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[1] Knowing the path profile and the avalanche velocity variations with downstream
distance makes it possible to deduce the bulk frictional force experienced by an avalanche
during its course. This derivation was applied to 15 documented events reported in the
literature. Three types of rheological behavior were identified: (1) the inertial regime,
where the frictional force drops to zero; (2) the Coulombic frictional force, where the force
is fairly independent of the avalanche velocity; and (3) the velocity-dependent regime,
where the force exhibits a complicated (nonlinear and hysteretic) dependence on velocity.
During its course an avalanche can experience one or several regimes. Interestingly, the
Coulomb model can provide predictions of the velocity and run-out distance in good
agreement with field data for most events, even though for some path sections the bulk
frictional force departs from the Coulomb model. This result is of primary importance in
zoning applications since it makes it possible to deduce avalanche velocities from a
knowledge of the run-out distance. Its physical meaning is, however, not clearly
demonstrated in this paper due to the lack of suitable data. INDEX TERMS: 1863 Hydrology:

Snow and ice (1827); 8160 Tectonophysics: Rheology—general; KEYWORDS: snow avalanche, rheological

properties, Coulomb model
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1. Introduction

[2] A number of natural gravity-driven flows, such as
debris and snow avalanches, take the appearance of a fluid
stream flow. When interested in determining the properties
of these mass movements, it can be fruitful to develop the
fluid analogy by using a fluid mechanics treatment and
considering such flows as one-phase flows at a macroscopic
scale, although at a microscopic scale the materials can
involve two or three phases. Such a framework has been
developed in the field of snow avalanches [Brugnot and
Pochat, 1981; Eglit, 1983], lava flows [Balmforth et al.,
2000], mudflows [Coussot, 1997], debris flows [Iverson
and Denlinger, 2001], debris avalanches and rock falls
[Savage, 1989; Hutter et al., 1995; Tai et al., 2001], and
turbidity currents [Parker et al., 1986].
[3] Within this framework a key point is to determine the

bulk rheological properties of the materials. For fine mate-
rials involved in mudflows and lava, using laboratory
rheometers makes it possible to infer the rheological prop-
erties from rheometrical data [Spera et al., 1988; Major and
Pierson, 1992; Coussot, 1997]. For coarse-grained materials
involved in debris flows, this procedure is more complicated
to use and often leads to results that are difficult to interpret

from a rheological viewpoint [Contreras and Davies, 2000].
An alternative approach is to develop theoretical constitu-
tive equations and test them against large-scale channel
experiments [Denlinger and Iverson, 2001]. This, however,
requires that the flow conditions and the materials used in
the reduced-scale experiment fulfill similarity conditions
relative to full-scale events [Iverson, 1997; Iverson and
Denlinger, 2001].
[4] Snow avalanches occupy a particular position in that,

in contrast to lava and debris flows, there are no sound field
or laboratory data available on the basic rheological pro-
cesses involved in avalanche release and flow. Therefore all
the avalanche dynamics models proposed so far rely on
analogy with other physical phenomena: Typical examples
include analogies with granular flows [Savage and Hutter,
1989; Savage, 1989; Hutter and Greve, 1993; Tai et al.,
2001], Newtonian fluids [Hunt, 1994], power law fluids
[Norem et al., 1986], and viscoplastic flows [Dent and
Lang, 1982; Ancey, 2001b]. From a purely rheological point
of view, these models rely on a purely speculative founda-
tion. Indeed, most of the time, the rheological parameters
used in these models have been estimated by matching the
model predictions (such as the leading edge velocity and the
run-out distance) with field data [Schaerer, 1974; Buser and
Frutiger, 1980; Dent and Lang, 1980]. However, this
obviously does not provide evidence that the constitutive
equation is appropriate. A number of experiments on snow
have also been done in the laboratory. Authors such as Dent
and Lang [1982] and Maeno [1993] have measured the
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velocity profile within snow flows and generally deduced
that snow generates a non-Newtonian viscoplastic flow,
whose properties depend a great deal on density. Transpos-
ing these laboratory results to real avalanches is not clearly
reliable due to size-scale effects and similarity conditions.
Furthermore, given the severe difficulties inherent to snow
rheometry (sample fracture during shearing tests, variation
in the snow microstructure resulting from thermodynamic
transformations of crystals, etc.), properly identifying the
constitutive equation of snow with modern rheometers is
out of reach for the moment.
[5] The objective of this paper is to present a novel

method for deducing the bulk rheological properties of
gravity-driven flows from field data. Here, in the applica-
tions, emphasis is given to snow avalanches, but the method
can also be applied to a wide range of mass movements. In
accordance with the terminology adopted by practitioners [de
Quervain, 1981; McClung and Schaerer, 1993], we use the
term ‘‘flowing avalanches’’ to refer to snow avalanches with
a high-density core at the bottom. On average, the density
is fairly high, ranging from 150 kg m�3 to 500 kg m�3.
The flow depth does not generally exceed a few meters
(typically 1–2 m). Snow involved in the avalanche can be
of varying consistency: granular (snowball), loose (slush
snow), pasty, etc. Flowing avalanches differ from airborne
(or powder snow) avalanches in several respects: Taking
the form of a dilute turbulent cloud, airborne avalanches
can reach very high velocities (as high as 100 m s�1); the
flow depth is large (typically in the range 20–100 m) and
grows continuously as a result of air entrainment when
the avalanche descends; and the average bulk density is
fairly low (in the range 1–25 kg m�3) [McClung and
Schaerer, 1993; Ancey, 2003]. The method presented here
does not apply to this flow family, whose dynamics are
controlled by buoyancy effects rather than by rheological
properties.
[6] This paper will begin by presenting the method used

for deriving the bulk frictional force. Essentially, we will
show that knowing the path profile and the front avalanche
velocity can make it possible to calculate the frictional force
experienced by the avalanche. We will then apply the method
to 15 documented events reported in the technical literature
and demonstrate that at least three regimes can be identified
by examining the variation in the bulk frictional force with
avalanche velocity: In an inertial regime, the frictional force
is very low relative to the driving force; in a Coulomb
frictional regime, the frictional force is independent of the
velocity; while in a velocity-dependent regime, the frictional
force reveals a complex pattern, including a hysteretic
behavior. Lastly, we will discuss the results obtained with
this method. A key question must be raised: Do we really
understand the physics when using the proposed simplified
treatment, or, in other words, does the flow regime identified
as a Coulomb frictional regime reflect Coulomb rheological
behavior at the microscopic scale?

