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Abstract

In this paper, the flow dynamics of gravity currents on a horizontal plane is investigated from a theoretical point of view by seeking similarity
solutions. The current is generated by unleashing a varying volume of heavy fluid within an ambient fluid of much lower density. Unlike earlier
investigators, we assume that the ambient fluid exerts no significant resisting action on the current, and therefore the flow depth is expected to
drop to zero at the front in the absence of friction. In this context, the shallow-water equations are highly appropriate for computing the mean
velocity and flow depth of the current. The boundary condition imposed at the front leads to technical mathematical difficulties. Indeed, unlike in
the Boussinesq case, no regular solution to the shallow-water equations satisfies the downstream condition, but when the flow is supercritical at
the channel inlet, it is possible to construct a piecewise solution by patching a regular solution to an exceptional solution, which represents the
head behavior. To better understand this result and make sure that the result is physically relevant, we consider the Navier–Stokes equations within
the high-Reynolds-number limit. Approximate similarity solutions can be worked out, which support our earlier analysis on the shallow-water
equations. While the flow body is self-similar and weakly rotational, the head is not self-similar, but tends toward a self-similarity shape at long
times. It is characterized by a strong vorticity, a straight free surface, and a nonuniform velocity profile, which becomes flatter and flatter with
time.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Lubrication theory has been extensively used to model
industrial and natural flows such as coating films [49,64],
water waves [60], atmospheric flows [59], snow avalanches,
and debris flows [3,37]. Within this theory, the equations of
motion take the form of a set of hyperbolic partial differential
equations, which govern the spatial and temporal variations in
the flow depth and mean velocities. These governing equations
are usually derived by taking the flow depth average of the
local mass and momentum balance equations and by assuming
that the streamwise length scale outweighs the vertical scale.
Typical examples of governing equations derived within this
framework include the shallow-water equations [56], the
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nonlinear diffusion equation for creeping Newtonian and
non-Newtonian flows [5,34,41,48,50], and the Savage–Hutter
equations for fast-flowing granular materials [57].

A particularity of many free-surface flows is that they have
a front, where one would ideally like to impose a vanishing
flow depth. Fig. 1(a) shows a typical example of a gravity
current with a front. The existence of a front implies a number
of difficulties from the physical and mathematical points of
view, which have led to several paradoxes. For instance, for
lubrication films, taking into account surface tension in the
governing equations makes the stress distribution singular at the
front point; furthermore, the no-slip condition imposed along
solid boundaries conflicts with the need for the fluid edge to
advance. To avoid these issues, a more refined description of
the physical processes involved in the contact-line problem may
be needed, but has the disadvantage of significantly increasing
the level of complexity. Instead, computational tricks are often
preferred. A classic method is to assume that the plane along

http://www.elsevier.com/locate/physd
mailto:christophe.ancey@epfl.ch
http://dx.doi.org/10.1016/j.physd.2006.11.002


C. Ancey et al. / Physica D 226 (2007) 32–54 33
Fig. 1. (a) Front of a gravity current produced by unleashing a brine solution
in a water tank. (b) Idealization of a gravity current. Point A lies within the
current of heavy fluid, while point B is located along the streamline formed
by the interface between the current and the surrounding fluid, in the close
neighborhood of A.

which the fluid spreads out is pre-wetted by a thin layer of
fluid so that the flow depth drops not to zero at the front, but
to a small value ε. Yet even with this change in the boundary
condition at the front, there are severe technical mathematical
difficulties that arise when ε → 0 and make the solution
nonphysical [61].

Another example is provided by gravity currents such as
the one shown in Fig. 1(a). A gravity current is produced by
releasing fluid within an ambient fluid of lower density ρa . At
sufficiently high Reynolds numbers, the viscous dissipation is
negligible and the current dynamics is controlled by the balance
between buoyancy and inertia. For this case, van Kármán [62]
and Benjamin [7] showed that a steady current of uniform flow
depth h is preceded by a leading edge, the velocity of which is
constant and given by

u√
g′h

= Fr, (1)

where Fr is the Froude number, g′
= 1ρ/ρa is the

reduced gravity, and 1ρ is the density contrast between the
current and the ambient fluid. This condition was derived by
van Kármán [62] by considering an inviscid gravity current
moving at constant velocity in a stagnant, infinitely deep
medium of density ρa [see Fig. 1(b)]: in a coordinate system
moving at the same velocity as the head, the surrounding fluid
arrives from the right at velocity −u. Van Kármán applied
the Bernoulli equation to a streamline OB and an equilibrium
condition at point A. Note that the streamline and the interface
coincide in a steady state. Both conditions can also be applied to
the stagnation point O, where the velocity vanishes. We refer to
PA, PB, and PO as the dynamic pressures at point A, B, and O,
respectively. Van Kármán obtained the relations PB +ρau2/2+

ρagh = PO and PA + ρgh = PO. Then, using the pressure
equilibrium condition at the interface PA = PB, he derived
Eq. (1). His derivation was not without criticism [e.g., see
[39] for an overview], but the result was widely recognized as
valid.
Since the front velocity can also be defined as the time
derivative of the front position u = ẋ f , Eq. (1) is equivalent
to imposing a finite flow depth at the front, which adjusts to the
front velocity

h =
ẋ2

f

g′Fr2 . (2)

This result, primarily derived for steady uniform currents, was
then applied to all flow conditions by considering that Eq. (1)
provides the boundary condition at the front. There are still
avid debates on the relevance and physical meaning of a
Benjamin-like boundary condition (1), especially when it is
applied to time-dependent flows [39,44]. Eq. (1) means that to
a large extent, the current dynamics is controlled by the leading
edge whatever the flow regime [33,35]. With a Benjamin-like
relation as the downstream boundary condition, the shallow-
water equations exhibit a wide class of similarity solutions
[21,25,32,35,53]. There are, however, very few experimental
investigations that quantitatively checked the reliability of these
solutions [44,45]. A major source of difficulties stems from
the complexity of the flow in real gravity currents at high
Reynolds numbers. As shown in Fig. 1 in the case of a
laboratory experiment, the flow depth profile is irregular and
unsteady because of the intense mixing, density stratification,
and free-surface instabilities occurring within the leading edge.
By systematically comparing the theoretical and experimental
flow depth profiles, Marino et al. [44] concluded that for a
gravity current in a similarity phase, the Froude number in
Eq. (1) is not constant, but varies with the head Reynolds
number.

