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ABSTRACT. Investigating snow avalanches using a purely statistical approach raises
several issues. First, even in the heavily populated areas of the Alps, there are few data on
avalanche motion or extension. Second, most of the field data are related to the point of
furthest reach in the avalanche path (run-out distance or altitude). As data of this kind are
tightly dependent on the avalanche path profile, it is a priori not permissible to extrapolate
the cumulative distribution function fitted to these data without severe restrictions or
further assumptions. Using deterministic models is also problematic, as these are not
really physically basedmodels. For instance, they do not include all the phenomena occur-
ring in the avalanche movement, and the rheological behaviour of the snow is not known.
Consequently, it is not easy to predetermine extreme-event extensions. Here, in order to
overcome this problem, we propose to use a conceptual approach. First, using an ava-
lanche-dynamics numerical model, we fitted the model parameters (friction coefficients
and the volume of snow involved in the avalanches) to the field data. Then, using these
parameters as randomvariables, we adjusted appropriate statistical distributions.The last
steps involved simulating a large number of (fictitious) avalanches using the Monte Carlo
approach.Thus, the cumulative distribution function of the run-out distance can be com-
puted over a much broader range than was initially possible with the historical data. In
this paper, we develop the proposed method through a complete case study, comparing
two different models.

INTRODUCTION

This paper examines the use of a conceptual approach to
predetermining the run-out distance of rare avalanches
(i.e. those with a large period of return, basically 100 years
or more). Conceptual approaches are common in hydrol-
ogy, notably in the problems related to the predetermina-
tion of discharge in a given watershed from rainfall data.
To our knowledge, approaches of this kind have never been
fully attempted in the study of avalanche extension,
although they can provide a more robust alternative to the
statistical and deterministic (physical) approaches so far
used for determining the run-out distance (point of furthest
reach) of rare avalanches.

In the statistical approach, the basic ideas were ex-
pressed in the pioneering work of Lied and Bakkeh�i
(1980). These authors assumed a regional homogeneity in
avalanche behaviour for a given mountain range. This al-
lowed them to pool the data from various paths in a com-
mon database. Using regression techniques, they thus
obtained a relationship between the run-out distances and
various key variables of the path profile. This methodology
has been applied to different mountain ranges throughout
the world (see Bakkeh�i and others, 1983; McClung and
Lied, 1987; Fujisawa and others, 1993; Adjel, 1995) and ex-
tended to introduce the period of return as a new parameter
(McClung, 2000, 2001). In Alpine countries, where the ava-
lanche paths of the same mountain range most often exhibit

no similarity in their shape, the fundamental assumption of
avalanche homogeneity is questionable (Adjel,1995).

In the deterministic approach (for a review, see Harbitz,
1999; Ancey, 2001), avalanche features are deduced by solv-
ing the equations of motion (mass and momentum equa-
tions). Deterministic models (sliding-block and depth-
averaged models) introduce a friction law, reflecting the
interaction between the avalanche and the path. In most
models, the friction law includes two empirical frictional
parameters, which have been fitted from field observations
(Schaerer, 1975; Buser and Frutiger, 1980; Dent and Lang,
1980). The resulting values were proposed as default values
in engineering guidelines (Swiss guidelines on the so-called
Voellmy^Salm^Gubler method (Salm and others, 1990) or
the U. S. Geological Survey handbook (Mears, 1992)).
Though it aims primarily at providing a physical picture of
avalanche motion, the deterministic approach involves too
many ad hoc assumptions to be considered a true physical
approach. Indeed, a number of basic physical processes
(snow entrainment or release, turbulent suspension and
transformation into an airborne avalanche, etc.) occurring
in the avalanche course are either unknown or neglected in
the avalanche-dynamics models. Furthermore, very little is
known on the bulk rheological behaviour of snow, and
therefore, despite a number of attempts to find physical jus-
tifications for their expressions (see, e.g., Salm, 1993), the
friction laws used so far remain speculative and empirical.
In this respect, it is not surprising that, in a recent bench-
mark of avalanche-dynamics models (see Barbolini and
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others, 2000), a significant mismatch was found in the fric-
tional parameter values fitted from field data: this merely
means that these parameters do not represent the physical
properties of snow (such as snow viscosity), but, on the con-
trary, they reflect the interrelated influences of snow, path
profile and model assumptions on the computations. Such
a result is sufficiently disturbing to cast doubt on the use of
avalanche-dynamics models to paths where no field data are
available.

This diversity in the approaches is also encountered in
hydrological sciences. As a result of more extensive practice
and intense debates within a large and growing community,
the ideas in hydrology on modelling are probably more
precise: a clear distinction is made between statistical,
physical and conceptual models (see, e.g., Betson and
others, 1989; Beven, 1989; O’Connel and Todini, 1996; Bates
and Campbell, 2001; Van der Kwaak and Loague, 2001).
Most of the time, selecting one of these approaches depends
on the level of knowledge of basic physical processes
involved in the problem together with the number, quality
and type of available data. Both conceptual and physical
approaches represent the catchment response to a rainfall
event as the result of basic processes (infiltration, storage,
runoff, etc.) but in very different ways. In the physical
models, the elementary processes are assumed to be known
from scale-down experiments in the laboratory; the param-
eters introduced in the models represent physical properties
that can be measured accurately and independently. On the
other hand, in the conceptualmodels, the processes believed
to be dominant in the hydrological response of a basin are
idealized in the form of mathematical operators; the object-
ive is to mimic the natural processes and not to explain
them. In this case, the model parameters are purely empir-
ical functions or values, which must be calibrated using the
observable physical variables that are the object of the
prediction.