2. Methodology

2.1. Determining Bulk Rheological Properties From
Flow Properties

[7] In most fluid mechanics problems the constitutive
equation and the boundary conditions are known in ad-

vance, and the equations of motion are solved to determine
flow features such as the discharge equation (relationship
between flow rate and flow depth). The inverse problem
starts from the knowledge of certain flow characteristics to
deduce the constitutive behavior of the material involved.
[8] In the simplest fluid mechanics treatment of natural

flows the bulk material is considered as a whole at the
macroscopic scale; the local momentum balance equation is
written as

r
du

dt
¼ rg�rpþr � �; ð1Þ

where r denotes bulk density, u denotes velocity, g denotes
gravity acceleration, p denotes pressure, � denotes bulk
extra stress tensor, and d � /dt denotes the material
derivative. Let us now consider a steady uniform isochoric
flow of a bulk material down an infinite plane inclined at an
angle q. These simple shear flow assumptions make it
possible to substantially simplify the equations of motion. It
can be shown that under these conditions, at a depth h � y
from the free surface, where h is the total flow depth, the
shear stress is t = rg sinq (h � y) (see Ancey et al. [1996a]
and Ancey [2001a] for the details of the derivation). This
shear stress is related to the shear rate _g = du/dy via the
constitutive equation. In the case of a simple fluid the
constitutive equation takes the form of a one-to-one
relationship between _g and t that here is denoted G: _g =
G(t). If this function is known, we can compute the depth-
averaged velocity �u : h�u ¼

R h

0
u yð Þdy ¼

R h

0
dy

R y

0
_g hð Þdh.

conversely, knowing the mean velocity �u(h) makes it
possible to infer the flow curve. Indeed, using an integration
by parts, then differentiating with respect to h, we obtain

_g ¼ G tbð Þ ¼ 1

h

@h�u

@h

� �
q
; ð2Þ

where tb is the bottom shear stress (tb = rgh sin q). This
equation shows that the flow curve _g = G(t) can be directly
deduced from the measurement of flow depth h and mean
flow velocity �u. In theory, this provides us with the means of
deriving the rheological behavior from field measurements
�u(h). In practice, however, this expression is of limited
interest given how difficult it is to obtain field measure-
ments of both the flow depth and mean velocity. Moreover,
natural flow conditions are far from the purely viscometric
flow conditions that underlie the computations above.
[9] However, the idea deserves further development by

simplifying the equations of motion. Here the simplest case
where the fluid can be considered a slender sliding body, of
volume V and possibly of varying mass m, is examined. The
variations in body shape are ignored in a first approximation
(A1). The body moves along a curvilinear two-dimensional
profile, whose equation in a Cartesian frame takes the form
y = f (x), where y is the elevation and x is an arbitrary
distance measured along a horizontal axis. In doing so, it is
implicitly assumed that there is no significant lateral spread-
ing of the mass (A2). In the following we assume that the
path profile is a smooth and gently varying curve (A3).
Basically, this means that the curvature radius R = (1 +
f 02(x))3/2/f 00(x) is at least as large as the typical length L scale
of the flow or larger: R 	 L or R > L. The position of the
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center of mass is given by its curvilinear abscissa
x ¼

R x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02 xð Þ

p
dx taken from an arbitrary point of

origin; we have x = x cos �q, with �q the mean path inclination
computed over the interval [0, x]. The ordinate of the center
of mass (relative to the curve f ) is denoted h; assumption
A1 implies that h is fairly constant and the velocity in the h
direction is close to zero. The velocity in the x direction is
u = (1 � h/R)dx/dt. The bulk equation of motion can be
deduced by integrating the local motion equation (1) over
the volume V. The downward and normal components of the
momentum equation can be expressed as

1� h
R

� � d2x
dt2

þ h
R2

dR

dx
dx
dt

� �2

¼ g sin q xð Þ � S
tb
m

� 1

m
1� h

R

� � dx
dt

dm

dt
ð3Þ

� 1

R� h
dx
dt

� �2

¼ �g cos q xð Þ þ S
sb
m

; ð4Þ

where S is the surface of the body in contact with the sliding
plane and (tb, sb) are the average shear and normal stresses
at the bottom. In the left-hand side of equation (3) the first
term represents the downward component of the accelera-
tion, while the second term reflects radial effects due to the
curvature of the path profile. In the right-hand side of
equation (3) the first contribution is the driving action of
gravity, the second term stands for the frictional force
exerted by the bottom (ground or snow cover) on the
avalanche, while the last term reflects the momentum
variations induced by the variation in mass with time.
[10] These equations can be simplified a great deal by

assuming that the mass variations can be neglected (A4) and
that the curvature radius is very large relative to the depth h:
R 
 h (A5). The latter assumption means that everything
happens locally, as if the path were an infinite plane inclined
at an angle tan q(x) = f 0(x) with respect to the horizontal.
Under these assumptions we have u = dx/dt, and equations (3)
and (4) can be cast into the simplified form

S

m
tb ¼ g sin q xð Þ � u

du

dx
ð5Þ

S

m
sb ¼ g cos q xð Þ; ð6Þ

where we used du/dt = udu/dx. Given assumptions A1, A2,
and A4, the ratio S/m is constant in the equations of motion.
The interpretation of equation (5) is clear: If one has a
record yielding the body velocity as a function of the
position along the path, then it is possible to directly deduce
the bottom shear stress and its relationship with the velocity
u to a multiplicative factor S/m. To first order, the average
bottom normal stress only depends on the local slope: mg
cos q(x)/S. Equation (5) should provide the main trends of
the rheological behavior. Plotting the resulting force per unit
mass in a phase space (u, sb, tb) can give an idea of the
dependence of the frictional force on the mean velocity and
normal component.
[11] Owing to the number of assumptions and approx-

imations (A1–A5) made to arrive at this expression, it may

be uncertain whether the bulk rheological behavior is
properly reflected by a simplified expression in the form
of equation (5). Indeed, a number of additional contribu-
tions may be hidden in the bulk frictional force determined
by equation (5). For instance, if assumption (A4) does not
hold, i.e., there is a mass variation during the course of
the avalanche, the bottom shear stress must be corrected
by the quantity �u2(dm/dx)/S. Similarly, a sudden variation
in the path profile induces a radial acceleration in the
form u2/R(x). Moreover, the physical properties of the
snow volume involved in the avalanche may vary when
the avalanche descends: snow compaction, air entrainment
and formation of a cloud of snow particles above the core,
increase in the water content leading to the development of
snowballs, etc. Singularities along the path, such as a
sudden widening or turn, may influence the body motion
and add additional terms to F. However, it is expected that,
on the whole, equation (5) can capture the essential traits of
the bulk frictional force experienced by the avalanche.