The objective of this paper is to examine the existence and
features of similarity solutions for gravity currents, which are
in the high-Reynolds-number limit and characterized by large
density differences with the ambient fluid. This flow regime is
often referred to as the non-Boussinesq regime and shallow-
water equations can be used to describe it. The previous
arguments supporting the idea of a finite flow depth at the
front no longer hold for a non-Boussinesq regime since the
resisting effect of the ambient fluid becomes negligible. A direct
consequence is that the downstream boundary condition is now
given by

h = 0. (3)

A number of natural and non-natural flows such as flash floods
induced by a dam break [14,28,52], snow avalanches [2],
and pyroclastic clouds [17] provide typical examples. In the
laboratory, non-Boussinesq currents are usually generated by
suddenly releasing a homogeneous fluid of low viscosity or
a suspension of particles in the air. Experiments of this kind
remain difficult to carry out and require very long flumes.
Surprisingly, numerical solutions are also extremely difficult
to compute because of the difficulties induced by the free
surface and front (e.g., front tracking, instabilities, contact line,
mass conversation with some numerical techniques) [16,18].
In this context, seeking analytical solutions is of paramount
importance both for gaining insight into the flow dynamics
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and for testing numerical models. Various solutions have
been worked out using different techniques: the method of
characteristics [14,52,66], the hodograph transformation [13,
20], and self-similar solutions [25,26]. Similarity solutions are
here of particular relevance in the present context since they
embody the inertia–buoyancy balance, which is anticipated
to be the driving mechanism in the flow dynamics when the
influence of the initial conditions becomes negligibly small.
Earlier investigations concentrated on the similarity solutions
for the Boussinesq regime. Gratton and Vigo [25] stated that
the non-Boussinesq boundary condition (3) is retrieved by
making the Froude number Fr tend to infinity in Eq. (2). In a
recent paper [4], however, we have shown that this asymptotic
limit poses severe mathematical difficulties since the only
regular self-similar solution to the shallow-water equation is
the trivial solution h = 0 for the entire domain of flow. An
exceptional solution may, however, be worked out on some
occasions.

In this paper, we further examine this issue by systematically
seeking similarity solutions to the shallow-water equations.
After briefly recalling the physical setting and related equations
of motion in Section 2 and the boundary value problem for
Boussinesq and non-Boussinesq currents in Section 3, we
address the specific problem of the existence of similarity
solutions in Section 4. In these sections, emphasis is given to
the understanding of the solution behavior; the mathematical
details are thus deferred to appendices. We shall see that
similarity solutions exist solely when the current is abundantly
supplied in fluid by a source and the fluid flows sufficiently fast
for the flow body to be in a supercritical regime (i.e., Froude
number in excess of unity). These existence conditions contrast
substantially with those obtained by Gratton and Vigo [25] for
the Boussinesq regime. In order to elucidate this point, we will
refine our analysis by working out similarity solutions to the
Navier–Stokes equations in the high-Reynolds-number limit.
Because of the curvature of the free surface, we shall consider
the body and the head separately. In Section 5, we shall see
that for the body of supercritical flows, similarity solutions
can be constructed, which are in fairly good agreement with
those obtained for the shallow-water equations. Unfortunately,
these similarity solutions are not valid within the leading edge
and this region is strongly resistant to similarity analysis.
Approximate analytical methods will be used in Section 6 to
derive the salient features. By expanding the velocity into a
time series, we will notably show that at long times, the leading
edge is characterized by a straight free surface and a significant
source of vorticity.

2. Physical setting and governing equations

2.1. Flow geometry

Let us consider a shallow layer of fluid flowing over a
rigid horizontal impermeable plane. The fluid is incompressible
and homogeneous (i.e., no density stratification); its density is
denoted by ρ. Its dynamic viscosity is denoted by µ. A two-
dimensional flow regime is assumed, namely any cross-stream
variation is neglected. The depth of the layer is given by h(x, t)
(see Fig. 2). The flow is generated by a source of fluid: at t = 0,
the sluice gate at the inlet is raised with a given aperture rate
h0(t), specified below. Ahead of the front, there is a dry bed.
The surrounding fluid (assumed to be air) is taken to be inviscid
and of low density, and therefore dynamically passive. Surface
tension is neglected.

2.2. Flow depth averaged equations

The local governing equations are given by the shallow-
water equations, the dimensionless form of which is [60,66]

∂h
∂t

+
∂hū
∂x

= 0,

∂hū
∂t

+
∂hu2

∂x
+ h

∂h
∂x

= 0,

where the bar refers to flow depth averaged values: ū(x, t) =

h−1 ∫ h
0 u(x, y)dy, where u(x, y, t) denotes the horizontal

velocity field. The dimensionless velocity, flow depth, distance,
and time were defined as ū = û/U∗, h = ĥ/H∗, x =

x̂/L∗, and t = t̂U∗/L∗, respectively. In these equations, the
hat refers to dimensional variables, whereas the star refers to
typical scales: H∗ and L∗ are the vertical and horizontal length
scales; U∗ =

√
gH∗ is the velocity scale. By introducing

the Boussinesq coefficient γ , we can relate the mean square
velocity to the square of the mean velocity: u2 = γ ū2. The
Boussinesq coefficient reflects the shear in the vertical profile
of the horizontal fluid velocity. When γ = 1, there is no shear
in the vertical profile of the streamwise velocity, whereas γ > 1
means that there is shear. Assuming that γ is a known free
parameter, we obtain a closed set of equations for h and ū:

∂h
∂t

+
∂hū
∂x

= 0, (4)

∂ ū
∂t

+ (2γ − 1)ū
∂ ū
∂x

+ ū2 ∂γ

∂x
= −

∂h
∂x

(
1 +

ū2

h
(γ − 1)

)
. (5)

When γ is set equal to unity in the momentum balance
equation (5), we retrieve the usual form of the shallow-water
equations [60]. When γ is constant and in excess of unity,
the convective acceleration term is weighted by the shape
factor 2γ − 1, while a Chézy-like term affects the pressure
gradient.