It is helpful to draw a parallel between the avalanche
run-out problem and the rainfall^runoff transformation.
In both cases, one has input and output variables, between
which one tries to find a causal/functional relationship using
a physical/conceptual model. A seemingly slight difference,
at first glance, does exist, however: for avalanches, the only
available output information is the run-out distance, which
has the drawback of being path-dependent, while in flood
hydrology the selected output variable is the flow discharge,
which is a truly physical variable, that is, independent of the
river section at which it is measured. This difference in the
type of output variable has substantial implications in de-
veloping the model since, in the latter case, it is mathemat-
ically permissible to extrapolate the probability distribution
to estimate flood discharges with a long period of return,
whereas, in the former case, such an extrapolation is not licit
without further information. This also leads to the model
parameters remaining constant for all flood events, whereas
for avalanches they should vary from one event to another.

The objective pursued in this paper is to provide a
proper method of extrapolating the probability distribution
of run-out distances observed in a given avalanche path.
Since the physical approach is questionable for the reasons
given above, we have developed a conceptual model. The
basic idea is to determine the dependency between the prob-
ability distributions of input and output variables for a given
path. Here, this is done numerically using Monte Carlo
simulations. As the input variable, we will use the starting

altitude and the snow volume involved in the avalanche.
An avalanche will be idealized as a sliding block andwewill
use a Coulomb-like model (a one-parameter model) and a
Voellmy-like model (a two-parameter model) as the math-
ematical operators for mimicking the main features of ava-
lanche motion. Unlike other works relying on Monte Carlo
simulations (e.g. Keylock and others, 1999; Barbolini and
Savi, 2001), the present method need not use questionable
assumptions (such as regionalization of data) to specify the
probability distributions of variables andparameters but, on
the contrary, uses only the observed field data to deduce
consistent probability distributions. It then introduces an
important constraint: extreme avalanches are expected to
have the same behaviour as observed events. If this does
not seem acceptable, the method should not be used.

METHODOLOGY

If we have a time series of field data including the run-out
distance xstop, it is quite easy to deduce its empirical prob-
ability distribution.The point is that usually the time series
cover a narrow period, typically a few decades. Therefore
the largest period of return that can be evaluated in this
way cannot exceed a few decades, while avalanche zoning
requires determining the run-out distance of long-return-
period avalanches, typically avalanches whose return
period equals or exceeds 100 years. Because the empirical
probability distribution P ðxstopÞ is not smooth and xstop de-
pends on the path profile, it is not permissible to directly ex-
trapolate P ðxstopÞ to determine the quantiles associated
with low probabilities. Here we develop a model that uses
available field data at best in order to properly extrapolate
P ðxstopÞ.

Figure1depicts the general framework used to reach our
objective. The basic idea is to assume that there is a single
functional relationship G between the run-out distance and
other field data.This means that we need to have distinctive
types of field data at our disposal to apply ourmethod.These
other field data include the snowfalls preceding the ava-
lanche, the starting-point elevation, the released volume of
snow, and so on. For the moment, we do not specify the type
and number of these data but merely refer to them generic-
ally as the input variables �. The functional relationship G
relates the run-out distancexstop of a given (fictitious or real)
event to the input variables �. Obviously there is not a one-
to-one universal function linking xstop to �: indeed, it is ex-
pected thatG also depends on the topographical features of
the path and on a set� of internal or structural parameters,
reflecting the diversity and variability of snow consistency
and avalanchemotion.We express this complex relationship
to take the following form: xstop ¼ Gð�j�; pathÞ. Here, in

Fig. 1. Conceptual diagram of the approach.
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order to take the path influence into account, we assume
that the functional G is a mathematical operator resulting
from the integration of a momentum equation along the
path profile y ¼ fðsÞ (see below); in the following, we will
use the short-cut notation: xstop ¼ Gð�j�Þ. If the input
variables � and/or the internal parameters � are random,
then the run-out distance is also a random variable. If we
are able to adjust the internal parameters � for the com-
puted run-out distances to match the observed run-out dis-
tance, then it is possible, using Monte Carlo simulations, to
create a large number of fictitious events coherent with the
observations. If the run-out distance sample is large enough,
we can fit an empirical probability distribution and then ac-
curately determine the quantile related to a low occurrence
probability (e.g. as low as 0.01or 0.005).

Contrary to the deterministic models, the conceptual
model gives results that, by definition, can be different from
the measured data.To this structural error it is necessary to
add the uncertainties of the data as well as of the internal
parameters. Taking this into account leads to the following
and more complete formulation of the model:
xstop ¼ Gð�j�;EÞ, where E is the uncertainty vector. The
variables are taken into account through their probability
distributions, within a more complete but large model. In
hydrology, a more simple theoretical model is generally
used, considering only an additive error ", leading to
xstop ¼ Gð�j�Þ þ ". However, in hydrology, internal par-
ameters of conceptual models are constant for each event,
which is not the case for avalanche models. Further research
is needed to determine whether the use of a simply additive
error is consistent in our field.Yet we already know that the
indirect linkage between the probability distributions of the
internal parameters and the distribution of xstop gives
results similar to the direct inversion method used in the
first step of the methodology below (Ancey and others,
2003). So, we will develop the entire methodology using this
direct method andwill not use the complicated error formu-
lation in this first attempt at the conceptual approach.