2.2. Practical Use

[12] Equation (2) provides a fairly rigorous way of infer-
ring the bottom shear rate as a function of the shear stress by
assimilating a natural flow to a viscometric flow, but its
applicability is limited due to stringent assumptions of flow
conditions and a dearth of field data (�u, h) for natural events.
For snow avalanches we found no available data in the
literature. Equation (5) provides a cruder way of relating
the shear stress to the flow velocity (to a multiplicative
factor), but it is less data hungry than equation (2) since only
the knowledge of u(x) along the path profile is needed. In the
following we will use this equation for determining the bulk
rheological properties of snow avalanches.
[13] In practice, the data treatment can be broken down

into two steps. The first step is to denoise the recorded data.
Indeed, in equation (5) the bulk shear stress is deduced by
determining the local path slope and the x derivative of the
velocity. In absence of data smoothing the shear stress
deduced from equation (5) is very noisy due to the ampli-
fication of discretization errors. To reduce the noise, the best
polynomial approximations of the discretized velocity and
path profiles is sought. Here ~v(x) and ~f (x) denote the
N-order polynomial approximations of the velocity and path
profiles, while vi (1 � i � q) and fi (1 � i � n) represent the
recorded velocity and the discretization points of the path
profile at a given set of path points xi. Using orthogonality
properties of Legendre polynomials, one writes the poly-
nomials ~v(x) and ~f (x) as ~v(x) = �kakPk(r) and ~f (x) =
�kbkPk(r), 0 � k � N, where Pk(x) = gkd

k(s2 � 1)k/dxk is
the normalized Legendre polynomial of order k, defined
over the range [�1, 1], gk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

p
/(2kk!

ffiffiffi
2

p
) is the

normalizing constant, and r is the scaled variable defined
by r(x) = (2x� (x1 + xp))/(xp� x1), with index p = n or p = q,
depending on whether r is related to the variation of the path
profile or the velocity. The coefficients ak (similarly bk) are
determined using the least squares method, i.e., by minimiz-
ing the functional J = �i( fi � �kakPk(ri))

2.
[14] In the second step we studied the relationship

between the shear stress deduced from equation (5) and the
velocity and the slope. In fact, equation (5) displays the ratio
of the frictional force to the avalanche mass F/m = Stb/m
rather than the shear stress alone; thus in the following we
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will consider the ratio F/m instead of tb. It is usually easier to
perform the computations in the fixed Cartesian frame (x, y)
and then compute the acceleration in the curvilinear frame
by using the relation between the x and x derivatives of the
velocity: u0(x) = u0(x)cosq(x). For each event a three-
dimensional parametric plot, relating F/m as a function of
u(s) and sin q, can be plotted to identify the rheological
behavior. The resulting curve is, however, difficult to
interpret, and in practice, it is easier to examine the
variation F(u)/m alone.

3. Application and Results

[15] The inference method presented in section 2.2 has
been applied in the context of snow avalanches. The litera-
ture was searched to find field data, including both the path
profile and the velocity variation along the path. Though a
large number of field surveys have been carried out in many
countries over the last 30 years, we have found only a very
limited number of events that satisfy our constraints: In all,
only 15 events have been sufficiently documented. Raw data
are presented in section 3.1 (Figures 1–7).
[16] We applied equation (5) to these field data. Figure 8

shows a snapshot of the results. The observed behavior is
quite complex and is probably best explained by describing
the main trends. To that end, we have considered three
distinct regimes or phases depending on the frictional force
variation relative to u and the driving force mg sin q: (1) the

inertial regime, for which gravitational force outweighs
frictional force (section 3.2); (2) the Coulombic frictional
regime, for which frictional force is fairly constant and
independent of velocity (section 3.3); and (3) the velocity-
dependent regimes, for which frictional force reveals a
complicated dependence on velocity that can be approximat-
ed by a power law relation (section 3.4). As shown in sections
3.2–3.4, the motion of an avalanche can be described as the
occurrence of a single regime or the succession of two or
three regimes. For instance, the inertial regime was observed
only for the release phase; at later times the avalanches
reached a Coulombic frictional and/or velocity-dependent
regime(s).

3.1. Raw Data

[17] Table 1 summarizes the main features of these
events. Gubler et al. [1986] recorded the velocity variations
for six events in three distinctive paths in Switzerland: Aulta
(see Figure 1), Madergrond (see Figure 2), and Fogas (see
Figure 3). Kotlyakov et al. [1977] measured velocity varia-
tions for three events in a single path in the Khibins in
Russia (see Figure 4). Sovilla et al. [2001] measured
velocity and mass balance for four events at the Arabba
site in Italy (see Figure 5). LaChapelle and Lang [1980]
provided a velocity record for an avalanche in the Shlush-
man path in Colorado (see Figure 6). Our laboratory
recorded velocity several times at the Lautaret site (France),
but only one of these records provides the variation in front
velocity with distance (see Figure 7) [Marco, 1986]. In each
of Figures 1–7 we have reported the interpolated path

Figure 1. Path profile (dashed curve) of the Aulta site and
front velocities for the avalanches of 8 February 1984 (dots)
and 10 February 1984 (squares). The path profile was
obtained by interpolating the discretization points with a
series of Legendre polynomials (N = 17). The same was
done with the velocity data (solid line, N = 10).

Figure 2. Path profile (dashed curve) of the Madergrond
site and front velocities for the avalanches of 17 January
1985: avalanche a (dots), b (squares), and c (crosses). The
path profile was obtained by interpolating the discretization
points with a series of Legendre polynomials (N = 15). The
same was done with the velocity data (solid line, N = 15).

Figure 3. Path profile (dashed curve) of the Fogas site and
front velocities for the avalanches of 7 March 1985. The
path profile was obtained by interpolating the discretization
points with a series of Legendre polynomials (N = 17). The
same was done with the velocity data (solid line, N = 23).

Figure 4. Path profile (dashed curve) of the Khibins site
and front velocities: avalanche a (dots), b (squares), and c
(crosses). The path profile was obtained by interpolating the
discretization points with a series of Legendre polynomials
(N = 17). The same was done with the velocity data (solid
line, N = 23).
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profile (dashed line) together with measured (symbols) and
interpolated (solid line) velocities.
[18] Note that the quality of data varies from one event to

another depending on how data were acquired. Avalanche
velocity is most often measured at the front using image
processing techniques (video tapes) or stereo-photogram-
metry. In some cases (for the events recorded in Switzer-
land) the front velocity was determined accurately using a
Doppler radar. For the Swiss events the data number is
large, which allows us to interpolate the velocity data with a
high degree of confidence from release to run-out. For the
Lautaret avalanche the velocity was measured for only four
points in close vicinity; moreover, the starting and stopping
points are known. In this case, it was difficult to suitably
interpolate the data (see Figure 7) since we have only six
data irregularly distributed along the path profile. The same
comment must also be mode for the Arabba avalanche of
14 April 1998 (see Figure 5).

3.2. Avalanches in an Inertial Regime

[19] For a number of events (see Figures 1, 2, and 4) the
avalanches reached high velocities (higher than 30 m s�1),
which indicates that the frictional forces experienced by these
avalanches were low (see Figure 8). Within our simplified
fluid mechanics framework the velocity cannot reach any
velocity whatsoever: There is a maximum velocity, which
can be computed using the free-fall approximation. Indeed, if
an avalanche were in a purely inertial regime, its frictional
force would be zero, and the avalanche motion would be
similar to the motion of a body in free fall. In this case,

integrating the momentum equation (5) with tb = 0, the initial
condition u = 0 at x = x0, leads to u2(x) =

R x
x0
2g sin q(x0)dx0.