2.3. Boundary conditions

At the source x = 0, the boundary conditions are given by a
flux condition in the form

ūh = n Atn−1, (6)

with n a prescribed coefficient and A a constant, and a condition
on the sluice-gate aperture

h = h0(t) = βtm, (7)

where m =
2
3 (n − 1) and β is another constant. According to

Gratton and Vigo [25], n must lie within the range 0 ≤ n ≤ 4;
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Fig. 2. The configuration of the flow.

this condition on n is needed for the shallowness assumption
to be consistent. Note that the boundary condition (6)
is equivalent to imposing the volume growth rate at the source:
V =

∫ x f
0 h(x, t)dx = Atn , and a constant Froude number

Fr0 =
ū

√
h

= α, (8)

where α is a constant satisfying αβ3/2
= n A.

The other boundary conditions are prescribed at the front.
For a gravity current in a non-Boussinesq regime, the front
position x f is the point where the flow depth drops to zero:

h f (t) = h(x f , t) = 0. (9)

Moreover, the front velocity is

ū(x f ) = ẋ f , (10)

where the dot denotes the time derivative.

2.4. Jump conditions

The solutions to the system (4) and (5) may admit
discontinuities (called shock or hydraulic jumps in the
hydraulic literature). The flows either side of a discontinuity
are connected by jump conditions, which express conservation
of mass and momentum across the moving discontinuity.
Denoting the shock speed by s, we can write these jump
conditions associated with the conservative form of Eqs. (4) and
(5) as follows [66]:

[[hū]] = s[[h]], (11)

[[γ hū2
+ h2/2]] = s[[hū]], (12)

where the [[·]] denotes the difference upstream and downstream
of the shock.

3. Similarity solutions for gravity currents

3.1. Similarity variables and functions

To gain insight into the behavior of solutions to the shallow-
water equations, a classic approach is to seek similarity
solutions. Ritter [52] worked out a similarity solution for the
so-called dam-break problem, where an infinite volume of fluid
is suddenly released on a smooth horizontal plane. Grundy and
Rottman [27] showed that the shallow-water equations admit
stable similarity solutions and used the phase-plane formalism
to construct solutions that are more general than Ritter’s
solution. Gratton and Vigo [25] elaborated on this method to
take shock occurrence and upstream boundary conditions into
account. Following these authors, we impose

ū = δξ tδ−1V (ξ), (13)

h = δ2ξ2t2(δ−1)Z(ξ), (14)

with ξ = x/tδ the similarity variable. The rationale for these
expressions is outlined in Appendix A. The boundary condition
at the source (6) implies that the parameter δ is related to the
volume-growth-rate exponent n

δ =
2 + n

3
.

Note that for δ > 1, the front (ξ f = ξ f tδ) accelerates, whereas
it decelerates for δ < 1. The particular case δ = 1 corresponds
to a constant inflow and the corresponding solution is usually
referred to as the dam-break solution since it coincides with the
solution derived by Ritter [52].

We substitute the forms (13) and (14) into the governing
equations (4) and (5) to end up with a single first-order ordinary
differential equation

dZ
dV

=
F(V, Z)
G(V, Z)

, (15)

where F(V, Z) = −Z(2Zδ + V (−2V δγ + 4γ + 3δ − 3)− 2)
and G(V, Z) = Z(2 − (V + 2)δ) + V (V (2γ + ((V − 4)γ +

3)δ − 3)+ 1). The full derivation of this equation is recalled in
Appendix A.

3.2. Boussinesq regimes

The early papers were devoted to planar inviscid Boussinesq
gravity currents, i.e., currents for which the Reynolds number
is sufficiently high for the viscous dissipation to be negligible,
while the resistance action of the ambient fluid implies a
Benjamin-like condition

Z = Z f and V = 1, (16)

at the front (ξ = ξ f ) [25–27]. These conditions have been
derived from Eqs. (9) and (10), the only difference being that
now at the front, the flow depth is finite (Z = Z f > 0) and
the corresponding Froude number Fr f = V/

√
Z = 1/

√
Z f

remains constant.
In this case, Gratton and Vigo [25] demonstrated the

existence of similarity solutions for a wide range of Z f . For
Boussinesq gravity currents, the main issue lies in the proper
determination of the front depth [44]. The similarity solution
may admit discontinuities because near the source, the flow can
be either supercritical (Fr0 > 1) or subcritical (Fr0 < 1), while
close to the front, the flow is subcritical or transcritical.
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Fig. 3. Integral paths (solid lines) in the close neighborhood of the front point P.
The thick solid line represents the separatrix SAB of equation Z = 5/12+8(V −

5/3)/7+843(V −5/3)2/1372+6966(V −5/3)3/420 175+ O(V 3). The thick
dashed line represent the special solution Z = (9 − 8γ )V 2/4. Computations
made for n = 5/2 and γ = 1.05.

3.3. Non-Boussinesq regimes

The case of non-Boussinesq gravity currents has received far
less attention. When a current is in a non-Boussinesq regime
and at high Reynolds numbers, the density mismatch between
the current and the ambient fluid is so weak that the resisting
effect of the ambient fluid becomes negligible and one expects
the Benjamin-like condition (16) at the front to no longer hold
and to require replacing with

Z = 0 and V = 1, (17)

which is the equivalent of Eqs. (9) and (10) in terms of similar-
ity variables. In their analysis, Gratton and Vigo [25] stated that
the non-Boussinesq boundary condition (i.e., vanishing flow
depth at the front) can be retrieved from the Boussinesq case by
making the Froude number at the front tend to infinity. How-
ever, from a purely mathematical point of view, the boundary
value problem remains ill-posed since the only regular simi-
larity solution that vanishes at the front is the trivial solution
(i.e., flow depth zero everywhere).

To understand the situation, let us take a closer look at Fig. 3,
which shows a few integral paths in the phase plane V –Z in
the vicinity of the front. On this figure, point P (V = 1, Z =

0) represents the front. The integral paths were obtained by
numerically integrating Eq. (15) for various initial conditions.
They are represented by thin solid lines oriented with arrows
showing the direction of increasing ξ . No curve passes through
point P, except for the trivial solution Z = 0. Also on this figure,
we reported two thick (solid and dashed) lines, which represent
special solutions. These curves intersect at point Aγ , which is
a singular point (node); we will return to these special curves
later on.

