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[1] A simple theoretical model, the Kulikovskiy–Sveshnikova–Beghin (KSB) model, is
outlined, describing the motion of a particle cloud moving down an incline. This model
includes both the entrainment of surrounding ambient fluid and the entrainment of
particles from the slope and is equally valid for Boussinesq and non-Boussinesq flows.
However, this model can predict physically impossible densities when there is significant
particle entrainment. Modifications to the model are proposed which eliminate this
problem by including the entrained snow volume. With the modified model, physically
realistic mean densities are predicted which have a significant impact on the Richardson
number–dependent ambient entrainment. The improvements are illustrated by comparing
analytical solutions to the original and the modified KSB equations for the case of a
particle cloud traveling on a slope of constant angle, with constant ambient fluid and
particle entrainment. Solving the modified model numerically, predictions are compared
with data from several large powder snow avalanches at the Swiss Vallée de la Sionne
avalanche test site. The modified KSB model appears to capture the dynamics of the
avalanche front well; however, problems remain with relating the theoretical geometry to a
real avalanche geometry. The success of this model in capturing the front dynamics
shows that with careful assumptions that reflect the physics, it is possible to describe
aspects of complex flows such as powder snow avalanches with simple models.
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1. Introduction

[2] Powder snow avalanches are a dramatic, naturally
occurring example of a flow driven by the density differ-
ence between a particle suspension and the surrounding
fluid. There are many further examples of particle driven
gravity currents not only in geophysics, for example pyro-
clastic ash flows from volcanoes and turbidity currents of
silt on the ocean floor, but also in industry. The presence of
particles, kept in suspension by turbulence in the interstitial
fluid, increases the mean density of the suspension com-
pared with the surrounding ambient fluid, providing a
driving force. In a powder snow avalanche, this driving
density difference is maintained by the entrainment of
particles from the snow cover which counteracts dilution
of the suspension through air entrainment.
[3] There are several aspects of powder snow avalanches

which require special consideration. In particular, the high
density difference between snow particles and the surround-

ing air means that, even for snow particle clouds with solid
concentrations of only a few percent by volume, the
Boussinesq approximation [Boussinesq, 1903] is not valid
and the cloud is in a non-Boussinesq regime. That is, the
inertia due to the density differences cannot be neglected
since the snow particles carry a significant proportion of the
suspension’s momentum (for 1% concentration by volume,
the particles carry 90% of the momentum).
[4] The Kulikovskiy–Sveshnikova–Beghin (KSB) model

is a simple theoretical model for themotion of a particle cloud
on an incline, incorporating entrainment of both ambient
fluid and particles. The Boussinesq approximation is not
made in the model’s derivation, making it applicable to non-
Boussinesq clouds such as powder snow avalanches. First
introduced in this form by Ancey [2004], the KSB model
originates from the work of Kulikovskiy and Sveshnikova
[1977] who obtained equations of mass, momentum, volume
and Lagrangian kinetic energy balances. Beghin [1979]
developed his work, neglecting energy considerations, by
introducing a slope angle dependence to supplement the
density ratio dependence of ambient entrainment assumed
by Kulikovskiy and Sveshnikova [1977].
[5] Ancey [2004] developed these theories further by

comparing Beghin’s slope-angle-dependent ambient
entrainment assumption to a growth rate governed by
overall Richardson number [Turner, 1973], consistent with
the entrainment assumption proposed for inclined plumes
by Ellison and Turner [1959]. The Richardson number is
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the ratio of the potential energy to the kinetic energy of a
parcel of fluid. At large Richardson numbers the restoring
effect of gravity across an interface dominates the inertial
effects and the interface is stable. Entrainment at the inter-
face increases with decreasing stability of the interface and
so we expect the entrainment rate to increase with decreasing
Richardson numbers. Both slope-angle-dependent and
Richardson number–dependent entrainment functions were
tested by Ancey [2004] with data from finite volume labo-
ratory releases on an incline with particle entrainment
(unpublished data obtained by Beghin, reproduced by Ancey,
Revol and Clément) and data from the 25th February 1999
avalanche at the Vallée de la Sionne avalanche test site
[Dufour et al., 2000]. For both cases (except for high
concentration laboratory releases), the Richardson number–
dependent entrainment function could reproduce the velocities
and volumes well compared with the slope-angle-dependent
entrainment function [Ancey, 2004]. A detailed overview of
the literature, discussing a range of modeling approaches, is
given by Ancey [2004].
[6] In some respects the simplicity of the KSB model

might be considered a step back from the more sophisticated
powder snow avalanche models that are currently being
developed [Sampl, 1993; Scheiwiller et al., 1987; Naaim
and Gurer, 1998]. However, even fully three-dimensional
models must make many assumptions and choices for
turbulence closures and mass, volume and momentum
exchanges within and between layers of the flow. These
submodels are mostly not well verified in the parameter
ranges appropriate for powder snow avalanches. The result
is that many additional parameters must be chosen. How-
ever, several of these models have been calibrated and
successfully applied to particular avalanche tracks.
[7] There are other, simpler models which vary subtly

from the KSB formulation. For example Beghin and Olagne
[1991] use thermal theory to find mass and momentum
equations for a two- or three-dimensional buoyant cloud.
This provides a similar framework to the KSB formulation,
though importantly Beghin and Olagne [1991] make the
assumption of no snow entrainment but include basal
friction. This restricts the models applicability to the latter
stages of the avalanche and contrasts with the KSB formu-
lation where the inertia of entrained snow provides a
retarding force much greater than the basal friction. Also
closely related to the KSB model is the Fukushima and
Parker [1990] formulation, which itself has been developed
further by Gauer [1995]. These models include the original
four equations, including energy considerations which
increase their practical use. In the present work we are
interested in a formulation where any assumptions can be
straightforwardly tested and can be applied to both labora-
tory and field data. In this way we can directly understand
the underlying physics.
[8] In section 5 of this paper, the KSB equations are

derived from two-phase continuum theory. With careful
assumptions, the KSB theory used throughout the paper is
provided, which requires no additional closure assumptions.
This derivation links the current work to future formulations
of the KSB model. The objectives of this paper are to show
what the KSB model can describe and predict; to develop
the model, removing some deficiencies of earlier formula-
tions; and to apply the model to further field data. To