There is no analytical solution to this integral, but in the case
where the slope q is not too far from a constant value q̂ the
following approximation holds to first order: u(x) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g x� x0ð Þ tan q̂

q
, where x0 is the abscissa in the Cartesian frame

associated with the curvilinear abscissa x0. Let us now use an
example to examine how the maximum velocities reached by
high-speed avalanches deviate from the maximum velocities
of a purely inertial body.
[20] Figure 9 shows the force variation for the avalanche

that occurred on 8 February 1984 at the Aulta site; on the
same plot we have drawn the downward component of the
driving force per unit mass g sin q. In the inset of Figure 9 we
have drawn the velocity variations (dashed line) if the
avalanche were in a purely inertial flow (the dashed curve
was obtained by solving equation (5) numerically), and we
have added themeasured velocities (same data as in Figure 1).
The avalanches of 10 February 1984 in the Aulta path and
17 January 1985 (a and c) in the Madergrond path provide
similar results (see Figures 2 and 8).
[21] As seen in the inset of Figure 9, the avalanche

accelerated vigorously, and over the first 250 m it traveled,
its velocity was close to the free-fall velocity (dashed curve).
In fact, as shown in Figure 9, the frictional force was far from
zero. It first decreased with increasing velocity and was much
less than the gravity acceleration (dashed curve): On the
whole, between instants A and B, the force decreased as F/m
/ u�n, with n = 1.05 ± 0.1. At instant B, at which point the
recorded velocity departed from the free-fall velocity, gravity
acceleration was ten times as large as the frictional force, and
the avalanche reached a high velocity (35 m s�1). Then,
between instants B and C the frictional force increased
substantially as F/m / u4.3 (velocity-dependent regime),
but owing to the difference between gravity acceleration
and frictional force, the avalanche velocity further increased.
At instant C the maximum velocity was reached (60 m s�1),
and the frictional and gravitational forces were approximately
equal: F/m  g sin q. From this instant (or equivalent from x
 1100 m) and until instant D the avalanche remained in a
high-velocity regime (velocity in excess of 30 m s�1).
Though the slope varies significantly in the range 0.6–0.2
(see Figure 1), there was no significant variation in the
frictional force. As seen in Figure 9, between instants C
and D, there were large fluctuations in the frictional force
around the mean value: F/m = 4 ± 2 m/s2. As a first
approximation, the frictional force can be assumed to be

Figure 5. Path profile (dashed curve) of the Arabba site
and front velocities for the avalanches of 21 December 1997
(dots), 14 April 1998 (squares), 5 December 1997 (crosses),
and 14 December 1997 (diamonds). The path profile was
obtained by interpolating the discretization points with a
series of Legendre polynomials (N = 10). The same was
done with the velocity data (solid line, N = 7).

Figure 6. Path profile (dashed curve) of the Shlushman
site and front velocities. The path profile was obtained by
interpolating the discretization points with a series of
Legendre polynomials (N = 17). The same was done with
the velocity data (solid line, N = 23).

Figure 7. Path profile (dashed curve) of the Lautaret site
and front velocities. The path profile was obtained by
interpolating the discretization points with a series of
Legendre polynomials (N = 10). The same was done with
the velocity data (solid line, N = 2).
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constant; this means that the avalanche reached a Coulomb-
like regime (see section 3.3).
[22] At x  2200 m (point D) the avalanche suddenly

decelerated. Within 250 m the avalanche velocity dropped
from 50 to 0 m s�1, implying that the avalanche’s kinetic
energy was dissipated in a short time. Interestingly enough,
Figure 9 reveals no strong dependence of the frictional force
on velocity, which should be the signature of a very
dissipative process. Indeed, between instants D and E the

frictional force varied slowly with velocity: F/m / u0.7

(velocity-dependent regime).
[23] In short, the Aulta avalanche of 8 February 1984

went through four regimes: first an inertial regime, during
which the avalanche accelerated as a free-fall body during
the early phases, allowing it to reach very high velocities.
Then, there was a phase associated with a substantial
increase in the dependence of the frictional force on velocity
(velocity-dependent regime). This phase marked the depar-

Figure 8. Variation in the frictional force per unit mass F/m with the avalanche velocity u for the
documented events. (a) Aulta path: avalanche of 8 February 1984 (solid line) and avalanche of
10 February 1984 (dashed line). (b) Madergrond path: avalanches of 17 January 1986; avalanche a (solid
line), avalanche b (short-dashed line), and avalanche c (long-dashed line). (c) Khibins path: avalanche a
(solid line), avalanche b (short-dashed line), and avalanche c (long-dashed line). (d) Arraba path:
avalanche of 21 December 1987 (solid line), avalanche of 14 April 1998 (short-dashed line), avalanche of
5 December 1997 (long-dashed line), and avalanche of 14 December 1987 (thin dashed line).
(e) Slushmann path. (f ) Lautaret path. For the Fogas path, see Figure 11.
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ture from the inertial regime. Afterward, the avalanche
reached a fairly steady state, during which the velocity
varied little: the flow regime can be described approximately
as a Coulombic frictional regime. In the run-out phase the
avalanche decelerated quickly; the frictional force varied
almost linearly with velocity (velocity-dependent regime).

3.3. Avalanches in a Coulombic Frictional Regime

[24] For a number of events the frictional force was found
to be weakly dependent on velocity or to fluctuate around a
mean value during the entire course of the avalanche.

Figure 10 shows a typical example provided by the avalanche
in the Arraba site on 21 December 1997. The Khibins
avalanches, the Lautaret avalanche, and the Arraba ava-
lanches of 5 and 14 April 1998 were also in a Coulombic
frictional regime most of the time (see Figure 8). For other
events this regime was either never reached or reached only
over finite periods of time (e.g., see instants C–D for the
avalanche of 8 February 1984 in the Aulta path (Figure 9)).
[25] In Figure 10 we have drawn the variation in the

frictional force per unit mass with velocity (solid line) and
the downward component of the driving force per unit mass

Table 1. Main Features of the Events Used for the Back Analysisa

Site Name Date y0, m L, m q0, deg qf, deg Section h0 V, m3 Snow Type

Aulta (a) 8 Feb. 1984 2400–2500 1550 �31 12 channeled 0.7–1 50,000 powder
Aulta (b) 10 Feb. 1984 2300–2400 1570 �37 �12 channeled 0.5–1 10,000 powder
Fogas 7 March 1985 2100–2200 780 �34 30 open 0.3 500 powder
Madergrond (a) 17 Jan. 1985 2450 1710 �25 �10 channeled 1–5 20,000 mix of new and old snow
Madergrond (b) 17 Jan. 1985 2300 1800 �33 �24 channeled 0.3–0.7 3000 mix of new and old snow
Madergrond (c) 17 Jan. 1985 2300–2400 1080 �33 �19 channeled 1–3 26,000 mix of new and old snow
Khibins (a) 700 800 �37 �14 channeled
Khibins (b) 700 800 �37 �14 channeled
Khibins (c) 700 800 �37 �14 channeled
Shlushman 2660 900 �39 �19 open/channeled 1–1.5 6000 wet
Arabba (a) 21 Dec. 1997 2200 680 �40 �20 channeled 1.4 4200 powder
Arabba (b) 14 April 1998 2200 550 �40 �20 channeled 0.45 4200 wet
Arabba (c) 5 Dec. 1997 2200 550 �40 �20 channeled 0.25 500 powder
Arabba (d) 14 Dec. 1997 2200 550 �40 �20 channeled 0.45 1000 wet
Col du Lautaret 14 Feb. 1979 2350 535 �42 �13 channeled 0.2–0.5 powder snow

aWe have reported the elevation range of the starting zone y0, the length traveled by the avalanche L, the mean inclination of the release zone q0, the mean
inclination of the run-out zone qf, the shape of the flow section, the mean thickness of the snow layer released h0, the volume of snow involved in the
avalanche, and the type of snow.