More recently, Ruo and Chen [54] suggested that the
boundary condition at the front for non-Boussinesq currents is
a part of the problem to be solved, but they were able to derive
this condition solely for constant-inflow currents. Montgomery
and Moodie [47] modified the governing equations to transform
them into an initial value problem, but they did not provide
similarity solutions.

4. Existence of similarity solutions for non-Boussinesq
currents

We want to determine the solution to Eq. (15) for non-
Boussinesq currents, i.e., we consider that the boundary
conditions at the front are given by Eq. (17). The boundary
conditions at the source are given by Eq. (9) for the physical
variables. Translated to a form in terms of similarity variables,
these conditions imply that at the source, we have

Z ∝
β

δ2ξ2 and V ∝
α
√
β

δξ
when ξ → 0. (18)

These relations mean that in the phase plane, the source point
S lies at infinity on a parabola of equation Z = (V/α)2, while
the front point P is a fixed point of coordinates (1, 0). Solving
Eq. (15) with these boundary conditions boils down to finding
an integral path or a piecewise integral path (i.e., made up of
pieces borrowed from different paths), which links point S to
point P.

Here, we explain how to construct similarity solutions by
exploiting the topological features of the integral curves close
to the front point.

4.1. Topological features of the phase plane

Here we wish to plot and describe the integral paths, which
represent the solutions to Eq. (15) in the first quadrant (V ≥ 0,
Z ≥ 0). The topological features of these curves are dictated by
three elements: (i) the position and shape of the critical curves
F = 0 and G = 0, (ii) the position and nature of the singular
points, and (iii) the position of the separatrices and exceptional
solutions emanating from the singular points. We will review
these different features to better understand the behavior of the
solution curves in the close neighborhood of the front.

The equation F(V, Z) = 0 gives rise to two curves: the
V -axis (Z = 0) and a parabola called CF of equation

Z =
2γ δV 2

+ (−4γ − 3δ + 3)V + 2
2δ

,

which is called the nullcline. When an integral path crosses CF ,
its tangent at the point of intersection is horizontal. Similarly,
the equation G(V, Z) = 0 provides a rational function of V

Z =
V
(
γ δV 2

+ (−4δγ + 2γ + 3δ − 3)V + 1
)

(V + 2)δ − 2
,

which defines the curve called CG .
When an integral path crosses CG , its tangent at the point of

intersection is vertical. Fig. 4 reports the curves F = 0 and G =

0 for the particular case δ = 5/2 and γ = 1.05. We have also
reported a third critical curve C I , which is the locus of points
at which V ′(ξ) and Z ′(ξ) diverge; for simplicity, since this
curve is not indispensable to understanding the fundamental
features of the phase plane, we defer its analysis to Appendix B.
Still in Fig. 4, we have drawn two integral paths to show their
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Fig. 4. Position of the critical curves C I (dotted line), CG (dashed line), and
CF (bold line). Point P (front) is represented by a black rectangle. The singular
points Aγ , Bγ , Cγ , Dγ , and O are also represented (labeled dots). The two thin
solid lines represent integral paths. Computations are made for n = 5/2 and
γ = 1.05.

behavior when they cross the critical curves. Note that for
V > 1, the critical curves CF and CG are relatively close,
which implies that in this region of the phase plane, the integral
paths experience significant changes in their shape.

In the phase plane, the singular points are the points at
which G and F vanish simultaneously [6]. The equation
F = G = 0 yields five finite singular points referred to as
O (origin point), Aγ , Bγ , Cγ , and Dγ . Appendix B recalls
the fundamental properties of singular points. Fig. 5 reports
the five singular points for the particular cases δ = 3/2
(accelerating front, n = 5/2) and δ = 5/6 (decelerating
front, n = 1/2). Table 1 summarizes their properties. These
properties change significantly with δ. On the whole, we have to
separately consider the cases δ > 1 (accelerating front), δ < 1
(decelerating front), and δ = 1 (front at constant velocity).

With each singular point, we can associate two specific
curves called separatrices, which can be interpreted as special
or exceptional solutions to Eq. (15) and local symmetry axes
in the phase plane. Given the density of singular points in the
lower left corner of the first quadrant, the singular points can
share the same separatrices and this can be used as a convenient
way to label these curves. For instance, separatrix SAB is the
curve that relates the singular points Aγ and Bγ . In Fig. 5, the
separatrices are plotted as dashed curves. For δ > 1, separatrix
SAB is the asymptotic curve toward which all the curves passing
through the node Aγ tend when approaching this point; the sole
exception is the separatrix SAD (see Appendix B). Separatrix
SAB is also the only nontrivial integral path passing through the
saddle point Bγ [see Fig. 5(a)]. For δ < 1, the roles of Aγ
and Bγ are interchanged: SAB is the asymptotic curve for the
node Bγ , while it is an exceptional solution for the saddle point
Aγ [see Fig. 5(b)]. A similar interpretation can be made for
separatrices SBC and SCD and thus is not repeated here.

Once the critical curves, the singular points, and the
separatrices are established, we can outline the behavior of
solutions within the tip region. Numerically integrating Eq. (15)
with various boundary conditions makes it possible to plot a few
integral paths, which illustrate the rich behavior of solutions in
Fig. 5. Positions of the singular points Aγ , Bγ , Cγ , Dγ , and O (block dots)
and their separatrices (dashed lines). Thin solid lines represent integral paths.
The singular points are presented by labeled dots. Point P (front) is represented
by a black rectangle. Computations made for γ = 1.05 with (a) δ = 3/2 and
(b) δ = 5/6.

the immediate neighborhood of the front. Fig. 6 shows different
phase portraits corresponding to an accelerating front (δ = 3/2
or n = 5/2), a front at constant velocity (δ = 1 or n = 1), and a
decelerating front (δ = 5/6 or n = 1/2) for the particular case
γ = 1.05. For completeness, all the special curves, which have
been discussed earlier (i.e., critical curves and separatrices)
have also been plotted in the phase planes. The same exercise
is repeated in Fig. 7 when the Boussinesq coefficient drops
to unity. On the whole, there are small differences. The most
noticeable feature is the front point P becoming singular when
γ = 1: it coincides with either Bγ or Cγ .