achieve these objectives, general analytical solutions to
the KSB equations are found and evaluated for the case
of a particle cloud flowing down an incline of constant
slope angle, with constant particle and ambient fluid
entrainment. The equations are solved numerically for a
real avalanche track with varying slope angle, varying
particle entrainment and with ambient entrainment a func-
tion of the overall Richardson number. In this way the field
case presented by Ancey [2004] is reproduced and attention
is drawn to some of the model’s deficiencies; in particular,
the unphysically large predicted densities. It is shown that
by including the volume of entrained snow, physically
possible densities are predicted, significantly affecting
the Richardson number–dependent ambient entrainment.
Analytical solutions to the modified equations are found
and contrasted with the original analytical predictions.
[9] Predictions of the modified model are compared with

data from the Vallée de la Sionne avalanche test site,
operated by the Swiss Federal Institute of Snow and
Avalanche Research (SLF). This is a field site where large
powder snow avalanches can be artificially triggered with
explosives to flow past sensors mounted on a mast [Dufour
et al., 2000]. Video recordings of the avalanches, taken
from two or three different locations, have been analyzed
allowing the digital reconstruction of the avalanche surface
at chosen time frames [Gruber, 2004; Vallet et al., 2004;
Turnbull, 2006]. From these measurements, front velocity,
average flow height, and avalanche volume data at each
time frame can be found. One significant problem is that
powder snow avalanches are very sensitive to the amount of
entrained snow cover; a problem which is reflected in all
models, however complex. Without high-quality data on
entrained or entrainable snow cover the model cannot
predict how far a powder cloud can travel or typical flow
velocities.

2. KSB Equations

[10] The KSB model is an integral model for powder
snow avalanches that has conservation equations for
volume, mass and momentum. Here, the geometry of the
model is introduced and the equations are derived from the
arguments given by Ancey [2004]. The equations are more
rigorously derived from the underpinning continuum theory
in section 5.
[11] The powder cloud is modeled as a half ellipse in

longitudinal cross section with unit lateral width, i.e., the
model is two-dimensional (see Figure 1). The axes of the
ellipse are aligned with the slope, which is assumed to be
locally flat over scales the size of the avalanche. The aspect
ratio k = h/l, where h is the height and l the length, is
assumed to be a function of the slope angle q only. For a
semiellipse, the volume per unit width is V = p

4
hl. The cloud

of mean density r flows into ambient fluid (which is air in
the case of a powder snow avalanche) of density ra and
entrains a snow layer of density rs and depth hn. A
curvilinear coordinate system is used where s is the arc
length, that is the distance of the center of mass down the
slope. The arc length s is a function of the horizontal and
vertical coordinates x and y and increases down the slope.
Front velocity uf is related to the center-of-mass velocity u
by uf = u + 1

2
dl
dt
.
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[12] A volume equation is derived by assuming that the
volume of entrained snow mass is small compared with
the volume of entrained ambient air. From Turner [1973],
the height of an inclined plume varies with time

dh

dt
¼ uf Rið Þ;

where f (Ri) determines the air entrainment. For the
geometry in Figure 1 the height, h, is proportional to the

square root of the volume,
ffiffiffiffi
V

p
. Hence the volume growth is

determined by an air entrainment coefficient av and the
center-of-mass velocity u

dV

dt
¼ avu

ffiffiffiffi
V

p
; ð1Þ

where av = f (Ri)
ffiffiffiffiffiffiffiffi
p=k

p
for the given geometry. Since V has

units of surface, av is dimensionless.
[13] A simplified mass or buoyancy equation is found by

assuming that the settling velocity of the snow particles is
very much smaller than mean downslope velocity of the
cloud front. This is the case when the ratio of the terminal
velocity of the particles to the flow velocity vt/u is small.
This means that the model is not appropriate as the
avalanche decelerates and deposition becomes important.
To extend the model to this region, a turbulent kinetic
energy equation modeling the effects of turbulence on
particle sedimentation would be necessary, increasing the
complexity. If the mass of air in the cloud is ma and the
mass of snow in the cloud is ms, the total cloud mass, rV, is
the sum of the two, rV = ma + ms. The buoyancy of the
cloud is defined as

B ¼ r� rað ÞV; ð2Þ

which can be written in terms of the component masses of
snow and air

B ¼ ma þ ms � raV: ð3Þ

The total volume flux is the sum of the volume fluxes of air
into the cloud at the top surface, qa, and snow into the cloud
at the bottom surface, qs, which gives

dV

dt
¼ qs þ qa:

The mass fluxes of air and snow into the cloud are

dma

dt
¼ raqa and

dms

dt
¼ rsqs;

respectively, where ra and rs are the corresponding densities
of air and entrained snow. Differentiating equation (3) and
substituting from the above definitions we have

dB

dt
¼ rs � rað Þqs: ð4Þ

Snow entrainment into the powder cloud is assumed to be
characterized by the density rs and a depth hnwhich depends
on the cloud’s position on the slope (see Figure 1). This
assumption has been observed to be reasonable over most of
the track [Bozhinskiy and Losev, 1998] where the avalanche
usually slides on an interface between layers in the snowpack.
This erosion depth, hn, can be measured from photogram-
metry for avalanches or could be estimated from the snow
stratigraphy. For a cloud with front velocity uf, the volume
flux of snow entrained into the cloud is qs = uf hn. The
buoyancy equation follows from equation (4) to give

dB

dt
¼ rs � rað Þuf hn: ð5Þ

[14] The front velocity is a function of the center-of-mass
velocity, which can be found from the geometry shown in
Figure 1

uf ¼ u 1þ av

2
ffiffiffiffiffiffi
pk

p
� �

: ð6Þ

[15] A momentum equation is derived assuming that the
basal friction is small, which will be true at high Reynolds
numbers, but not in the decelerating, deposition phase of the
avalanche [Hogg and Woods, 2001]. (A typical Reynolds
number for a powder snow avalanche in the transition zone
with a height �20 m, front velocity �50 m s�1, and density
�10 kg m�3 has an order of magnitude 108, and the basal
friction can certainly be considered small). In real snow
avalanches, it has often been observed that beneath the
powder snow suspension there is a denser, fluidized layer of
snow which has nonnegligible basal drag [Issler, 1998]. The
KSB equations do not model the internal dynamics and can
either model just the suspension part of the avalanche, or
alternatively the dense fluidized layer can be considered part
of the powder cloud. If the latter is the case, then the dense
layer effectively introduces a phase lag in snow entrain-
ment, since the snow is first entrained into the dense layer
and later entrained from the dense layer into the powder
cloud.