Figure 9. Variation in the frictional force per unit mass F/m with the avalanche velocity u for the
avalanche of 8 December 1984 in the Aulta path (solid line); F/m was obtained by applying equation (5)
to the measured velocities and path profile, both regularized using N-order Legendre polynomials (N = 10
for the velocities, N = 5 for the path profile). The dashed curve stands for the variation in the driving force
per unit mass gsin q. In the inset we have reported the variations in the measured velocities (dots) with
downstream distance x. In the inset the solid line represents the Legendre polynomial approximation of
velocities, while the dashed line stands for the velocity of a pure inertial flow. Letters from A to E refer to
various stages of the avalanche run (see text). The starting point is x0 = 422 m; the run-out point is xstop =
2440 m.
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gsin q (dashed line). In the inset we have plotted the
measured velocities (dots) together with the Legendre
polynomial approximation used in the computations. On
the same plot we have drawn the velocity variations as if the
avalanche were in a pure Coulomb regime (dashed line):
Assuming that the frictional force is in the Coulombic form
F = msbS = mmg cos q, where m is the bulk friction
coefficient, we numerically solved the equation of motion
(equation (5), in which Stb/m is replaced with the expres-
sion of F above) using the initial condition u(x0) = 0 in the
curvilinear frame. Repeating the procedure for different
values of m (while keeping the same initial conditions) leads
to a one-parameter family of curves u(xjm). Since each m
curve is bell shaped, the velocity drops to zero at a given
abscissa, hereinafter referred to as the run-out distance xstop,
which is a function of m: u(xstop(m)jm) = 0 (here xstop
corresponds to xstop = 800 m in Figure 10). We selected
the friction coefficient for the computed run-out distance to
match the recorded value. We found that m = 0.66 for the
Arabba avalanche of 21 December 1997.
[26] As shown in Figure 10, in the early phases (between

points A and B) the frictional force gently decreased with
increasing velocity and was slightly lower than the gravity
acceleration g sin q. Owing to the small difference between
gsin q and F/m, the avalanche accelerated less vigorously
than an avalanche in an inertial regime. At instant B the

avalanche reached its maximum velocity (24 m s�1). At this
point the frictional force started exceeding the gravitational
force, and the avalanche decelerated monotonically. Obvi-
ously, the frictional force did depend on the avalanche
velocity, as shown in Figure 4, but this dependence
remained slight since between B and C we have F/m /
u0.1 ± 0.05. Thus as a first approximation, the frictional force
can be considered constant between instants A and C: F/m =
5 ± 1.3 m s�2. As shown in the inset of Figure 10, the
computed velocities obtained by assuming a pure Coulom-
bic regime (dashed curve) compare well with the data: Like
the recorded values, the computed velocities exhibit an
asymmetric U-shaped form, while the relative deviation
between the two curves is <20%.

3.4. Avalanches in a Velocity-Dependent Regime

[27] Frictional force depending on the velocity can be
interpreted as the signature of a fluid behavior of avalanches.
For each documented event we looked for a scaling of
frictional force in the form F/m / un. In section 3.2 we saw
that the Aulta avalanche of 8 February 1984 revealed a
velocity-dependent regime in the accelerating phase
F/m / u4.3 and in the decelerating phase F/m / u0.7. Note
the substantial difference in scaling. For other avalanches we
also found that frictional force could depend on velocity
during the decelerating and/or the accelerating phase(s), but

Figure 10. Variation in the frictional force per unit mass F/m with the avalanche velocity u for the
avalanche of 21 December 1997 in the Arabba site (solid line); F/m was obtained by applying equation
(5) to the measured velocities and path profile, both regularized using N-order Legendre polynomials
(N = 7 for the velocities, N = 10 for the path profile). The dashed curve stands for the variation in the
driving force per unit mass gsin q. In the inset we have reported the variations in the measured velocities
(dots) with downstream distance x. In the inset the solid line represents the Legendre polynomial
approximation of velocities, while the dashed line stands for the velocity of a rigid body sliding in a pure
Coulombic regime (with m = 0.66). Letters from A to C refer to various stages of the avalanche run (see
text). The starting point is x0 = 122 m; the run-out point is xstop = 799 m.
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we failed to find a universal scaling; that is, we did not find a
typical constant value for exponent n.
[28] A typical example is provided by the Fogas ava-

lanche of 7 March 1985, which at first glance is very similar
to the Arabba avalanche examined in section 3.3. As done
previously, we have drawn the F/m variations with u (solid
line) deduced by applying equation (5) to field data. On the
same plot we report the downward component of the
driving force gsin q (dashed line). The inset of Figure 11
shows the recorded velocity u(x) (dots) and the Legendre
polynomial approximation (solid line). The long-dashed
curve stands for the Coulombic solution fitted using the
same procedure described in section 3.3. Note that contrary
to the Arabba avalanche examined in section 3.3, it was not
possible to find a Coulomb solution that mimics the
recorded velocities over the whole range [x0, xstop] (or,
equivalently, [x0, xstop]), and therefore we decided to repre-
sent only the part of the solution that comes closer to the
observed velocities. As shown in Figure 11, this concerns
only a narrow range of distances (branch F–G). The dashed
curve represents the ‘‘velocity-dependent solution’’: Assum-
ing a frictional force in the form F/m = 0.35 u (see below for
explanations), we numerically solved equation (5) to find
u(x). Note that for this solution the avalanche stops farther
than the observed avalanche.
[29] As for the Aulta avalanches and one of the Mader-

grond avalanches (see Figure 8), there was first a rapid
decrease in the frictional force just after the avalanche
released: On average, between instants A and B, the
frictional force decreased with increasing velocity as

(F/m / u�2.2 ± 1.5). At instant B the velocity reached by
the avalanche was 8 m s�1, a fairly low velocity compared
to the velocities reached by avalanches in an inertial
regime (compare with Figure 9). Then, between instants
B and C the frictional force grew very rapidly with
increasing velocity: F/m / u5.5 until F/m reached its initial
level (5 m s�2). At this instant (C) the frictional force
followed a plateau phase, but the velocity continued to
increase due to the positive difference between the driving
force and the frictional force. Between instants D and E
the avalanche velocity reached a steady state (velocities in
the range 19–20 m s�1) because the path slope was fairly
constant, and the frictional force counterbalances the
driving action almost exactly. Note that branch D–E
represents 415 m in horizontal distance along the path,
i.e., approximately half of the distance traveled by the
avalanche (see inset of Figure 11). All of this rather long
stage in the avalanche’s life is represented by a point
(point D in Figure 11) in the plot (u, F/m); in fact, a closer
look at Figure 11 shows that this stage is not represented
by a well-defined point but by a series of intertwining
loops occupying a tiny area. At instant E the difference
between the driving and the frictional forces dropped
below zero, marking the beginning of the decelerating
phase. On the whole, on the E–G branch the frictional
force varied slowly with velocity as F/m / u0.15 ± 0.05, but
the dependence on velocity is much more pronounced
between instants E and F since we have approximately
F/m / u1 ± 0.1. We have considered two approximations to
describe the behavior between instants C and G.