After outlining the general principles, we will explain
how the method can be applied in practice. The method
can be broken down into four steps:

The first step selects the input variables among all the
available field data and fits �. Usually the avalanche
database has various types of information available
(snowfall, volume, etc.), but not all the information can
be used. For instance, redundant data must be set aside.
Similarly, data whose time series is not complete or not
consistent with other time series cannot be retained as
input variables of the model. Next, the different values
of � are adjusted for each documented event. Different
strategies can be used to solve this inverse problem. In
hydrology, a current practice is to use Bayesian inference
to deduce pð�Þ from pð�Þ and pðxstopÞ, where pðXÞ is
the probability density function (PDF) of the random
variable X. Deterministic methods can be used equally
for this purpose (see, e.g., Ancey and others, 2003). Here
we directly compute� for each event and thenwe adjust
a probability distribution to the resulting sample of
values �. All these methods have a common impedi-
ment in that we have a single type of output variable,
whereas the dimension of � may be larger than unity.
In the case where � ¼ f�1 � � ��ng with n � 2, only one
parameter �i can be determined, provided that other

parameters �j with j 6¼ i are known; therefore, we have:
�i ¼ G�1 xstop;�j�j

� �
. In practice, using propagation

operators involving a large number of internal param-
eters leads to substantial complications.

In the second step, attention is paid to obtaining the
PDFs of the input variables pð�Þ and of the internal
parameters pð�Þ (if the latter has not been determined
in the first step). Since the data are available, this merely
means that we try to adjust usual probability distribu-
tions (Gumbel, Pearson, normal, etc.) from the selected
field data and the internal parameters.

In the third step, Monte Carlo simulations are per-
formed. For each fictitious event, random realizations
of� and� are generated from their respective probabil-
ity density function.

In the fourth step, the run-out distance is computed by
applying the propagation operator to these random vec-
tors and then it is stored. Avery large sample of xstop can
be obtained in this way. We then deduce the empirical
PDF of xstop. This function must approximately match
the empirical distribution adjusted from the recorded
distances but, since it results from amuch larger sample,
it extends over awider range of probabilities.This allows
us to accurately compute the quantile associated with a
low non-exceedance probability. For instance, the run-
out distance whose period of return is 500 years (corres-
ponding to a non-exceedance probability of 0.002) can
be determined by generating1000 years or more.

Propagation operator

In this paper, we examine a propagation operator involving
one or two internal parameters. Here an avalanche is ideal-
ized as a solid mass sliding along a curvilinear path and ex-
periencing a frictional force F , possibly depending on � and/
or u (� is the local slope, u is the local velocity). In a first
approximation, we assume that the structure of this fric-
tional force is identical whatever the path and the ava-
lanche; only its parameters can vary from one event to
another, but they remain constant during the entire course
of an avalanche. The general expression of the momentum
equation is written (m is the avalanche mass, t is time):

du

dt
¼ g sin �� F ð�; uÞ

m
: ð1Þ

As initial conditions, we use uðxstartÞ ¼ 0, where xstart is the
starting-point abscissa. The momentum equation is inte-
grated along the path profile y ¼ fðsÞ, where y denotes the
elevation and s the abscissa along a horizontal axis; x is a
curvilinear abscissa taken from an arbitrary origin on the
path profile: x ¼ R s

0 ð1þ f 02ð�ÞÞ1=2 d�. After integrating
the equation numerically, we look for the position of the
stopping point at which the avalanche velocity vanishes.
We refer to this point as the run-out point or distance xstop.
In Equation (1), two expressions of the frictional force have
been tested:

One-parameter expression (Coulomb-like model): the
force F assumed to be slope-dependent F ¼ �mg cos �,
where � ¼ f�g is the internal parameter.

Two-parameter expression (Voellmy-like model): the
force F is split into a slope-dependent term and a
velocity-dependent term: F ¼ �mg cos �þ �u2, where
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� ¼ f�; �g are the two internal parameters.The former
contribution makes it possible to control the avalanche
extent while the latter mainly influences the maximum
velocity that the avalanche can reach. Moreover, it has
often been recognized that the avalanche mass or
volume often influences the force: the larger volume V
is, the lower its bulk friction is. Thus, parameter � must
be a function of the avalanche volume. For convenience,
here we assume that this dependency can be written in
the following form: � ¼ g=ð�HÞ, where � is a friction
coefficient and H / ffiffiffiffi

V
p

is a typical length assumed to
give an estimate of the mean flow depth of the ava-
lanche. Using heuristic arguments presented in the
Appendix, we will use the following ad hoc relationship
betweenH and V : H ¼ 2:5þ 5� 10�3V 1=2.