Figure 1. Schematic of the KSB model. The semiellipses
represent the powder cloud at a time t (solid outline) and at a
time t + dt (dashed outline).
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[16] In addition, the direct pressure drag is assumed to be
small compared to the force necessary to accelerate the
entrained ambient air. The downslope component of gravi-
tational force is Bg sin q. It is assumed that the effect of
accelerating the ambient air close to the cloud can be
included by the added mass coefficient c [Batchelor,
1967] such that the effective inertial mass of the avalanche is

M ¼ Bþ 1þ cð ÞVra: ð7Þ

The added mass coefficient for an ellipse is derived in
Appendix A, where we show that c = k. Although the added
mass for a powder snow avalanche is small, it is important
for the laboratory experiments used to calibrate the
entrainment coefficients [Ancey, 2004] where the ambient
fluid is water and not air. The momentum equation follows

d

dt
Bþ 1þ cð ÞVra½ 	uf g ¼ Bg sin q: ð8Þ

2.1. Analytical Solutions

[17] Analytical solutions are given in the appendix of
Ancey [2004] in a different form. They are derived here
to provide a comparison with the solutions presented in
section 3.
[18] For the solution of equations (1), (5), and (8) each is

written in a nondimensional form by posing

~s; ~ra; ~uð Þ ¼ s

L
;
ra
rs

;
uffiffiffiffiffiffi
Lg

p
� �

; ð9Þ

where L is an arbitrary length scale, rs is the snow cover
density and g is the acceleration due to gravity. Changing
variables from t to s, d

d~t
= ~u d

d~s, the equations can be written in
terms of their spatial derivative. The nondimensional
volume equation is therefore

d~V

d~s
¼ av

ffiffiffiffi
~V

p
;

which can be written

2
d

d~s

ffiffiffiffi
~V

p
¼ av: ð10Þ

Under the condition that the entrainment parameter av is a
function of slope arc coordinate, ~s, only, equation (10) can
be integrated directly with a virtual origin ~s0V which
satisfies the initial condition, ~V (~s0V) = 0 giving

~V ¼ 1

4

Z ~s

~s0V

av ~s
0ð Þ d~s0

� �2
: ð11Þ

[19] The buoyancy equation (5) is similarly nondimen-
sionalized with respect to the length and density scales in
equation (9). With the variable h defined such that

h ¼ ~hn 1� ~rað Þ 1þ av

2
ffiffiffiffiffiffi
pk

p
� �

; ð12Þ

the buoyancy equation becomes

d~B

d~s
¼ h: ð13Þ

This is integrated assuming the effective entrained snow h is
a function of slope arc coordinate, ~s, only, to give

~B ¼
Z~s
~s0B

h ~s0ð Þ d~s0: ð14Þ

Here, the virtual buoyancy origin ~s0B satisfies the condition
~B(~s0B) = 0.
[20] Including the added mass of ambient air accelerated

around the avalanche, the nondimensional effective inertial
mass of the avalanche is

~M ¼ ~Bþ b~V ;

where b = (1 + c)~ra. Usually the momentum equation can
be converted to an energy equation and integrated. Given
the nondimensional kinetic energy ~E = 1

2
~M ~u2, its derivative

can be written

d~E

d~s
¼ ~B sin q� 1

2
~u2

d ~M

d~s
: ð15Þ

The first term on the right hand side is the driving
gravitational force which is counteracted by a term
dependent on the change in effective inertial mass. This
energy equation shows that as the particle cloud entrains
mass along its path, energy is transferred to this additional
mass, accelerating it but retarding the cloud. Energy is also

dissipated at a rate
1

2
~u2
d ~M

d~s
, since no basal or aerodynamic

drag is included in the model and energy lost in mixing the
entrained matter is the only dissipation mechanism.
[21] Equation (8) can be more simply integrated if, rather

than converting to an energy equation, the momentum
equation (8) is multiplied by ~M. Nondimensionalizing and
writing in terms of slope arc coordinate, ~s, gives

1

2

d

d~s
~M~u
� 	2¼ ~M ~B sin q; ð16Þ

where ~M ~u is the cloud momentum. Thus

~u ¼ 1

~M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Z~s
~s0u

~M ~s0ð Þ~B ~s0ð Þ sin q ~s0ð Þ½ 	 d~s0

vuuut ; ð17Þ

with the virtual origin ~s0u chosen such that ~u (~s0u) = 0. Note
that the above analytical solutions for volume (equation (11)),
buoyancy (equation (14)) and velocity (equation (17)) are
general; particle, ambient entrainment and the slope angle
can all be functions of slope arc coordinate ~s. Analytical
solutions will be more complicated to find if the particle
and ambient entrainment, h and av, are functions of the
dynamic variables.
[22] Cloud volume, density and velocity can be found

explicitly from the above solutions with the assumption of
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constant slope angle q, and constant particle and ambient
entrainment, h and av respectively. The volume solution is
simply integrated to give

~V ¼ av ~s� ~s0Vð Þ
2

� �2
: ð18Þ

Using this volume solution and given buoyancy and density
are related by ~B = (~r � ~ra) ~V , the powder cloud density
follows from equations (11) and (14)

~r ¼ ~ra þ
4h ~s� ~s0Bð Þ
a2
v ~s� ~s0Vð Þ2

: ð19Þ

[23] This density solution, equation (19), is shown in
Figure 2 for three different volumetric growth rates, av =
0.05, 0.1, and 0.5. The solutions in Figure 2 use initial and
ambient conditions appropriate for powder snow ava-
lanches. The dimensional virtual origins, s0V and s0B, and
also the dimensional snow entrainment h, follow directly
from their definitions, with choices of initial volume and
initial density and entrained snow depth, hn. Here we have
chosen initial values; V0 = 10 m2, r0 = 100 kg m�3, hn =
0.4 m, rs = 150 kg m�3, and k = 0.4, which are the correct
magnitude for a powder snow avalanche. The resulting
dimensional s0V, s0B, and h have been evaluated for each
av in Table 1.
[24] In the cases shown in Figure 2, the densities become

unphysically large, especially after short distances where the
powder cloud is small. For example, the maximum mean
density predicted is over 200 kg m�3, which is larger than
the density of the entrained snow cover.