Figure 11. Variation in the frictional force per unit mass F/m with the avalanche velocity u for the
avalanche of 7 March 1985 in the Fogas site (solid line); F/m was obtained by applying equation (5) to
the measured velocities and path profile, both regularized using N-order Legendre polynomials (N = 23
for the velocities, N = 17 for the path profile). The dashed curve stands for the variation in the driving
force per unit mass gsin q. In the inset we have reported the variations in the measured velocities (dots)
with downstream distance x. In the inset the solid line represents the Legendre polynomial approximation
of velocities, while the dashed line stands for the velocity of a rigid body sliding in a pure Coulombic
regime (with m = 0.705). Letters from A to G refer to various stages of the avalanche run (see text). The
starting point is x0 = 153 m; the run-out point is xstop = 931 m.
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[30] 1. We assume that the avalanche is in a velocity-
dependent regime between instants C and F. Roughly, the
corresponding points in Figure 11 form a loop, whose axis
is approximately symmetric around the line F/m = 0.3 u. In
a first approximation we replace the complex loop behavior
with the simple relationship F/m = 0.3u. Implementing this
expression in equation (5), then solving it to deduce u(x),
leads to the dashed curve shown in the inset of Figure 11.
This curve mimics the avalanche behavior fairly well from
the release ( point A) to the point of deceleration ( point E)
but significantly overestimates both velocities in the decel-
erating phase and the run-out distance.
[31] 2. In a first approximation the frictional force in the

slowly decreasing branch E–G can be considered as con-
stant: F/m = 6 ± 1 m/s2. As done previously (see section 3.3),
we examined how this branch deviated from the solution to
equation (5) obtained by assuming a pure Coulombic fric-
tional force. As shown in the inset of Figure 11, the velocities
predicted by a Coulombic friction solution (long-dashed
curve) are in good agreement with the recorded data only at
the very late moments of the decelerating phase (branch F–G
in the inset). Surprisingly enough, although the frictional
force was fairly constant between instants E and F, it was not
possible to reproduce the recorded data by using a Coulombic
friction solution. This point will be discussed in section 4.2.
[32] In short, the Fogas avalanche of 7 March 1985 went

through three regimes: In the first instants after the release an
inertial regime occurred, during which the avalanche accel-
erated (branch A–B in Figure 11). Next, the avalanche
entered a velocity-dependent regime, during which the fric-
tional force revealed a quasi-linear velocity dependence
(B–E) on average: F/m / u. In the run-out phase (E–G)
the avalanche decelerated quickly; the frictional force was
almost independent of velocity (Coulombic frictional
regime).

4. Discussion

[33] The treatment described above shows that (1) the
bulk frictional force experienced by an avalanche varies
nonlinearly with velocity for most events; (2) the bulk
frictional force exhibits hysteretic properties; that is, there
is not a single relationship between frictional force and
velocity during the acceleration and deceleration phases;
and (3) there is also a great diversity in avalanche behavior.
Avalanches involving large volumes of new snow (i.e.,
whose volume exceeds 10,000 m3) can reach a very high
velocity (40 m s�1 or more). The considerable acceleration
of the avalanche during the release and initial flow phases
results from the low value of the frictional force compared
to gravity acceleration. In contrast, avalanches involving
small volumes of snow exhibit, to a lesser or greater extent,
Coulombic frictional properties.
[34] Three regimes have been identified and character-

ized. After their phenomenological description given in
section 3, let us now interpret them from a physical
perspective.

4.1. Nature of the Inertial Regime

[35] In the inertial regime the bulk frictional force drops
rapidly to zero, which allows the avalanche to accelerate
vigorously. Two questions remain unanswered: What are the

basic mechanisms involved in the frictional force collapse,
and which parameter actually controls the transition from an
inertial regime to another regime?
[36] The frictional force collapse is probably an artifact of

the inference method used here. This can be seen in Figure 11
for the Fogas avalanche (and later in Figure 13 for the Aulta
avalanches): Implementing a force in the form F/m / u
makes it possible to suitably reproduce the velocities in the
release phase, although the inference method provides a
variation in F in the form F/m / u�2.2. In fact, the slope of
the release zone is sufficiently large to control the avalanche
dynamics whatever the frictional force expression. Since at
the release instant u(x0) = 0, equation (5) implies that F/m = g
sin q; a fewmoments after the release, u > 0 and du/dx > 0 and
thus equation (5) implies that F/m must be a decreasing
function of u in the first instants after the release.
[37] The very large acceleration in early phases is also

observed for powder snow avalanches developing a dilute
cloud of snow [Ancey, 2003]. In this case, it was shown that
the avalanche ceases to accelerate when cloud dilution
resulting from the air entrainment is sufficient to signifi-
cantly reduce the driving buoyancy force [Beghin et al.,
1981]. This explanation does not hold here since in a
flowing avalanche the air entrainment cannot really lead
to a decay in the driving force. A closer look at the variation
in the frictional force with bed slope reveals that the
frictional force variations for smooth paths are weakly
correlated with bed slope, except during the transition and
run-out phase: The point of deceleration corresponds ap-
proximately to the point of the path profile, from which the
local slope starts dropping to zero. At this stage of the
investigation, with the data currently available, we have
found no clear reason why the avalanche stops accelerating
and reaches a fairly well-established steady state.

4.2. Nature and Interest of the Coulomb Regime

[38] The idea that avalanches can behave as Coulombic
materials is not new. Dent [1986, 1993] put forward the idea
that for flowing avalanches, shear should occur in a thin
layer at the avalanche base, the remainder of the flow depth
being unsheared. Savage and Hutter [1989] and Savage
[1989] also expressed the idea that rapidly sheared natural
flows over steep slopes, such as avalanches, should behave
as granular flows exhibiting Coulomb friction. Experiments
done in the laboratory, either by releasing a given volume of
a granular mass or by supplying a constant flow rate of
materials, have shown that on steep slopes a granular flow
never reached a steady uniform regime and that a Coulomb
model can be used to describe the flow properties [Hungr
and Morgenstern, 1984; Savage and Hutter, 1989; Hutter,
1996; Tai et al., 2001; Ancey, 2002]. This idea is supported
here by the results of the back analysis for a number of
avalanches at the Khibins and the Arabba sites. From field
measurements made using a Doppler radar, Gubler [1993]
found that the velocity profile inside the Aulta avalanches
exhibited a plug zone (constant velocity zone) and a sheared
zone at the bottom, clearly revealing that there is shear
localization at the bottom. Note that this does not really
prove that the Coulomb model is appropriate for describing
snow flows since any viscoplastic model (e.g., Bingham’s
model) also provides a velocity profile involving a sheared
and an unsheared zone.
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[39] Assuming that the frictional force is in the Coulom-
bic form F = msS = mmgcos q, where m is the friction
coefficient, we solved the motion equation (5) with initial
condition u(x0) = 0. An example of the computation is
reported in the inset of Figure 10 for the Arabba avalanche
of 21 December 1997. Good agreement was also found for
other events that were in a Coulombic frictional regime