APPLICATION

Selected avalanche path and data

For the case study, we have selected the Entreme' ne ava-
lanche path, which is situated on the left side of the Arve
river in the Chamonix valley, France.This choice was moti-
vated by two different considerations: first, avalanche activ-
ity is substantial and regular; thus we have a long time series
of avalanche data on this path (approximately 100 years);
second, the upper part of the profile is sufficiently smooth
and open for the avalanche dynamics to be simple and
similar for each event. In the lower part of the profile, there
is a sharp transition in the path slope since, at an elevation of
approximately 1000m, the path is very close to horizontal
(Fig. 2). This transition significantly affects avalanche
motion since several avalanches stopped in the transition
zone. In order to test the influence of the profile on the dis-
tribution of extreme run-out distances, we will also consider
a modified path profile, for which the slope discontinuity
was smoothed. Both profiles are depicted in Figure 2.

With the conceptual approach, the quality of the results
is largely dependent on the quality of the data; it is necessary
to have the best and the longest dataset possible, containing
exactly the variables that are needed by the model: in our
case, because we want to use theVoellmy model, it is neces-

sary to include the heights of the avalanche events, deduced
from the volume deposits, in order to restrict the sample size
to the period where the deposit volumes have been
estimated.

The avalanche database includes 59 events since 1905.
Not all of these events have been recorded; notably, the ava-
lanches stopping in the upper part of the site were not taken
into account. For the period 1905^70, the observed data
were the starting and stopping elevations and the deposit
volume; inTable 1, 30 events are presented but, for three of
them, no information on the deposit volume is available. In
Figure 2, we have reported the different starting and stop-
ping points of the 27 avalanche events for the period 1905^
70. Since 1971, the deposit volume has no longer been esti-
mated. For the recent period (1970^2002), 29 events have
been recorded and will not be used here.This is a pity since
we will use only half of the available events from the entire
recorded period, and it is obvious that large samples give
more accurate results. However, it does not seem possible to
easily generate the missing volume data of the recent period
in order to increase the size of samples. The Monte Carlo
simulation may provide a solution. Furthermore, the num-
ber of events in the period used is simlar to that in the short-
er recent period. There is seemingly a problem of
stationarity, which should be studied for an engineering ap-
plication, but this will not be dealt with in this methodo-
logical paper. Likewise, the influence of the sample size on
the result accuracy will not be studied.

Uncertainty on the run-out elevation varies with time.

Fig. 2. Slope profile of the Entreme' ne avalanche path.

Table 1. Avalanche data on the Entreme' ne path and � values

for the Coulomb-like model

Date Zstart Zstop Volume Coulomb-like model

�Coul values

m m m3

19 Mar.1905 2200 1050 3000 0.6167
14 Jan.1909 2100 1050 11520 0.6071
20 Jan.1910 1850 1010 478 800 0.5319
18 Nov.1910 1800 1100 67200 0.6167
8 Jan.1912 1800 1030 32400 0.5468
23 Jan.1913 1850 1060 24 000 0.5918
26^27 Mar.1914 2100 1020 72960 0.5751
19 Feb.1916 1950 1020 252000 0.5567
28 Mar.1919 1900 1040 82500 0.5727
24^25 Dec.1919 1850 1020 288 000 0.5427
9 Jan.1922 1900 1040 136 800 0.5727
2 Mar.1923 1850 1040 140 000 0.5661
23 Dec.1923 1900 1030 150 000 0.5610
27 Dec.1925 1850 1030 86 400 0.5542
14 Feb.1928 1750 1100 192500 0.6111
31Jan.1929 1950 1100 15750 0.6316
Apr.1935 1600 1100 18 000 0.5909
12 Jan.1938 1850 1100 37500 0.6220
30 Jan.1938 1750 1100
9 Mar.1939 1700 1050 7500 0.5568
2 Jan.1943 1700 1050
8 Dec.1944 1700 1030 144 000 0.5301
11^12 Jan.1947 1800 1100 105000 0.6167
9^10 Feb.1950 1800 1030 96 000 0.5468
20 Jan.1951 1850 1000 90 000 0.5218
28 Feb.1952 1850 1000 2700 0.5218
24 Feb.1957 1500 1150 48 000 0.5925
14 Mar.1958 1500 1000 48 000 0.4503
29 Mar.1962 1500 1100
3 Feb.1970 1700 1000 108 000 0.4957
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At the beginning of the 20th century, it probably exceeded
�100m, while nowadays it is expected to be much lower
(�25m). If we use distance rather than elevation to describe
avalanche run-out, then uncertainty on the stopping-point
position is amplified for the path parts where the slope is
low, typically here in the nearly horizontal part of the
profile. Uncertainty on the volumes is very large: on this
path, it has been estimated as high as 50% according to the
deposit dimension measurements.We must also add the un-
certainty due to the shape of the deposit. This large uncer-
tainty may have consequences for the methodology results.
A specific study could improve this point, but this present
study will investigate only the confidence limits which are
generated by the method itself.

In conclusion, the analysis of the available dataset is fun-
damental in the conceptual approach; consequently, im-
portant statistical questions arise, replacing the determin-
istic questions occurring in previous studies.

Procedurewith the Coulomb-likemodel and results

For the first step, we chose the input and output variables:
the starting and run-out distances xstart and xstop. By fitting
the model, we obtained the sample of friction parameters
(seeTable 1).