[25] Substituting into equation (17) for the volume and
buoyancy, equations (11) and (14), respectively, gives the
powder cloud velocity as a function of slope arc position, ~s,
only. With the assumptions of constant slope angle, q and
entrainment parameters h and av, the general solution is
cumbersome. There is an arbitrary choice in the origin of
~s0u, and the solution is somewhat simpler if ~s0u is taken to
be 0. The nondimensional cloud velocity is then

~u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~sf ~sð Þ sin q

p
~M ~sð Þ

; ð20Þ

where the function f (~s) is

f ~sð Þ ¼ 1

8
a2
vb ~s� ~s0Vð Þ3þ 1

3
~s2 � ~s~s0V þ ~s20V

� ��
~s0V � 4~s0Bð Þ	

þ 2h
1

3
~s2 � ~s~s0B þ ~s20B

� �
:

[26] Since b = (1 + c)~ra and ~ra is the ambient density
scaled with the snow density, b = (1 + c)ra/rs. In the limit
where the snow cover is very much denser than the ambient
air, the ratio ra/rs is small and so b is also small. In this
high-density case, letting b ! 0, a relatively simple form of
the cloud velocity, ~ud, can be found

~ud ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6~s ~s2 � 3~s~s0B þ 3~s20B
� 	

sin q
q

3 ~s� ~s0Bð Þ : ð21Þ

Figure 2. Variation of powder cloud mean density, r, with
slope arc position, s, for three different volumetric growth
rates: solid line, av = 0.5; dashed line, av = 0.1; dotted line,
av = 0.05.

Table 1. Virtual Origins s0V, s0B, and the Snow Entrainment h
(Equation (12)) for Three Values of Air Entrainment Coefficient

av = 0.05, 0.1, 0.5a

av

0.05 0.1 0.5

h, kg m�2 60.8 62.1 72.7
s0V, m �126 �63.2 �12.6
s0B, m �0.162 �0.159 �0.135

aThe initial conditions are V0 = 10 m2, r0 = 100 kg m�3, hn = 0.4 m,
rs = 150 kg m�3, and k = 0.4; values are representative of powder snow
avalanches.

Figure 3. (top) Powder cloud velocities, u, as a function of
slope arc position, s, on a flat slope for constant entrainment
parameters given in Tables 1 and 2 (equation (20)): solid
line, av = 0.5; dashed line, av = 0.1; dotted line av = 0.05.
(bottom) Dotted lines, solution as above; dashed line, high-
density solution (equation (21)); the solid gray line, the
small s approximation (equation (22)); solid black lines,
asymptotic solution as s!1 for av = 0.1, u1 = 205 m s�1

and for av = 0.5, u1 = 44 m s�1 (equation (24)).
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This solution is representative of a dense avalanche where
the dominating process is particle entrainment. In this
regime, drag due to the acceleration of entrained matter is
much larger than basal friction. The general and high-
density solutions (equations (20) and (21), respectively) are
plotted in Figures 3 and 4 for various values of volumetric
growth rates, av = 0.05, 0.1, and 0.5. As for the cloud
densities in Figure 2, the initial and ambient conditions are
appropriate for powder snow avalanches, listed in Table 2
giving the virtual origins shown in Table 1. In addition, for
the semiellipse geometry shown in Figure 1, it can be shown
that the added mass coefficient is equal to the ellipse’s
aspect ratio, c = k (see Appendix A). Note that in Figure 3
there is a good coincidence of this high-density assumption
(dashed line) with the dotted line showing the full solution
with low air entrainment, av = 0.05. For the early part of the
avalanche in particular, where the density, and thus
Richardson number, is high, av = 0.05 is a typical value.
[27] All of the curves show the powder cloud accelerating

sharply initially. This corresponds to the approximate solu-
tion for small values of ~s, which from the expansion of
equation (20) is

~us ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h~s~s0B sin q

4h~s0B � ba2
v~s

2
0V

s
þ O ~s3=2

� �
: ð22Þ

This is perhaps more clearly written in terms of the initial
density ~r0 = ~r(0) when equation (22) can be rearranged to
give

~us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~s sin q 1� ~ra

~r0

� �
1þ c ~ra

~r0

� �
vuuut : ð23Þ

If the initial density r0 is very low, r0 ! ra and ~r0 �~ra
approaches 0. In this case the velocity ~us ! 0 since there is
no driving density difference. Conversely, if r0 � ra, then
the velocity ~u approaches a limiting value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~s sin q

p
.

[28] Over large distances the curve flattens and the cloud
approaches a steady velocity, to leading order, which can be
found from equation (20)

~u1 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h sin q
ba2

v

s
þ O

1

~s

� �
; as ~s ! 1: ð24Þ

This steady asymptotic velocity is independent of the initial
conditions and only varies with ambient and particle
entrainment and the slope angle.

2.2. Numerical Results

[29] The volume, mass andmomentumKSB equations ((1),
(5), and (8)) can be solved numerically for a real avalanche
track given a track profile of x and y, horizontal and vertical,
coordinates along the axis of the avalanche (Figure 1). Initial
conditions of the powder cloud volume, density and velocity,
and the height and density of the entrained snow cover must
be given.
[30] The equations were numerically solved in MATLAB

using the ode45, Runge-Kutta [Riley et al., 1997] solver.
There are several key differences between this approach and
the approach of Ancey [2004], for example in smoothing the
track profile points to provide the slope angle, q, as a
continuous function of track position, s. In the work by
Ancey [2004] the track profile points were interpolated and
fitted with Legendre Polynomials where here, smoothing
splines were fitted to the interpolated points, giving x(s) and
y(s). A further difference is that here a simpler formulation
for the entrained snow depth has been used. This was a
piecewise linear function, which had little effect on results
in comparison with smoother functions. In order to ensure
errors in calculating the slope angle do not accumulate,

Figure 4. Entrainment parameter av as a function of
Richardson number, Ri (equation (27)).

Table 2. KSB Initial and Ambient Conditionsa

Avalanche

Analytical 200 509 628 726

Date – 25 Feb 1999 7 Feb 2002 19 Jan 2004 17 Feb 2005
Erosion depth hn, m 0.4 1.0 0.1 0.1 0.1b

Snow cover density rs, kg m�3 150 200 195 200 200b

Slope angle q 30� – – – –
Added mass coefficient c 0.4 – – – –
Shape factor k 0.4 – – – –
Air density ra, kg m�3 1.04 1.04 1.04 1.04 1.04
Gravity g, m s�2 9.81 9.81 9.81 9.81 9.81
Initial volume, V0, m

2 10 100 100 100 100
Initial density r0 kg m�3 100 100 100 100 100
Initial velocity u0, m s�1 0 1 1 1 1

aErosion depths are given to the nearest 0.05 m. The air density is calculated from the 1976 standard atmosphere for an
altitude of 2000 m asl at a sea level temperature of 3�C, which gives a 2000 m asl temperature of �10�C.

