method to improve the estimate of
a PDF from an experimental histogram, Physica D, 132, 111–132,
1999.

Baker, C. T. H., A perspective on the numerical treatment of Volterra
equations, J. Comput. Appl. Math., 125, 217–249, 2000.

Bakkehøi, S., U. Domaas, and K. Lied, Calculation of snow avalanche run
out distance, Ann. Glaciol., 4, 24–30, 1983.

Barbolini, M., and F. Savi, Estimate of uncertainties in avalanche hazard
mapping, Ann. Glaciol., 32, 299–305, 2001.

Barbolini, M., U. Gruber, C. J. Keylock, M. Naaim, and F. Savi, Applica-
tion of statistical and hydraulic-continuum dense-snow avalanche models
to five European sites, Cold Reg. Sci. Technol., 31, 133–149, 2000.

Bartelt, P., and U. Gruber, Development and calibration of a Voellmy-fluid
dense snow avalanche model based on a finite element method, Rep. 714,
Eigd. Inst. für Schnee- und Lawinenforschung, Davos, Switzerland,
1997.

Bartelt, P., B. Salm, and U. Gruber, Calculating dense-snow avalanche
runout using a Voellmy-fluid model with active/passive longitudinal
straining, J. Glaciol., 45, 242–254, 1999.

Bozhinskiy, A. N., A. N. Nazarov, and P. A. Chernouss, Avalanches: A
probabilistic approach to modelling, Ann. Glaciol., 32, 255–258, 2001.

Burkard, A., and B. Salm, Die Bestimmung der mittleren Anrissmächtigkeit
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