For the second step, we first fitted the sample of xstart

values. Since xstart is bounded, it is very convenient to use
the beta distribution as the probability distribution.
Figure 3 shows that the frequencies of the middle classes in
the experimental values are higher than the fitted distribu-
tion.The experimental histogram is very irregular (e.g. for
some classes, empirical frequency is zero).We fitted a Gum-
bel distribution to the � sample, as shown in Figure 4. The
Gumbel distribution was used in a first approximation;
other possibilities will be exploredbelow, such as the normal
distribution, which is included in Figure 4 and whose ad-
equacy seems better than the Gumbel distribution.

In the third step, we created large samples of xstart and �
values using a random-number generation routine. As the
experimental sample contains 27 events for 60 years, the
simulated sample for 1000 years should contain 450 events.
Figures 3 and 4 show the simulated values for xstart and �,

respectively; these samples are very close to the theoretical
distributions.

In the last step, we used these two samples to generate
450 fictitious avalanches.The run-out distance of each event
was stored. As shown in Figure 5, there is little difference
between the empirical probability distribution of the
simulated run-out distances computed using the Coulomb-
like model and the Voellmy-like model respectively (see
below). The simulated run-out distances match the field
data well, except for the last four identical points (run-out
distance at 2100m). At this critical point, the path profile is
nearly horizontal (river bed) and, as stated previously, un-
certainty on the stopping-point position is high. For an op-
erational study, it would be necessary to evaluate the
genuine run-out distances with an historical analysis. Fit-
ting the distributions will be more convenient for these four
experimental points. However, in the conceptual approach
all the experimental points are considered in the evaluation
of the fitness quality and not only the extreme points.Thus,
we conclude that on thewhole, themodel correctly describes
the past avalanche activity in the Entreme' ne path.

The 500 year run-out distance obtained is 2269m. This
result is unique since the model has only one parameter and
we used a single distribution for xstart and �. We will see
below what happens with different distributions.

Fig. 3. Statistical distribution of the avalanche starting dis-

tances.

Fig. 4. Probability distribution of the � values (Coulomb-like

model).

Fig. 5. Run-out distance statistical distributions obtained

with the Coulomb-like model and the Entreme' ne real profile.
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Procedure with theVoellmy-like model and results

In the first step, we computed the input and output variables
together with the friction coefficients. The Voellmy-like
model involves two input variables: the initial condition
xstart value and the avalanche depth H. We verified that
they are not correlated.The model has two internal param-
eters (�; �). Since we have only one output variable, the
value of one of them must be kept constant for the inverse
problem to be solved. In the following, we will use the nota-
tion ð�j�Þwhen it is considered that the parameter � is free
while the other parameter � is held constant for all the
events occurring in the path. Figure 6 provides the values
of the friction parameter � that were deduced from the field
datawhen the value of the other friction parameter � is held
constant for all events. A very similar figure (not reported
here) was obtained when computing the � values for a vary-
ing � parameter. In either case, the figure exhibits outliers
from the same events, whichwewill ignore later on. It is also
worth noting that:

the curve �ð�Þ is horizontal for low and large values of �.
This gives a first argument for reducing the range of �

values: � being fairly constant for the lowest and highest
� values, we can consider that � ranges from 500 to
10 000m s^2 without loss of generality. Other arguments
below can be used to narrow this range further.

the data scattering defines two event families (denoted
as the first and second group in Figure 6): for a given �,
there is no continuum in the � values, but, on the other
hand, two narrow ranges of possible values can be
observed. This clear separation in the fitted � values
has also been observed on other paths when theVoellmy
model is used (Ancey and others, 2003), and no convin-
cing explanation has been found. On the Entreme' ne
path, the separation of the � values corresponds to a sep-
aration of the stopping altitudes, below and above 1070^
1100ma.s.l.

In the second step, we first verified that the input vari-
ables were independent and necessary. Most authors who
used a sliding-block model (or, in fact, any avalanche-
dynamics model) did not consider the starting-point

Fig. 6. Computed � values with fixed �.

Fig. 7. Statistical distribution of the avalanche heights.

Fig. 8. One variable conditional probability distribution of ð�j�Þwith fixed � (Voellmy-like model).
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position as a reliable dynamics parameter since the initial
conditions would affect neither the steady-state solution
nor the run-out distance.We examined this point more clo-
sely: for all the experimental events, we computed the run-
out distances with several fixed values of �, the value of �
(fitted to the observed events) and a fixed xstart value. The
mean difference between the recorded and simulated run-
out distances was found to vary as a function of the � value.
For � values as high as 1000m s�2, the mean difference is
close to zero and, in this case, the starting-point position
need not be considered as an input parameter. However,
for � > 1000m s�2, this no longer holds. The mean differ-
ence increases substantially with � and can exceed 40m for
� > 5000m s�2. In short, surprisingly enough and contrary
to common belief, it is necessary to include the input vari-
able xstart in the computations since the run-out distance
may depend on xstart for sufficiently large values of �. Abeta
distribution was used to fit the xstart values. For the ava-
lanche depth H, a Gumbel distribution fits the data well
(to the naked eye), as shown in Figure 7.