bEstimated values.
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cosq, sinq and tanq were evaluated directly from the
smoothed track as dx

ds
, dy

ds
and dy

dx
respectively. This ensures

that
R s2
s1

cosq ds = x(s2) � x(s1), which is not the case if the
slope angle q is directly interpolated. In this way the
distances s, x and y are automatically self-consistent.
[31] Expressions for the growth rates as functions of

Richardson number and the aspect ratio k need to be
specified. These are taken from Ancey [2004] and listed here.
[32] The overall Richardson number [Turner, 1973] is

defined as

Ri ¼ r� rað Þgh cos q
rau2

; ð25Þ

where the powder cloud height, h, is found from the volume
per unit width, V, and aspect ratio, k. For the ellipse in
Figure 1

h ¼ 2

ffiffiffiffiffiffi
kV

p

r
: ð26Þ

[33] The volume growth rate av was found empirically as
a function of Richardson number in experiments by Ancey

[2004] (also from the analysis of unpublished data of
Beghin). The volume growth rate is fitted by a function

av ¼ e�lRi2 ; Ri � 1;
e�l=Ri; Ri > 1;

�
ð27Þ

where l = 1.6. The Beghin and Ancey experiments cover a
small range of Richardson numbers (0 ] Ri ] 1.5), so care
should be taken when applying this empirical function to
flows such as developing powder snow avalanches where
the Richardson number can be very much higher. For large
Ri, the coefficient av is very small so even if the relative
error is large, the error in the entrainment is small.
[34] A function for the aspect ratio, k, in terms of

the slope angle, q, in radians was found from the same
experiments

k ¼ g1 þ g2qð Þg3 ; ð28Þ

with g1 = 0.002155, g2 = 0.0732 and g3 = 0.3. As for the
analytical solutions, the added mass coefficient c is equated
with the ellipse aspect ratio, c = k (see Appendix A).
[35] Ancey [2004] estimated the entrained snow cover to

have a depth of 0.7 m and density 100 kg m�3. However
data from photogrammetry measurements shows that this is
in fact an underestimation. By subtracting the fracture mass
from the mass of deposited snow and dividing by the snow
cover density and the area the powder snow avalanche
flowed over, the depth can be found as hn = 1.0 m (to
the nearest 0.05 m) over the entire track. The density of the
snow cover was measured as rs = 200 kg m�3. Since the
KSB model is not applicable where basal friction is signif-
icant, we start the calculation where the density of the
fracture slab has halved so that rs = 100 kg m�3 and the
powder cloud has a volume of 100 m2 and velocity u0 =
1 m s�1. These initial conditions have relatively a minor
effect compared with the choice of entrained snow depth
and density.
[36] The results of the complete 1999 Vallée de la Sionne

avalanche 200 simulation are shown as solid lines in plots
of powder cloud volume, density and velocity in Figure 5.
Two further numerical calculations were made for the 1999
Vallée de la Sionne avalanche 200: The first, as for the
original calculation but with no entrained snow cover
(hn = 0); the second, with entrained snow cover as for the
original calculation, but with the track profile consisting of
only the first and last points, giving a flat slope of the same
average slope angle as the Vallée de la Sionne track. These
calculations are shown in Figure 5 as dotted and dashed lines
respectively. It is noticeable how little difference the track
smoothing makes, in particular to the powder cloud velocity
and density. The results for the flat slope are very close to
those for the spline-smoothed track profile. However, the
significant influence of the amount of entrained snow cover is
clear in the volume, density and velocity plots.
[37] The calculated velocities match reasonably well with

the data acquired from avalanche 200 by Gruber [2004].
Although no density data is available from this avalanche,
the KSB model predicts much higher densities than are
physically realistic or possible, as the analytical solutions
did. These unrealistic densities extend for larger distances

Figure 5. (top) Avalanche volume per unit width, V,
(middle) powder cloud density, r, and (bottom) avalanche
velocity, u, versus front displacement, s, for the 25th
February 1999 Vallée de la Sionne avalanche 200, with no
snow entrainment (dotted line), with snow entrainment but a
flat track (dashed line), and with snow entrainment and
spline-smoothed track (solid line).
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and are even greater than for the analytical solutions in
Figure 2. The main reason for the large densities is that the
volume of the entrained snow is not included in the volume
equation (1). Another reason why the model predicts such
large densities is that the initial conditions used are for a
relatively undeveloped powder snow avalanche. By using
initial conditions where the powder cloud is developed, the
problem might be avoided.

3. KSB Modified

[38] One problem with the KSB model as it stands is that
the predicted powder cloud densities are unphysically large.
Since the model uses a Richardson number–dependent
volumetric growth rate, the cloud growth rate is dependent
on the cloud density (equation (25)). With poor density
predictions, the volume predictions will also be incorrect.
At high densities, very little ambient air is entrained, so if the
model starts with high densities, it will remain with high
densities. The mass of snow entrained from the track is
included in the buoyancy equation (5), but its volume is not
included in the volume equation (1). This means that the
powder cloud densities can become much higher than the
density of ice.
[39] By including the volume of the entrained snow mass

in the volume equation the densities will be more robust. In
this way, realistic densities can be predicted, even when the
powder cloud is small. The volume of entrained snow (per
unit avalanche width) in a time dt can be calculated from
equation (5) as uf hn d t (this includes the volume of both
the ice grains and the air in the pores). So the volume
equation (1) becomes

dV

dt
¼ avu

ffiffiffiffi
V

p
þ uf hn: ð29Þ

[40] An analytical solution for the modified volume
(including the volume of entrained snow) can be found,
as for the original KSB equations (section 2.1). Nondimen-
sionalized, equation (29) becomes

d~V

d~s
¼ av

ffiffiffiffi
~V

p
þ d

� �
: ð30Þ

Here, d is the ratio between particle and ambient air
entrainment d = h/(1�~ra)av, with h/(1�~ra) the nondimen-
sional effective entrained snow depth, as defined in
equation (12). Stronger assumptions are now required to
find a simple solution compared with the original analysis in
section 2.1. It is necessary to assume d is independent of arc
coordinate ~s, though h and av are not necessarily
independent of ~s. With this assumption, equation (30) can
be integrated Z

d~V
0ffiffiffiffiffi

~V
0p
þ d

¼
Z

av ~s
0ð Þ d~s0:

If av and h are independent of ~s and for the initial condition
~V (~s0V) = 0 the equation is integrated to give

ffiffiffiffi
~V

p
� d ln

ffiffiffiffi
~V

p

d
þ 1

 !
¼ av

2
~s� ~s0Vð Þ: ð31Þ

If the entrainment of ambient fluid is much greater than the
entrainment of particles, av � h, d is small. Expanding
the left hand side and neglecting higher-order terms, the
original volume solution in equation (18) is recovered.
Conversely, if the entrainment of particles is very large
compared with the rate of ambient fluid entrainment, d is
large and the asymptotic expansion of the left hand side, to
first order, gives