4.2. Construction of physically admissible solutions for non-
Boussinesq regimes

When γ > 1, i.e., when there is shear in the vertical
direction of the horizontal velocity field, point P is a regular
point. Apart from the trivial solution Z = 0, no regular solution
or exceptional solution passes through it. As seen in Fig. 6 for
various δ values, a bundle of paths approach point P, but never
reach it. We conclude that there is no continuous similarity
solution to Eq. (15) when γ > 1.

When γ = 1, i.e., the velocity profile in the vertical is
uniform, point P is singular and coalesces with point B1 for
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Table 1
Positions and properties of the finite singular points of Eq. (15) in the first
quadrant of the phase plane

Singular points Coordinates Case Type

O (0, 0) Node

Aγ

(
2

4γ−3 ,
9−8γ
(4γ−3)2

)
0 < δ ≤ (4γ − 3)/3 Node

(4γ − 3)/3 < δ < 1 Saddle
1 ≤ δ Node

Bγ

(
K+

√
K 2−4γ δ+3
2γ δ , 0

)
0 < δ ≤ 1 Node

δ > 1 Saddle

Cγ

(
K−

√
K 2−4γ δ+3
2γ δ , 0

)
0 < δ < 1 Saddle

δ ≥ 1 Node

Dγ
(

2
3δ ,

9−8γ
9δ2

)
0 < δ < (4γ − 3)/3 Saddle

(4γ − 3)/3 ≤ δ ≤ 1 Node
δ > 1 Saddle

We introduced K = 4δγ − 2γ + 3δ − 3.

δ > 1 or C1 for δ < 1 (see Fig. 7); for δ = 1, the three
points P, B1, and C1 coincide. For both δ > 1 and δ < 1,
point P is a saddle and apart from the trivial solution Z = 0,
the only integral path arriving at P is the separatrix SAB for
δ > 1 [see Fig. 7(a)] or SCD for δ < 1 [see Fig. 7(c)]. This
means that for γ = 1, it is possible to find a solution to Eq. (15)
and this solution is necessarily an exceptional solution, which
cannot be obtained by direct numerical integration techniques
(see Appendix B).

For the separatrices to be full solutions to our boundary
value problem, they must also satisfy the boundary conditions
at the source (18). Dominant-balance analysis shows that when
Z and V tend together toward infinity, the regular integral
paths behave as Z ∝ V 2 and so the exceptional solution SAB
does too. This means that it is possible to find an α value
such that the curve SAB asymptotically patches onto a parabola
of equation Z = (V/α)2, which shows that it satisfies the
boundary conditions (18). In contrast, when Z tends toward
infinity while V comes close to zero, the integral paths behave
as Z ∝ V −1, which implies that the separatrix SCD cannot
satisfy the boundary conditions (18).

Using the properties of the phase plane, it is possible to
construct piecewise solutions. Indeed, whenever an integral
path reaches a node, we can take another integral path, which
means that every piece of integral path between nodes is
a potential local solution to our boundary value problem.
To illustrate this technique, let us start with the Ritter-
like solutions, which can be derived fully analytically (see
Appendix D).

The Ritter-like solutions are the solutions pertaining to
δ = n = 1 (constant-velocity front). As shown in Fig. 8, a
remarkable trait of the phase portrait is that the three critical
curves CF , CG , and C I , together with the two separatrices
SAB and SCD, coincide and form a parabola, the vertex of
which lies at the front point P. This means that any piece of
this curve may be a part of the solution sought since it is the
only nontrivial solution passing through P. Another noticeable
Fig. 6. Phase portraits for γ = 1.05, (a) δ = 3/2 (n = 5/2), (b) δ = 1 (n = 1),
and (c) δ = 5/6 (n = 1/2). For each figure, we took γ = 1.05. The solid line
CF (bold line) represents the locus of points where F = 0, while the curve
CG (dashed line) is given by the equation G(V, Z) = 0. The critical curve C I
(dotted line) is also plotted. The thin lines represent the integral paths, while
the thin dashed lines represent the separatrix of the singular points.

feature is the singular points B1 and C1 coinciding with P.
We have to distinguish flows with supercritical and subcritical
flow conditions at the source. In the former case (α > 1), the
solution curve is made up of two pieces in the phase plane.
Indeed, any integral path emanating from the source point S
goes toward the origin point O without passing through P, but
it intersects the parabola C I at point E (see Fig. 8). The path
E → P on C I is thus the second piece of the solution. See
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Fig. 7. Phase portraits for γ = 1, (a) δ = 3/2 (n = 5/2), (b) δ = 1 (n = 1),
and (c) δ = 5/6 (n = 1/2). The key is the same as for Fig. 6.

Appendix D for the mathematical proofs. In the latter case
(α < 1), we might be eager to use the same method to construct
a solution, but in that case, this solution is nonphysical. Indeed,
the integral path coming from the source S′ intersects C I at E′

(see Fig. 8) on the left of P; the path E′
→ P on C I points in

the direction of decreasing ξ , which is physically inconsistent.
For δ < 1, we systematically meet the same difficulty as

earlier with δ = 1 and α < 1. Indeed, the only integral path
reaching P is the separatrix SCD, as shown in Fig. 7(c). Since
any path on this separatrix pointing toward P is associated with
decreasing ξ , we cannot build physical solutions.