most of the time. Table 2 summarizes the m values fitted for
each event. For some paths and events, adjusting the
m coefficient requires three digits of precision. The extreme
sensitivity of the fitted values comes from the locally large
variation in the run-out distance xstop with respect to the
m value. For instance, Figure 12 shows how xstop depends on
m for the Arabba site: clearly, in the range 0.7–0.72, there is
a very large variation in the run-out distance (560–690 m).
When the m value has been fitted, we have found that the
Coulomb model provides velocities in good agreement with
recorded data for all events except one: For the Arabba
avalanche of 14 April 1998, it was possible to compute the m
value (m = 0.703) by matching the computed distance to the
recorded value xstop = 678 m (the dashed lines in Figure 12
show how m is deduced from xstop). However, as shown in
inset of Figure 12, the computed velocities overestimated the
recorded velocities by 140%. A possible explanation for this
discrepancy is that this avalanche involved wet snow; it has
been widely observed that wet snow avalanches can travel
long distances over gentle slopes in a rather slow motion (in
a way comparable to debris flow motion).
[40] Interestingly enough, the Coulomb model can also

provide good results for the other two regimes. Clearly, since
the frictional force deviates from a constant value, the
predicted velocities can compare well with the observed
velocities for only certain phases of the avalanche course. In
Figure 13 we report the velocity variations for the two
avalanches that occurred in the Aulta path. The m values
were computed using the same procedure described in
section 3.3 so that the simulated run-out distance equaled
the recorded value. It can be seen that the Coulomb model
can provide a fairly good estimate of the maximum velocity
(underestimating by 	25%), and it describes the velocity
decay during the run-out phase quite well. We came to the
same conclusion for the avalanches experiencing a velocity-
dependent regime. Only the avalanches in the Madergrond
path could not be described using a Coulomb model. This is

Table 2. Adjustment of the m Valuea

Path m Value Comments

Inertial
Aulta (a) 0.40 acceptable agreement
Aulta (b) 0.45 acceptable agreement
Madergrond (a) 0.57 possible if x0 is translated
Madergrond (c) 0.60 possible if x0 is translated

Coulombic Frictional
Arabba (b) 0.712 acceptable agreement
Arabba (c) 0.66 good agreement
Arabba (d) 0.703 velocities overestimated

by 140%
Khibins (a) 0.41 good agreement
Khibins (b) 0.42 good agreement
Khibins (c) 0.41 good agreement
Lautaret 0.53 good agreement

Velocity-Dependent
Arabba (a) 0.66 good agreement
Slushman 0.53 good agreement
Madergrond (b) 0.645 possible if x0 is translated
Fogas 0.705 acceptable agreement

in the stopping phase
aThe value was determined by solving equation (5) and taking the

observed release point as the starting point, except for the Madergrond
avalanches, for which we took x0 = xstart + 100 m for the adjustment
procedure to operate. Here ‘‘good agreement’’ means that both the run-out
distance and the velocities are well described (with a relative deviation
between simulated and recorded values of <20% for the velocities);
‘‘acceptable agreement’’ means that the trend is quite good for the
velocities, but the relative deviation between computed and measured
values locally exceeds 20%.

Figure 12. Variation in the run-out distance according to m for the Arabba site. In the inset we have
reported the measured velocities for the Arraba avalanche (d) and the velocities computed with m = 0.703.

F01004 ANCEY AND MEUNIER: FLOWING SNOW AVALANCHES

11 of 15

F01004



a direct consequence of the path profile shape (see Figure 2).
Indeed, the path profile is made up of a long convex steep
slope and a fairly flat bottom; the average inclination of the
release zone (50–60%) is lower than the slope in the
remainder of the path (inclination in the range 50–70%).
This implies that if a low friction coefficient value is used,

the avalanche travels the entire path down to the flat bottom,
whereas if a large value (in excess of 44%) is selected, the
avalanche stops immediately after the release. The variation
of xstop when varying m is shown in Figure 14 (dashed curve).
It can be seen that at m = 0.44 the run-out distance suddenly
drops from the upper bound of the computation range to x0.

Figure 13. Variation in the avalanche velocity for the two avalanches in the Aulta path. Dots represent the
recorded values (same data as in Figure 1). The curves stand for the numerical simulation to equation (5)
when the Coulomb model is used: avalanche (b) (solid line), m = 0.45; avalanche (a) (dashed line), m = 0.40.

Figure 14. Dependence of the computed run-out distance xstop on coefficient m (Coulomb model). The
dashed line represents the computation using the observed position of the release point as the initial point.
The solid line represents the computation assuming x0 = xstart + 100 m. The long-dashed lines represent
computations assuming x0 = xstart + 200 m and x0 = xstart + 300 m. Here xstart = 115 m and is computed on
the Madergrond path.
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This inconsistency can be removed by translating the release
point downward. For instance, by considering that the initial
point is x0 = xstart + 100 m (with xstart = 113 m being the
observed starting point), the function xstop(m) becomes
smoother, making it possible to determine the coefficient m
for the computed run-out distance to match the observed
value xstop = 1350 m. Further computations were performed
by varying the release point. As shown in Figure 14, the
function xstop(m) depends somewhat on the initial point xstart.
For instance, by adding a distance in the range 100–300 m to
the observed release point, we found that m lies within the
range 0.55–0.59 for the computed run-out distance to match
the observed value (see Figure 14).
[41] In short, the Coulomb model is well suited to

describing the velocity variation and the run-out distance
for avalanches experiencing a Coulombic frictional regime.
Provided one is interested mainly in the velocity variation
in the decelerating phase (which is the chief concern in
avalanche zoning), it can be fitted successfully and used for
other avalanches. In addition to its simplicity (one-param-
eter model), the overriding advantage of the Coulomb
model is that its friction coefficient can be adjusted
from run-out distance records, and the velocities in the
stopping zone can be easily inferred from the fitted
value. For a number of practical applications, notably in
avalanche zoning when one is interested in determining
rare and extreme events from a limited number of observed
past events [Ancey et al., 2003], this result is of prime
importance.
[42] It is, however, unclear if the Coulomb model really

describes the physical behavior of avalanches. A number of
physical systems exhibit behavior interpreted as frictional
behavior at themacroscopic scale, whereas at themicroscopic
scale the real behavior is much more complicated. A typical
example is given by the motion of a bead rolling down a
bumpy line: Some experimental investigations have shown
that the bulk frictional force can be expressed in the form F =
mmg cos q + Au2, where A is a constant. The first term is
usually interpreted as a bulk frictional contribution, but a
detailed microstructural analysis has demonstrated that this
term mainly reflects the collisional dissipation at the bead
scale and not a Coulomb frictional process [Ancey et al.,
1996b]. For snow avalanches, it is probable that a number of
events can be suitably categorized into a Coulomb frictional
regime since they behave as a sliding body. For other events
such as high-speed dry snow avalanches that occurred in the
Aulta path, it is more probable that the Coulombmodel offers
a conceptual rather than a physical way of describing
avalanche behavior. The available data are, however, insuf-
ficient to provide clear evidence on this point.