~V ¼ h ~s� ~s0Vð Þ: ð32Þ

[41] The volume ~V from equation (31) can be written
explicitly as a function of slope arc coordinate ~s using
a Lambert W (Omega) function; the inverse function of
f (w) = wew.W�1(w) indicates the negative real branch of the
Lambert W function of w giving

~V ¼ d2 W�1 � exp � 1þ ~s� ~s0Vð Þav

2d

� �� �� �
þ 1

� �2
: ð33Þ

This analytical volume solution is shown in Figure 6 for the
initial and ambient conditions listed in Table 2. These
conditions give the virtual origins as for the previous
analytical solutions given in Table 1. From Figure 6 the
inclusion of the entrained snow volume has little effect on
the predicted powder cloud volume when av is sufficiently
large but has a significant effect at lower rates of air
entrainment.
[42] As in section 2.1 the solution to the modified volume

equation (33) and the buoyancy equation (14) can be
substituted to find the density variations as a function of
slope arc coordinate. The addition of the entrained snow
volume makes a significant difference to the powder cloud
density and increases the predicted powder cloud volumes.
Figure 7 shows the densities predicted by the modified
model in comparison with the original model for the initial
and ambient conditions in Tables 1 and 2. Although in both
models the powder cloud density tends to the density of air
after long distances, over distances typical for a powder

Figure 6. Modified KSB powder cloud volume per unit
width, V, (including entrained snow volume) versus slope
arc position, s, for constant snow and air entrainment
parameters (equation (33)): av = 0. (solid black line), av =
0.1 (dashed black line), av = 0.05 (dotted black line). The
gray lines show the same as the black lines but original
KSB, without including entrained snow volume.
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snow avalanche the density is significantly reduced by the
inclusion of the entrained snow volume.
[43] The velocity solution in equation (17) can be eval-

uated analytically, as in section 2.1, since the volume-
dependent part of the integral can be integrated by parts
(the volume solution in equation (33) is integrable twice).
This solution has not been shown here since it is unwieldy;
however, the velocity function has the same asymptotic
properties as the slope arc coordinate ~s becomes large where
the velocity tends to a steady value, equation (24). It can
also be shown that with large d (i.e., high particle entrain-
ment compared with ambient air entrainment) the predicted
velocities are significantly different. In the case of low
particle entrainment compared with ambient entrainment,
d is small and the velocity tends to the original velocity
solution, equation (20).

4. Field Studies

4.1. Vallée de la Sionne

[44] The numerical MATLAB routine introduced in
section 2.2 was modified to include the entrained snow
volume. Simulations have been rerun with the modified
KSB equations from section 3 for the Vallée de la Sionne
1999 avalanche 200, simulated by Ancey [2004] and in
section 2.2. The same air entrainment and aspect ratio
functions are used as in section 2.2, also the same initial
and ambient conditions, listed in Table 2 for avalanche 200.
[45] The simulations in section 2.2 showed that the track

smoothing made very little difference to the solutions. Here
for simplicity, the first and last points of the slope profile
have been used to provide a flat slope.
[46] Plots of the avalanche 200 powder cloud volume,

density, and front velocity calculated with the modified
KSB model are shown in Figure 8 in solid lines. The
dashed lines are the volume, density, and front velocity
predicted by the original KSB model, shown for compari-
son. Points show the front velocity video data from Gruber
[2004].
[47] The inclusion of the entrained snow volume makes a

significant difference to both the volume and density of the
avalanche. Estimating the expected volume of the avalanche

is difficult and no conclusion can be drawn from this data as
to whether the volume prediction is improved with the
modified KSB model. Mean powder cloud densities are
expected to be in the range 1 ] r ] 150 kg m�3 over most
of the track, which implies a significant improvement of
the modified KSB model compared with the original. The
predicted front velocities are also slightly lower with the
modified model, giving a very small improvement in the fit
with the data.
4.1.1. Avalanche 509
[48] Data from the 2003 Vallée de la Sionne avalanche

(509) have also been compared with the modified KSB
model. Snow entrainment from the track hn was low for
avalanche 509 compared with avalanche 200 in section 4.1.
By subtracting the fracture mass of snow from the deposited
mass, measured from a photogrammetric analysis, and
dividing by the entrained snow cover density and the area
(i.e. track length and powder snow avalanche width) over
which the avalanche ran, the depth of snow entrained across
the powder snow avalanche width can be estimated as
0.10 m (to the nearest 0.05 m) [Sovilla, 2004a]. In addition

Figure 8. (top) Powder cloud volume per unit width, V,
versus front displacement, s. (middle) Powder cloud density,
r, versus front displacement, s. (bottom) Avalanche front
velocity, uf, versus horizontal displacement, x, of the
25 February 1999 Vallée de la Sionne avalanche 200 with
a flat slope. KSB modified, solid line; KSB original, dotted
line; data points [Gruber, 2004], circles.

Figure 7. Modified KSB powder cloud density, r,
(including entrained snow volume) versus slope arc
position, s, for constant snow and air entrainment
parameters: av = 0.5 (solid black line), av = 0.1 (dashed
black line), and av = 0.05 (dotted black line). The gray lines
show the same as the black lines but original KSB, without
including entrained snow volume.
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the snow cover density was measured during the field test
and found to be 195 kg m�3. The initial conditions have
been kept the same as for avalanche 200 though, as stated
previously, the calculation is far more sensitive to the
entrainment coefficients along the track than to the initial
conditions. Both the initial conditions and entrained snow
depth are given in Table 2 for avalanche 509.
[49] The predicted powder cloud front velocity, height

and volume from the modified KSB model are compared in
Figure 9 with measurements from the videogrammetry
analysis discussed by Turnbull [2006] and Vallet et al.
[2004]. With the depth of entrained snow cover hn =
0.10 m, the predicted front velocities fit the data well.
The volume data has been divided by the average powder
snow avalanche width for comparison with the volume per
unit width predicted by the modified KSB model. However,
neither the magnitude nor the shape of the predicted powder
cloud volumes or heights matches the data. This effect is
discussed further in section 4.2.
4.1.2. Avalanche 628
[50] The depth of entrained snow cover has been mea-

sured, as described for avalanche 509, from the difference in
deposited mass and fracture mass measured from photo-

grammetry [Sovilla, 2004b]. With the depth of entrained
snow cover hn = 0.1 m and the initial conditions as for the
earlier field cases, shown in Table 2, the front velocities of
avalanche 628 are well reproduced with the modified KSB
model, see Figure 10. For this avalanche there is no flow
height data, but particularly for the first part of the track,
(s < 1000 m), the cloud heights are lower and slightly more
realistic than for avalanche 509. Since both avalanches had
the same erosion depths, this height difference is due only to
slightly different entrained snow densities and slope angle.
4.1.3. Avalanche 726
[51] Only limited data is available for the 2005 Vallée de la