Determining the statistical distributions on the ð�j�Þ
and ð�j�Þ samples turns out to be intricate since it is not per-
missible to use a one-peak distribution fitted to the data.The
simplest approximation involves taking the sum of the two
probability distributions fitted on each group. In this way,
we obtain the one-variable conditional distribution of each
parameter. In a previous investigation, we found that a
probability distribution made up of two beta distributions
fitted the ð�j�Þ values well (Meunier and others, 2001). How-
ever, since in the following we are also interested in deter-
mining the ð�j�Þ distribution, we find it simpler to fit a
statistical model resulting from superposing two normal
distributions on the ð�j�Þ and ðln �j�Þ values; here we use
ðln �j�Þ rather than ð�j�Þ because the range of possible �
values covers several orders of magnitude. As shown in Fig-
ure 6 for �, we have explored the entire range of possible
values for the two parameters, even though they may have
no physical meaning for the practitioner. Figure 8 shows the
cumulative distribution functions fitted to the ðln �j�Þ
values.These figures call for several remarks:

The existence of two event groups is fully conditionedby
the � value: for � < 0:4, the second group does not exist

because, in this case, the computed run-out distances
xstopð�j�Þ never match the field data.

For extreme � values (i.e. when � � 0:225 or � � 0:5),
agreement between empirical and computed frequen-
cies is poor: the empirical distribution is step-shaped
while the fitted distribution tends to smooth abrupt vari-
ations in the � value.

For these extreme � values, the fitted sum of two normal
distributions is no longer parallel to the others, which
implies that the curves intersect.This point is disturbing:
if we keep them, inconsistent values will be generated
whenwe apply theMonte Carlo method. Obviously this
undesirable behaviour originates from the fact that the
curve �ð�Þ flattens out when � � 10m s�2: in this case,
low variations in the � value induce large variations in
the � value.

This motivated us to reduce the � range by removing
values that provide the non-parallel curves in Figure 8.
Since we use a sum of two normal distributions, this also
means that we discard the � values as soon as both the mean
�� and the standard deviation �� of the ðln �j�Þ sample differ
significantly from a set of selected values. Translated into a
mathematical expression, this condition canbe expressed as
follows. If the condition:

F ð�Þ ¼ d��

d�
þ d��

d�

����

���� � k

is not fulfilled, in which k ¼ 20 for the first avalanche group
and k ¼ 55 for the second avalanche group, then the � value
must be put aside. Using this criterion, we found that �must
range from 0.23 to 0.46 for the first group while � must fall
within the range 0.43^0.55 for avalanches belonging to the
second group.The same exercise was done by inverting the
role of � and �. The same analysis as previously gives the
same conclusions and leads to a similar criterion (see Fig. 9):

Gð�Þ ¼ d��

d ln �
� 6

d��

d ln �

����

���� � k0;

where k0 ¼ 0:04 for the first group and k0 ¼ 0:025 for the
second. Note that here, because the derivatives of the mean
and the standard deviation do not have the same order of
magnitude, we multiply the derivative of the standard devi-
ation by 6 in order to give the same weight to the two de-
rivatives. In the end, we find that the � range is 900^
5000m s�2 for the first group of avalanches and 165^
2800m s�2 for the second group. The resulting ranges of
the friction parameters are shown inTable 2.

The third step is much easier: for each input variable, a
sample of 450 values was randomly generated from its ad-
justed empirical probability distribution (see Fig. 2 for
xstart and see Fig. 7 for H). Similarly, 450 values of the

Fig. 9. Determination of the reduced range of � for the

Voellmy-like model (the arrows indicate the limit of validity

of the criterion).

Table 2. Range of practical interest for the friction parameters

(Voellmy-like model)

Group of

avalanches

Practical range for � in order to

have � as a random variable

Practical field for � in order to
have � as a random variable

m s�2

First 0.23^0.46 900^5000
Second 0.43^0.55 165^2800
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internal parameters were created from the different condi-
tional distribution of ðln �j�Þ or ð�j�Þ.

In the fourth step, the run-out distances were computed
and stored. Figure 10 reports the statistical distributions of
the run-out distances obtained when using the ð�j�Þ
samples. Let us examine what happens when we consider
extreme events that could occur in the future or that could
have occurred in the distant past. A key point is that the
bundle of curves diverges for run-out distances in excess of
the critical point (2100m). Data scattering is pronounced
(200m for the 500 year return-period run-out distance)
when the entire range of � is considered. In contrast, when
we focused our attention on the limited range of � deter-
mined previously, we found that the range of 500 year run-
out distance is narrow: approximately 50m.

We proceeded similarly with the ð�j�Þ sample. The
results are reported in Figure 11. The range for 500 year
run-out distance was similar for the entire or limited ranges
of � (120m vs 90m). However, the mean values for the prac-
tical range were somewhat different: larger for the ð�j�Þ
simulations (2228m) than for the ð�j�Þ simulations
(2206m).Yet the difference was only 22m (seeTable 3).

To summarize, we conclude that:

(i) either the ð�j�Þ or the ð�j�Þ sample can be used;

(ii) the range of values for the fixed parameter is not com-
pletely free, and the choice of the variation range is im-
portant: it leads to an uncertainty of 50m for the ð�j�Þ
sample vs 90m for the ð�j�Þ sample.

If we now compare these results with the 500 year run-
out distance obtained with the Coulomb-like model
(2269m), we see that the difference is approximately 50m,
the Coulomb-like model providing a larger distance.