More interesting, for δ > 1 and supercritical flow conditions
at the source (α > 1), we can construct similarity solutions
Fig. 8. Phase portraits for δ = 1 (n = 1). The bold line represents the coalesced
curves C I , CG , CF , SAB, and SCD. The thin lines represent two pieces of
integral path between the source point and the point of intersection with C I ,
referred to as E (α > 1) and E′ (α < 1).

with discontinuities as follows. As earlier for δ = 1, we start
from the source point and follow an integral path. Since the
integral paths cross the critical curve C I , a shock occurs. In
the phase plane, the point where this shock occurs is called
point E. As shown in Fig. 9(a), from this point, we can draw
two shock curves corresponding to the shock conditions (11)
and (12) [see also Eqs. (A.7) and (A.8) and further comments
in Appendix A], but a single one is physical: the dashed line
pointing to the left is associated with an energy loss, as expected
in a hydraulic jump. This shock curve maps point E onto
another point on separatrix SAB, which is referred to as point
E′. Between E′ and P, the integral path follows the separatrix
SAB. This construction does not make sense when the flow
is subcritical at the source (α < 1) since no jump occurs.
Fig. 9(a) and (b) show the flow depth and velocity profiles as
a function of the similarity variable ξ for the particular case
n = 5/2 (δ = 3/2), α = 3, β = 1, and γ = 1 (dashed lines).

It is worth noting that for δ > 1 and α > 1, we may
also hypothesize that within the body, there is shear in the
vertical direction (i.e., γ > 1), whereas within the tip region,
the Boussinesq coefficient drops to unity since the hydraulic
jump leads to profoundly altering the velocity profile [4]. With
these assumptions, we can construct solutions where the flow
conditions are supercritical at the source and the velocity profile
is sheared. A typical example is reported in Fig. 9 (dashed line)
for the particular case γ = 77/72. As seen in this figure by
comparing the dashed and solid curves, small changes in γ lead
to noticeable changes in the flow depth and velocity profiles.

4.3. Summary

A thorough analysis of the phase portraits has shown that
unlike in the Boussinesq regime investigated by Grundy and
Rottman [26] and Gratton and Vigo [25], the shallow-water
equations for non-Boussinesq regimes do not systematically
admit similarity solutions. For these similarity solutions to
exist, the front point P must be a singular point of the phase
portrait. This condition is met solely when γ = 1 (at least in
the immediate vicinity of the front) and δ ≥ 1, that is, there
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Fig. 9. (a) Phase plane in the vicinity of A1: the specific curves C I (solid
line), CF (dashed line) together with the separatrix SAB (dotted line) are
reported. The singular point A1 is plotted together with the front point P. The
long dashed lines represent the shock curves given by Eqs. (A.7) and (A.8)
and emanating from point E. (b) Flow depth variation with ξ : the solid line
represents the solution obtained when γ = 1 throughout the flow, while the
dashed curve stands for the solution derived when γ = 77/72 within the body
and γ = 1 within the head. (c) Velocity variation with ξ : the same key as for
(b). Computations made for n = 5/2, α = 3, β = 1 (A = αβ3/2/n = 1.2).

must be no shear in the velocity profile within the tip region
and the total surge volume must increase vigorously with time:
V ∝ tn , with n = 3δ − 2 ≥ 1. Furthermore, the flow must
be supercritical at the source, which implies the existence of
discontinuities in the flow depth profiles (when δ > 1) or in the
Table 2
Summary of the solutions depending on the Froude number (α) at the source,
the Boussinesq coefficient γ , and the exponent δ

δ γ α ≥ 1 α < 1

δ > 1
γ = 1 Discontinuous solution (jump) No solution
γ > 1 Discontinuous solution (jump + change

in the velocity profile)
No solution

δ = 1
γ = 1 Continuous solution with discontinuous

gradient (Ritter-like solutions)
No solution

γ > 1 Discontinuous solution (jump + change
in the velocity profile)

No solution

δ < 1 γ ≥ 1 No solution No solution

depth-gradient profiles (when δ = 1). Table 2 summarizes the
conditions of existence depending on the values of α and β.

5. Body dynamics

To further investigate the behavior of non-Boussinesq
gravity currents, the next step is to consider the Navier–Stokes
equations and to rescale them to obtain simplified governing
equations. Essentially, two approximations help simplify the
problem. First, when working at high Reynolds numbers Re =

U∗ H∗/ν with ν the kinematic viscosity, the viscous effects
become negligible compared to inertia terms. Second, after
introducing the aspect ratio ε = H∗/L∗ and assuming that the
flow is shallow ε � 1, we can get rid of a number of terms in
the Navier–Stokes equations by keeping only the terms whose
order of magnitude is O(ε0) (see Appendix E). Obviously, such
an approximation no longer holds in the vicinity of the front
because of the curvature of the free surface (ε ∼ 1). This means
that we have to consider the body and the front separately.
In this section, we focus our attention on the body, while in
Section 6, we will tackle the front dynamics. Fig. 10 shows
the decomposition of the flow domain into two parts. We will
show that the body solution is valid between the source and a
point referred to as M(0 ≤ x ≤ xm), while the head solution is
valid for x ≤ xa . Patching the two solutions is difficult because
of significant changes in vorticity between the body (nearly
irrotational flow) and the head (rotational flow). Our patching
strategy is based on mass balance conservation arguments (see
Section 7.2).

5.1. Local governing equations in the high-Reynolds-number
limit

For the body of shallow flows in the high-Reynolds-number
limit, we end up with the same governing equations as were
obtained for inviscid shallow waves [10]:

∂u
∂x

+
∂v

∂y
= 0, (19)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
∂h
∂x
, (20)

where u(x, y, t) and v(x, y, t) denote the horizontal and
vertical components of the velocity field. These equations
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Fig. 10. Decomposition of the flow domain into a body and head. The dashed
box represents the integral volume used to compute the characteristics of the
nose.

are an approximation of the Euler equations when pressure
is hydrostatic, i.e., the vertical component of the momentum
balance equation (E.3) has been integrated to yield p = h − y.
These equations are usually referred to as the shallow-wave
equations.

The boundary conditions are the following:

at x = 0, hū = n Atn−1, h(0, t) = βtm and

Fr =
ū

√
h

= α,
(21)

at y = 0, v = 0, (22)
at y = h, v = Dh/Dt, (23)

with m = 2(n −1)/3, D/Dt = ∂t +u(x, h, t)∂x , and ū(x, t) =∫ h
0 u(x, y, t)dy. Following Blythe et al. [10], we will use the

change of variables below:

z =
y
h

and w =
Dz
Dt

=
1
h
(v − z(ht + uhx )), (24)

which makes it possible to simplify the formulation of the
boundary conditions and introduce the flow depth solely in the
governing equations. We finally obtain [10]

ht + uhx + h(ux + wz) = 0, (25)
ut + uux + wuz + hx = 0, (26)

with w = 0 at z = 0 and z = 1. This change of variables is
relevant only for the body since it would become singular for
the front point.