Sionne avalanche 726. Importantly, there is no information
on the depth of entrained snow. Since this avalanche was of a
similar size to nos. 509 and 628, we will estimate the
entrained snow depth, 0.1 m for both earlier avalanches, to
be 0.1 m also for this avalanche and with a snow density of
200 kg m�3. The initial and ambient conditions for the
simulation are also kept the same and these are given in
Table 2.
[52] The volume per unit width data points in Figure 11 are

from the videogrammetry analysis discussed by Turnbull
[2006]. To take account of time delay between explosion and
avalanche release, and the time taken for the powder snow
avalanche to develop from the dense flow, the volume data
has been shifted by�15 s compared with the simulation. The
KSB model predicts the correct magnitude of volume over
the course of the avalanche but, as for avalanche 509, the
shape of the curve does not provide a convincing fit with data.

4.2. Discussion

[53] With the KSB model it is possible to achieve
simulations of powder snow avalanches that match well

Figure 9. Avalanche 509, powder cloud. (top) Front
velocity, uf, versus front displacement, s. (middle) Height,
h, versus horizontal displacement, x. (bottom) Volume per
unit width, V, versus horizontal displacement, x. Modified
KSB model, solid line; videogrammetry data, circles.

Figure 10. Avalanche 628. (top) Front velocity, uf, versus
horizontal displacement, x. Modified KSB model, solid line;
videogrammetry data, circles. (bottom) Powder cloud
height, h, versus front displacement, s, for modified KSB
prediction.
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with front velocity data. To provide the necessary informa-
tion for these simulations, measurements of the depth of
snow cover entrained into the avalanche were used. How-
ever, such information about the depth and density of
entrained snow cover is rare and for simulating previous
avalanches the snow entrainment can almost be treated as a
free parameter. For practical, predictive applications it
would be necessary to develop rules for estimating the
entrained snow depth in advance. An additional drawback
of integral models such as the KSB model, is that they do
not give density and velocity profiles that can be used when
calculating possible stagnation pressures.
[54] By including the volume of entrained snow in the

KSB volume equation (equation (29)) the powder avalanche
densities predicted by the model become far more realistic.
Dramatically reducing the densities over a large portion of
the track also reduces the Richardson number, allowing
increased mixing with the ambient air (equation (27)).
However, the model fails to predict correct flow heights
and volumes.
[55] The mismatch probably results from treating the

avalanche as an ellipse of fixed aspect ratio with constant
density and velocity within it. In a real avalanche, the
density decreases toward the tail and the tail may reach
back as far as the starting zone. The downslope velocity and
turbulent intensity will decrease similarly to the density. If
the model was extended to allow varying internal densities
and velocities parallel to the slope, these defects could
possibly be rectified.
[56] In reality some density stratification will also exist

perpendicular to the slope, because complete mixing within
the cloud will not be achieved. The stratification arises from
a combination of particle sedimentation and dilution on the
upper surface of the cloud. Introducing a density stratifica-
tion normal to the slope into the KSB model would change
the mixing at the powder cloud–ambient air interface and
may be able to better predict the flow heights. Another
possibility is to model the turbulent wake separately and to
account for fluxes of snow and air between the powder
cloud and the turbulent wake.
[57] The KSB model predicts most variables that are

dynamically important for a powder snow avalanche such
as flow velocity, height and density. One key feature that is
not modeled at all is the lateral extent of the avalanche.
Currently the model is two-dimensional and though it can

be an made into a three-dimensional ellipsoid [Beghin and
Olagne, 1991] the next section gives a general derivation of
the KSB equations which requires no geometry assumption.

5. Derivation

[58] A number of people are critical of simple integral
models such as the KSB model described in this paper.
Although they are less useful when the topography is
complex and has significant variation over scales smaller
than the avalanche, they have much wider validity than their
critics realize. In this section we show how they can be
rigorously derived from the underlying continuum theory.
These continuum equations cannot be solved numerically at
the appropriate Reynolds number and many closure
assumptions are necessary. An advantage of integral models
is that fewer assumptions are necessary and those made are
straightforward to test directly.
[59] In this section a two-phase mixture approach is

adopted where the subscript 1 is used for the snow and 2
is used for the air. ri is the density of each species and ui the
velocity. The model can be considered two- or three-
dimensional. The conservation of mass for each species is
then

@ri
@t

þr � riuið Þ ¼ 0; ð34Þ

and the conservation of momentum is

@riui
@t

þr � riuiuið Þ þ rsi ¼ Fi þ gri: ð35Þ

si is the stress in each species and Fi are the forces between
the species which sum to 0. We also require our system to
be incompressible. If the volume fraction of snow is f then
r1 = r1

0f and r2 = r2
0 (1�f), where ri

0 is the (constant)
density of species i at 100% volume fraction. The
incompressibility condition is then

r1
r01

þ r2
r02

¼ fþ 1� fð Þ ¼ 1: ð36Þ

Combined with the mass conservation equations this shows
that the volume weighted velocity is of course divergence
free, but the mass weighted velocity field is not.
[60] We integrate these equations over a volume V with

surface S that moves with velocity w(x). The mass of each
species Mi =

R
ri dV then satisfies

dMi

dt
¼
Z
S

ri w� uið Þ � dn: ð37Þ

For the momentum we use a combined equation and define
Mv =

R
(r1u1 + r2u2) dV, where M = M1 + M2. Summing 35

the interspecies forces Fi cancel and we get

dMv

dt
¼ Mgþ

Z
S

r1u1 w� u1ð Þ þ r2u2 w� u2ð Þ þ s1 þ s2½ 	 � dn:

ð38Þ

Figure 11. Volume per unit width, V versus time for
avalanche 726. Modified KSB model, solid line; video-
grammetry data points, circles.
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[61] Now we specify boundary conditions. On the lower
boundary (S1) only snow is entrained so r1 = r1

0 , and r2 = 0.
The upper boundary (S2) is taken to be the limit of the snow
so that r1 = 0 and r2 = r2