COMPLEMENTARYANALYSIS

Study of the modified profile with theVoellmy-like
model

The previous developments used the real profile whose final
part was horizontal. In the Chamonix valley path, profiles
of this kind are frequent, while in many other valleys in the
French Alps, the slope variation is gentler. In order to test
the conceptual approach in this case, we defined a modified
profile (see Fig. 2) and made the same calculations as with
the previous profile.The three first steps were the same, and
the fourth step differed only in the path profile used in the
propagation operator.

Only the results for the ð�j�Þ possibility are presented
(see Fig. 12). The 500 year run-out distances obtained using
the alternative possibility are reported inTable 3. Compar-
ing Figures 10 and 12 shows that the bundles of curves are
very similar below the key point of the horizontal terminal
part of the profile and clearly differ above this point
(2100m).The range of results for the 500 year return-period
run-out distances is very wide for the entire range of � values
(310m), but very narrow for the limited range (40m). This
means that it is very important to use the ranges of practical
values for the internal parameters rather than the entire
ranges.

Table 3 shows that, once again, the run-out distances
obtained using the ð�j�Þ values are larger than those
obtained when the ð�j�Þ values were used. The difference

Fig. 10. Run-out distance statistical distributions with the �
samples, different fixed values of � (in m s�2), and the real

profile (Voellmy-like model).

Fig. 11. Run-out distance statistical distributions with the �
samples (in m s�2), different fixed values of �, and the real
profile (Voellmy-like model).

Fig. 12. Run-out distance statistical distributions with the �
samples, different fixed values of � (in m s�2), and the mod-

ified profile (Voellmy-like model).
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(73m) is greater than for the flat profile (22m). The
Coulomb-like model gives a 500 year return-period run-
out distance of 2382m situated between the two evaluations
with theVoellmy-like model (2347 and 2420m).We can con-
sider that in the conceptual approach, the use of each model
is nearly equivalent when the Coulomb-like model is used
with a Gumbel distribution for the � values.

Study of the friction parameter distribution with
the Coulomb-like model

In the conceptual approach, the variability of all the input
variables and the friction parameter are reflected in the
Monte Carlo simulations by their statistical distributions.
Therefore, the choice of these distributions is of great im-
portance, especially for the variables or the parameters that
can reach large values (e.g. H or � in the Voellmy-like
model) or come close to zero (e.g., � in both models). This
problem will not be studied completely, but we will provide
a few indications in comparing the 500 year return periods
obtained with the Coulomb-like model when the Gumbel
and the normal distributions for the friction parameter �
are used. Figure 4 provides the non-exceeding probability
of � obtained using a normal distribution for � instead of a
Gumbel distribution. Although the two distributions pro-
vide similar results for the centre of the sample, they differ
significantly for the extreme values, especially for the lower
values of �. These differences entail substantial modifica-
tions (see Table 3): the results are much larger with the
normal distribution than with the Gumbel distribution
(115m for the real profile and 211m for themodified profile).
These differences are greater than those observed when
comparing the Coulomb-like andVoellmy-like models.

The role of the friction parameter distribution turns out
to be a strategic one in the conceptual approach. This
problem needs further investigation both on this path
profile and on other profiles for which a large number of
documented data are available.

How large should the simulated samples be?

In the preceding calculations we always retained the same
samples of 450 random numbers, which gave either the �
sample for the Coulomb-like model or the ð�j�Þ (or the
ð�j�Þ) samples for the Voellmy-like model. The results
obtained so far depend only on the model and the profile.
Figures 10^12 show that the curves vary quite irregularly,
implying that the confidence limits are large. In order to
estimate the computation accuracy (i.e. taking the random

uncertainty into account), the size of the simulation samples
required to yield a confident estimation of the 500 year run-
out distance is sought. To that end, we will exemplify the
method proposed for assessing the confidence interval by
considering a particular case: in the computation, we will
use theVoellmy-like model, the modified path profile (since
it was shown that it amplifies data scattering) and the con-
ditional probability of ð�j� ¼ 1024m s�2Þ. As stated earlier,
when � ¼ 1024m s�2, the influence of the starting position
is sufficiently weak to be ignored in the simulations.

We therefore performed ten Monte Carlo simulations.
For each of them, 450 events were simulated (as previously
but each time with different random-number samples).
Taken as a whole, these computations can be seen as either
the simulation of the avalanche activity over a 10 000 year
interval or the reproducibility test of the avalanche activity
over a 1000 year interval. As an example, the 500 year re-
turn period of the height H computed with the 1000 year
simulation is 7:5 � 1m.The run-out distance distributions
are reported in Figure 13. Data scattering is substantial for
individual samples and long periods of return. Similarly,
the distribution related to the 10 000 year interval is much
smoother than individual distributions and provides an
average trend around which the individual distributions
vary. In this respect, the10 000 year distribution canbe used
to determine a quantile accurately while the individual dis-
tributions provide an idea of the possible variations around
this value, that is, an estimate of the confidence limits. For
instance, if we consider the 500 year quantile of the run-out
distance, we infer from Figure 13 that the mean value is
2406m and the confidence interval is approximately 2280^
2650m.The outcome is not very different if we take a longer
interval of time (20 000 years): we obtain 2394m instead of
2406m; the absolute difference between the two predictions
is only 12m.