5.2. Similarity solutions

Similarity transformations of different kinds have been
proposed to gain insight into the behavior of the solutions
to Eqs. (25) and (26) [10,24,42,43,55], but none of these
transformations provide similarity forms that are consistent
with the treatment given in Section 4 for the shallow-water
equations.

The first idea that comes up to mind is to assume that
the velocity profiles must be self-similar, which allows us to
decouple the dependence on x and z, e.g., by posing u =

taU (ξ)A(z), v = tbW (ξ)B(z), h = tc H(ξ), and ξ = x/td .
Substituting these forms into the mass and momentum balance
equations (25) and (26) and taking the boundary conditions (21)
into account leads to: a = δ − 1, b = −1, c = 2(δ − 1),
d = δ. By doing this, we also obtain a set of two equations
for U , W , A, and B. Solving these equations leads to finding
that U (z) = 1 and B(z) = z, which is nothing but the velocity
profile that was assumed in the derivation of the shallow-water
equations when the Boussinesq coefficient was set to unity. In
short, with these similarity forms, we will learn nothing more
than we already know.

This prompts us to seek more complex similarity forms,
but still keeping in mind that they must be consistent with
the similarity forms (13) and (14) used for the shallow-water
equations. Taking a closer look at the phase portrait drawn
for the shallow-water equations provides interesting hints. In
Section 4, dominant-balance analysis demonstrated that close
to the source, V ∝

√
Z ; numerical simulations showed that this

approximation held over a large part of the integral paths, but
broke in the immediate vicinity of the front. Since V ∝

√
Z is

equivalent to ū ∝
√

h, this impels us to impose

u(x, z, t) =

√
h(x, t)U (z), (27)

w(x, z, t) =
1

√
h(x, t)

∂h(x, t)
∂x

W (z), (28)

h(x, t) = t2(δ−1)H(ξ), (29)

ξ =
x
tδ
. (30)

Since the shallowness approximation breaks within the tip
region, we cannot use the governing equations (25) and (26)
to compute the flow features over the whole domain; the
similarity forms (27)–(30) hold only for the body. Note that
the structure of the similarity expression (28) was dictated by
the continuity equation (19). The structure of the horizontal
velocity expression (27) shows that u is a function of x and
t through its dependence on the flow depth h(x, t); this means
that on average, the fluid velocity adapts instantaneously to any
change in the flow depth.

Another implication is that integrating the continuity
equation (19) leads to

ht + c(h)hx = 0, (31)

or equivalently

ūt + c(h(ū))ūx = 0,

with c(h) = ū + hū′
= 3ū/2, where ū′ denotes the h derivative

of the mean velocity. This shows that the solution sought
belongs to the family of ‘simple’ kinematic waves (see [40] for
an introduction to simple kinematic waves).

We substitute the similarity forms (27)–(30) into the
governing equations (25) and (26) and obtain

4(δ − 1)H3/2
+

(
3U H + 2W ′ H − 2δξ

√
H
)

H ′
= 0,

2U H(δ − 1)+

(√
H(U 2

+ 2)− Uδξ + 2W
√

HU ′

)
H ′

= 0,
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which can be transformed into expressions that are easier to
interpret:

2(δ − 1)H +
1
2

√
H H ′(3U + 2W ′)− δξH ′

= 0, (32)

U 2
+ U

2H(δ − 1)− H ′δξ
√

H H ′
+ 2WU ′

+ 2 = 0. (33)

Since U and W are functions of z alone while H depends solely
on ξ , we derive the following conditions:

3U + 2W ′
= 2c1 and

2H(δ − 1)− H ′δξ
√

H H ′
= c2,

where c1 and c2 are two constants to be determined. Comparing
these conditions with Eq. (32) leads to c2 = −c1. Eliminating
W from Eq. (33) by differentiating this equation with respect
to z, we deduce that the function U satisfies the second-order
differential equation

U ′′(2 + U (U − c1))+ U ′2(U − c1) = 0, (34)

while the function W is a solution of

2W ′
= 2c1 − 3U, (35)

and the flow depth H satisfies

2(δ − 1)H + H ′(c1
√

H − δξ) = 0. (36)

5.3. Velocity profiles

Eq. (34) can be transformed into a linear second-order
differential equation by using an inverse transformation

(U − u1)(U − u2)
d2z
dU 2 + (c1 − U )

dz
dU

= 0,

where u1 = (c1 −

√
c2

1 − 8)/2 and u2 = (c1 +

√
c2

1 − 8)/2
are the two roots of U (c1 − U ) − 2 = 0. For the roots to be
real, the parameter c1 must satisfy c1 > 2

√
2. When c1 < 2

√
2,

a nonphysical behavior (i.e., negative streamwise velocity) is
obtained.

Using the change in variable σ = (U − u1)/(u2 − u1), one
obtains

σ(1 − σ)
d2z
dσ 2 + (σ − σ1)

dz
dσ

= 0,

with σ1 = 2(2−u2
1)

−1. The solution to this differential equation
can be expressed in terms of the incomplete Beta function [1]:

z =
Be(σ, 1 + σ1, 2 − σ1)

Be(1, 1 + σ1, 2 − σ1)
. (37)

We now determine the constant c1 (and hence u1, u2, and σ1) by
computing the flow depth averaged horizontal velocity ū. Using
the relation Be(p + 1, q) =

p
p+q Be(p, q) holding for any pair

of reals (p, q), we find∫ 1

0
U (z)dz = (u2 − u1)

1 + σ1

3
+ u1 =

2
3

c1,
Fig. 11. Velocity profiles: (a) horizontal velocity U ; (b) scaled vertical velocity
W (solid line) and physical vertical velocity V (dashed line). Computations
made in the particular case α = 3.

or equivalently

ū(x, t) =
2
3

c1
√

h(ξ).

The boundary condition (21) implies that c1 = 3α/2. The
condition for existence of real solutions is then that the Froude
number at the source satisfies

α >
4
3

√
2 ≈ 1.88. (38)

The function W (z) is directly derived from Eq. (33)

W = −
2 + U (U − 3α/2)

2U ′
.