0 and w = u2. Then we get the snow
mass equation

dM1

dt
¼ r01

Z
S1

w � dn ¼ q1; ð39Þ

the air mass equation

dM2

dt
¼ r02

Z
S2

u1 � u2ð Þ � dn ¼ q2; ð40Þ

and also a volume equation

dV

dt
¼ q1

r01
þ q2

r02
; ð41Þ

which agrees with the integrated incompressibility con-
straint

V ¼ M1

r01
þM2

r02
: ð42Þ

The fluxes in the momentum equation on the lower surface
vanish since ui = 0 in the snowpack. On the upper surface
r1 and s1 vanish. Up until this point our system is exact,
but now we must make assumptions to proceed. First of all
we ignore all surface tractions, that is we assume that the
surfaces stresses can be represented by a pressure p =
s1 + s2. We further assume that this has three components.
A background constant p0, a hydrostatic component x � gr2
and an added mass component that will contribute �dðcVr0

2
vÞ

dt

after integration. This added mass contribution is also
assumed to account for the momentum flux of air on the
upper surface u2r2(u1 � u2) � dn. Next we restrict ourselves
to just considering the downslope component of the
momentum, Mv, and assume that the slope is flat over the
size of the avalanche. Then we get

dv M þ cVr02
� 	

dt
¼ M � Vr02
� 	

g sin q; ð43Þ

which can be written

dv Bþ 1þ cð ÞVr02
� �

dt
¼ Bg sin q; ð44Þ

where B = M � V r2
0 is the buoyancy. We can combine the

mass equation with the volume equation to regain our
original KSB formulation

dB

dt
¼ q1 1� r2

r02

� �
¼ q01: ð45Þ

[62] What this derivation shows is that the KSB model is
much more general than in its original formulation. This
approach also shows how it is straightforward to account for
gentle slope curvature and surface tractions. The difficult

assumptions relate to the flux of air and its momentum on
the upper boundary. Assuming that the entrained air has
zero momentum is a large assumption, but this error may be
partially canceled out by the assumption that the dynamic
pressure distribution integrates to zero over the surface,
which is certainly not true since flow separation will occur.
Thus the pressure behind the avalanche will be close to the
ambient pressure and the difference between this and the
high pressures on the front surface will give rise to form
drag. Another approach avoids these difficulties by inte-
grating to infinity as is common in plume theories. In this
approach the volume is defined by an integral Vv =

R
vdV,

thus it explicitly includes all the momentum of the air so
there is no added mass effect and no pressure forces on the
upper surface to consider. The drawback of this approach is
that it is then hard to say what volume V corresponds to and
how this should be compared with measurements and so a
time evolution equation for it must be posited rather than
derived. Thus the problems are all shifted on to choosing the
appropriate volume flux function. By explicitly including
separate velocity fields for the snow and air, sedimentation
on the upper and lower surface can also be included, which
is important in the initiation phase and the sedimentation
phase when the velocity decreases. The geometry assump-
tion in the KSB model affects the air entrainment function,
but also the relation between the front of the avalanche and
the evolution of the center of mass. This model could be
extended to include more details of the internal structure by
having equations for length, height and width instead of
volume, but this is beyond the scope of this paper, and is
best done in conjunction with laboratory experiments.

6. Conclusions

[63] In this work the Kulikovskiy–Sveshnikova–Beghin
(KSB) equations describing the motion of a particle cloud
on an incline have been introduced and extended. Analytical
solutions have been found for the case of constant entrain-
ment parameters and a constant slope angle. The equations
have also been solved for a large powder snow avalanche
measured at the Vallée de la Sionne test site. For both the
analytical solutions and the field case, the powder cloud
densities predicted by the KSB model were unrealistically
large. Since the volume growth rate is a function of
Richardson number, which itself is a function of the powder
cloud density, these unrealistic densities affect the ambient
mixing and thus the volume and front velocity predictions
of the model.
[64] Analytical solutions for modified KSB equations

have been found which include the volume of the entrained
snow in the volume equation. These modified solutions give
improved and physically realistic predictions of powder
cloud density. Improved powder cloud density and velocity
predictions are found for several field cases, however the
size and shape of the avalanche are still not well modeled.
[65] The KSB model provides a simple and reliable

method of predicting avalanche velocities. Solutions are
sensitive to the depth of entrained snow cover, but the
smoothness of the track has little effect. Particle deposition
is not modeled at all, making the model invalid in its
decelerating phase. However, with the inclusion of the
entrained snow volume, the modified equations can be
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applied to the early stages of a powder snow avalanche so
long as the dominating drag force arises from the acceler-
ation of entrained matter.
[66] Further work lies in extending the applicability of the

KSB model. This can be done by attempting to model
particle entrainment and deposition more rigorously. Meth-
ods could also be explored for making the model more
representational, in terms of shape, of what is observed in an
avalanche. For example, the turbulent wake and avalanche
head could be modeled separately. By deriving the KSB
equations from the underlying continuum theory, it is shown
how increasing degrees of complexity may be simply
incorporated into the KSB model; for example varying
geometries or the effects of stratification.

Appendix A: Flow Around an Ellipse

[67] The steady, inviscid, incompressible flow with
speed 1 around an ellipse of radius 1 in the flow direction
and k orthogonally is described by the complex potential

w ¼ � k 1þ kð Þ
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ k2 � 1

p ; ðA1Þ

where z = x + iy, f = Rew is the velocity potential and y =
Im y is the stream function. The surface of the ellipse is
described by

x ¼ cos q; y ¼ k sin q: ðA2Þ

The added mass can be defined as the mass of a body, Ma,
that would have the same kinetic energy as the fluid if it
moved with the velocity of the body. Thus

Ma ¼
Z
A

rfð Þ2 dA0; ðA3Þ

where the integral is over all space, A, outside the ellipse.
Since the integrand is nonsingular, strongly vanishes at
infinity and satisfies Laplace’s equation we can use Gauss’
theorem to get an integral over the circumference of the
ellipse, so

Ma ¼
Z

�f rfð Þ � n̂ ds ðA4Þ

¼
Z

�f x̂ � n̂ð Þ ds: ðA5Þ

Now on the ellipse f = Rew = Re � k eiq = �k cos q, so

Ma ¼
Z 2p

0

k cos q
k cos qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 cos2 qþ sin2 q
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 cos2 qþ sin2 q
p

dq

ðA6Þ

¼
Z 2p

0

k2 cos2 q dq ðA7Þ

¼ k2p: ðA8Þ
Since the area of the ellipse V = pk the added mass
coefficient is Ma/V = k.
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