A practical rule emerges from this example: it is highly
recommended to compute the desired quantile from a very
large sample of simulations.Typically, if one is interested in
determining the 500 year return-period avalanche, one
should generate a sample corresponding to a continuous
period of 10 000 years (or more).

Summary

Table 3 sums up the results for the 500 year return-period
run-out distances.The following conclusions can be drawn:

The predicted run-out distances obtained with the Cou-
lomb-like model are larger with the normal distribution

Table 3. Comparison of the 500 year run-out distances obtained with the two models and for the two profiles

One-parameter model Two-parameter model

Values of 500 yearsXstop Differences between Mean values of 500 yearsXstop Differences between

(1) and (2) (a) and (b)
(1) Normal law (2) Gumbel law (a) � ¼ 0:23^0:46 (b) � ¼ 900^5000m s�2

1000 years simulation

Real profile 2384 2269 115 2206 2228 �22
Modified profile 2595 2382 213 2347 2420 �73

20 000 years simulation

Real profile 2360 2269 91 2205 2173 32
Modified profile 2547 2380 167 2320 2394 �74
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than with the Gumbel distribution. The difference
ranges from 100m with the real profile to 200m with
the modified profile.

The results givenby theVoellmy-like model are different
depending on the ð�j�Þ or the ð�j�Þ sample. The differ-
ence ranges from 20 to 70m, less than the difference
introduced by the choice of the friction parameter
distribution.

The results obtained with the two models are very
similar except when using the normal distribution for
the � values with the Coulomb-like model.

CONCLUSION

In this paper we have developed a method to compute the
run-out distances of long-return-period avalanches. Since
this variable depends on both the path profile and ava-
lanche dynamics, it is not licit to compute high-return-
period run-out distancesmerely by extrapolating an empiri-
cal distribution fitted on the observed values.

Here we have suggested using a conceptual avalanche-
dynamics model and a four-step methodology.The first step
involves choosing the input variables according to the avail-
able data and calculating the parameters of the avalanche-
dynamics model from the recorded historical events. The
second step involves adjusting the statistical distributions of
the input variables and of the model parameters. In the
third step, Monte Carlo simulations are performed by mak-
ing use of the previously determined statistical distributions.
In this way, in the fourth step, we can generate a series of
fictitious avalanches over a period of any duration. By tak-
ing a very long interval of time (typically 10 000 years), it is
possible to obtain an accurate estimate of the run-out dis-
tance of a very rare avalanche (500 year return period).This
four-step methodology has been exemplified here using an
avalanche path in the French Alps and two sliding-block
models: the Coulomb-like and theVoellmy-like model.

We have shown that this methodology canbe easily used
with the Coulomb-like model, which needs only one fric-
tional parameter. It is more complicated with theVoellmy-

like model based on two frictional parameters.We have also
demonstrated that the conceptual approach can be used
with benefit in the avalanche field to compute a high-
return-period event. An important result is that the statis-
tical distribution of the friction parameter plays a central
role in the final results. Its choice is crucial, and further in-
vestigations are needed to clarify this point. Furthermore,
no significant difference was found in the extrapolated
quantile xstop when comparing the Coulomb-like and
Voellmy-like models, when using the Gumbel law for the
Coulomb-like model. Since the normal distribution seems
to better fit the data for this model, it is necessary to study
this point more thoroughly.

Finally, it seems that this methodology can be very use-
ful for practical studies, but further research is required: ap-
plying it to many other paths and comparing the results
with similar studies using the deterministic approach and
studying the problem of the determination of the statistical
distribution of the friction parameters using many different
datasets. However, practitioners must be aware of just how
important the field dataset is: in the French context, a large
preliminary study would be required to assess the validity of
the data. Extrapolating the statistical distributions of the
internal parameters consistently with the data, the path
profile and the model results must also be investigated.
These two requirements may be difficult to meet, but this
work is well worth the effort, since this is how long-return-
period run-out distances can be determined scientifically
and consistently. At the very least, the comparison with the
results given by empirical methods will always be useful.
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APPENDIX

Themean flow depthH canbe estimated from the recorded
avalanche volumes using assumptions similar to the empiri-
cal arguments used for debris flows, whichwere roughly val-
idated by Russian experiments (Meunier,1991, p.208):

(i) For natural flows, a relationship exists between height
andwidth, for which a power-law function canbe used.
For water discharge, the exponent is zero for the rec-
tangular section, equal to 1 for the triangular section,
and less than 1 for convex sections. Here we assume
that the width of the avalanche flowW is a power func-
tion of the avalanche height: W / H 0:7. This argu-
ment is more doubtful for an open slope avalanche,
depending on the rheological behaviour of avalanche
snow.

(ii) Similarly, the length L of the avalanche flow is a power
function of the avalanche height, but with a lower ex-
ponent: L / H0:3. Thus, we obtain a crude relation-
ship between the avalanche volume and its height:
V / H2. This expression holds on average but not ne-
cessarily for every event.

(iii) We assume that the avalanche flow depth ranges from
2.5 to 8m.

(iv) The avalanche volume is assumed to be constant
during the avalanche run and deposition (snow en-
trainment and compaction are ignored).

Combining all these relationships and assumptions, we fi-
nally obtain the following result linking H and V :
H ¼ 2:5þ ð5� 10�3ÞV 1=2 .
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