4.3. Comparison With Theoretical Models

[43] Other expressions of the bulk frictional force can be
found in the literature. For instance, Voellmy [1955] and
subsequent authors assumed that the frictional force could
be cast in the following form: F = mmg cos q + mgu2/(xh) for
avalanches down open slopes (i.e., an unconfined path),
where (m, x) are two friction coefficients. (For a recent
review on the Voellmy model, see Bartelt et al. [1999].)
Perla et al. [1980] proposed a slightly different expression:
F = mmg cos q + Du2. These models differ from the
Coulomb model in that they consider a square velocity

contribution, often interpreted as a turbulent term. This
additional term has important implications. First, with the
Coulomb model, an avalanche flowing down a constant
inclination path never reaches a steady state, whereas with a
Voellmy or Perla model the avalanche can reach a steady
regime. This property has been widely used in the past to fit
the coefficients of the Voellmy or Perla model. Second, since
Voellmy and Perla’s models are two-parameter models, they
should provide better descriptions of the velocity variations.
The friction coefficient values have been adjusted for each
event and are reported in Table 3. We have introduced the
parameter a, which is equal to x h/g in the Voellmy-like
model and m/D in the Perla model. Agreement with field
data is slightly better compared to the Coulomb model
(notably for the Arabba avalanche of 14 April 1998), but
on the whole, there is not much difference in the perfor-
mance of the two models. This is not surprising since a
square velocity contribution to the bulk frictional force was
not detected in the back analysis presented in section 3.
[44] Comparing the m values reported in Tables 2 and 3

shows that the values fitted using a Voellmy-like model can
be significantly lower than the values obtained using the
Coulomb model. For instance, for the Aulta avalanche of
10 February 1984 we found m = 0.45 for the Coulomb model
versus m = 0.22 for the Voellmy-like model; for the Aulta
avalanche of 8 February 1984 the difference is less significant
(0.3 versus 0.4). There is apparently no clear reason why the
value of m can differ so much depending on the chosen model
since here the turbulent contribution is of much smaller
magnitude than the Coulomb term and therefore should only
bring a first-order correction. Another surprising point is that
the m and x values found here are significantly different from
the values given in the Swiss guidelines, which tabulate the
frictional coefficient values depending on the path and snow
features for extreme avalanches [Salm et al., 1990]. Indeed,
taking h = O(1) m, one obtains x = ag/h  10a. Thus for the
events considered here we found that m lies within the range

Table 3. Adjustment of the m and a Valuesa

Path m Value a Value Comments

Inertial
Aulta (a) 0.30 2,500 good agreement
Aulta (b) 0.22 1,400 good agreement
Madergrond (a) 0.475 1,500 velocities underestimated

in the release phase
Madergrond (c) x0 must be translated

Coulombic Frictional
Arabba (b) 0.60 800 good agreement
Arabba (c) 0.68 700 fairly good agreement
Arabba (d) 0.61 800 fairly good agreement
Khibins (a) 0.34 1,100 good agreement
Khibins (b) 0.37 1,500 velocities underestimated

in the stopping phase
Khibins (c) 0.35 1,200 good agreement
Lautaret 0.43 500 acceptable agreement

Velocity-Dependent
Arabba (a) 0.63 1,200 good agreement
Slushman 0.44 500 good agreement
Madergrond (b) 0.60 500 good agreement
Fogas 0.70 3000 acceptable agreement

in the stopping phase
aHere a = m/D for the model of Perla et al. [1980] and a = xh/g for the

Voellmy [1955] model.
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0.22–0.7 and x is within the range 5,000–30,000 m s�2,
while in the Swiss guidelines, m lies within the range 0.155–
0.3 and x is within the range 400–1000 m s�2. In a previous
benchmark study on the use of Voellmy-like models to
compute the features of large avalanches, Barbolini et al.
[2000] also found differences between the values they fitted
and the tabulated values given by the Swiss guidelines. Even
though the events in the sample used here cannot be consid-
ered as extreme events, the significant difference between the
values found here and those provided elsewhere is sufficiently
troubling to question the wisdom of using a Voellmy-like
model to predetermine the run-out distance of extreme
events. Note that for the Perla model the only complete
investigation that we have found on the fitting of the m/D
parameter is the work by Lied and Bakkehøi [1980]: From a
sample of 136 paths in the United States and Norway they
arrived at the conclusion that the ratiom/Dmust lie within the
range Y/10-10Y, where Y is the elevation difference between
the top and the bottom points of the path. Here the fitted
values ofm/D belong to the range of possible values provided
by Lied and Bakkehøi, but this range is so wide that such an
agreement is not surprising.

5. Concluding Remarks

[45] Knowing the velocity variation and the path profile
makes it possible to infer the bulk frictional force
experienced by an avalanche during its course. Applying
this idea to 15 events in North America and Europe, we
have found that the bulk behavior of avalanches can be
classified into three groups. The bulk frictional force
varies substantially during the avalanche course: It comes
close to zero in the release phase, while it becomes the
prevailing term during the run-out phase. In the inertial
regime the avalanche accelerates vigorously and reaches
high velocities (in excess of 50 m s�1). In the Coulombic
frictional regime the frictional force is fairly constant: The
avalanche accelerates and then decelerates, without really
reaching a steady state. The velocity-dependent regime
lies between these two extreme regimes. The bulk fric-
tional force exhibits complicated dependencies on the
velocity (hysteric behavior), and no universal scaling in
the expression F / un has been found. The snow volume
involved in the avalanche and the snow type probably
influence the flow regime of the avalanche. The limited
number of documented avalanches provides only weak
trends. It has been found, for instance, that avalanches
mobilizing a large snow volume experience an inertial
regime in the early moments.
[46] A striking result is that the Coulomb model can be

used to describe the velocity variations for avalanches
experiencing not only the Coulombic frictional regime but
also the two other regimes. In the latter case the model
provides a very good description of the velocity decay in the
run-out phase but may underestimate the avalanche phase
during the release and/or flow phase(s).
[47] This result has very important implications in engi-

neering, notably in avalanche zoning: Knowing the run-out
distance makes it possible to deduce the velocity variations
of the avalanche, at least in the late phases. This result is
crucial when one is interested in deducing the features of
rare events from a time series of avalanche run-out distances

[e.g., see Ancey et al., 2003]. The important question of the
physical meaning of this result remains, however, unan-
swered due to the level of approximation of this paper. To
advance in this direction, it is essential to acquire more data,
including the front velocity and flow depth measurements
together, if possible, with velocity profiles across the depth
inside the avalanches.
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