Fig. 11 shows the velocity profiles U and W for α = 3
and n = 5/2. We can also plot the variations in the vertical
velocity. Indeed, using the change of variable (24) backwards
together with Eq. (25), we can express the dimensionless
vertical component of the velocity as

v(x, y, t) = h(w − zux − zwz) = h1/2(ξ)hx (ξ)V (z), (39)

with V (z) = W (z) − zU (z)/2 − zW ′(z). Note that the
streamwise component of the bottom velocity is low, but non-
zero: the slipping velocity is U (0) = u1. In Fig. 11, it is seen
that the streamwise component of the velocity has a profile
close to a parabolic shape. The vertical component of the
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velocity (v) is negative because of the curvature of the free
surface.

5.4. Flow depth profile

Similarly, we can derive the flow depth profile analytically.
By setting H = ξ2Ω2 in Eq. (36), we obtain a homogeneous
(i.e., separable) first-order differential equation

ξ
dΩ
dξ

= Ω
3αΩ − 2
3αΩ − 2δ

, (40)

which when integrated provides

ln(c3ξ) = ln
∣∣∣∣ (3αΩ − 2)δ−1

Ω δ

∣∣∣∣ , (41)

with c3 > 0 a constant of integration. When n > 1, this
equation can also be put in the implicit form

ξ = −
1
3

c1/(δ−1)
3 H s

+
3α
2

H1/2, (42)

with s = δ/(2δ − 2) = (2 + n)/(2n − 2) > 1/2 for n > 1.
For ξ = 0, this equation provides the constant of integration as
a function of the initial flow depth

c3 =
1

√
β

(
9α
2

)δ−1

.

Taking a closer look at the ξ variation with H [see Eq. (42)]
shows that the function ξ(H) is a bell-shaped curve, which
takes it maximum at a point M (see Fig. 12):

ξm =
3
2
α
√
β(δ − 1)δ−1δ−δ and Hm = β

(
δ − 1
δ

)2(δ−1)

.

(43)

It is easily seen from Eq. (42) that the flow depth vanishes
at ξ = 0 only. When n = 1 (δ = 1), Eq. (36) reduces to
H ′(c1

√
H − ξ) = 0, which provides two solutions: H = β or

H = (ξ/c1)
2. Since the latter does not satisfy the downstream

boundary condition, the solution is H = β, which is consistent
with what we can anticipate for a steady inflow.

6. Front dynamics

Close to the front, the shallowness approximation (ε � 1)
is no longer valid because of the significant increase in the
free-surface curvature. In order to compute the main features
of the front, we will first use an integral method similar to
the treatment proposed by Whitham [65] in his calculation
of the drag-resistance effect on the front propagation of a
wave induced by a dam break. Then we will examine the full
Euler equations to further characterize the front behavior and
determine its structure.

6.1. Bulk analysis of the head

The immediate vicinity of the front is a special region: the
wave velocity and the material velocity should coincide, which
Fig. 12. Variation of ξ(H): the solid line represents the physical branch, while
the dashed line represents the nonphysical branch. Computations made for
α = 3, δ = 3/2, and β = 1.

imposes that the material velocity is ẋa close to the front, where
the dot refers to the time derivative. In a first approximation,
we shall consider that, within the tip region, the velocity is
uniform and equal to the front velocity, which makes it possible
to derive the governing equations of the front by using an
integral representation of the mass and momentum balance
equations.

For this purpose, let us consider that the head is the flow
domain comprised between points A and B, as shown in Fig. 10:
point A of abscissa xa represents the actual front location. Point
B of abscissa xb corresponds to the junction between the head
and the body; for x ≤ xb, the similarity solution found earlier
holds (see Section 5). We are now writing up the governing
equations for the integral volume between xa and xb. Since the
upstream border of the integral volume moves at a velocity ẋb,
the mass flux through this moving boundary is

∫ hb
0 (ub − ẋb)dy;

the mass balance can then be expressed in a dimensionless form
as

dM
dt

=

∫ hb

0
(ub − ẋb)dy = hb(ūb − ẋb),

where M is the mass of fluid contained in the tip region between
xb and xa , hb is the flow depth at the junction point B, and ūb is
the flow depth averaged velocity at B. The integral momentum
balance equation can be expressed as

dP
dt

= hbūb(ūb − ẋb)+
1
2

h2
b,

where P is the bulk momentum. The first term on the right-hand
side represents the momentum flux across the moving boundary
at B, the second term is the pressure force exerted by the body
on the volume. In the momentum balance equation, we still
neglect viscous dissipation.

We are now transforming the momentum equation into a
governing equation for ẋa . To that end, we must express all
variables in terms of ẋa . Since the velocity within the tip is very
close to the wave velocity, we use the approximations

ūb = α
√

Hbt (2δ−2) ≈ ẋa and P ≈ Mẋa,
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with Hb = H(ξb). We then derive the expression of Hb as
a function of ẋa : Hb = t−(2δ−2)(ẋa/α)

2. Furthermore, from
Eq. (42), we have ξb = −c1/(δ−1)

3 H s
b /3 + 3αH1/2

b /2.
Integrating the mass balance equation leads to

M = Hb

(
α
√

Hb − δξb

) tn

n
, (44)

and we finally deduce

ẍa

((
1 −

3
2
δ

)
t

ẋa

n
+ δ

c1/(δ−1)
3

3n

(
ẋa

α

)2s
)

=
1
2

(
ẋa

α

)2

. (45)

Looking for a long-term asymptotic approximation, we impose
xa = At p. Injecting this ansatz in the governing equation (45),
we find p = δ and

ξa = A =
3−2n/3α

√
β

n + 2

 9(n + 2)(n − 1)α2

n
(

34+
5

n−1 (n − 1)α2 + 3
5n

n−1

)
 1−n

3

.

(46)

Using Eq. (42), we then deduce the abscissa of the transition
point B:

ξb =
3δ
2
ξa −

3
2
αβ−3/(2n−2)

(
δ

α
ξa

)2s

. (47)

Numerical solution shows that the asymptotic solution xa =

At p is a fairly good approximation of the solution at short and
long times.

Several comments can be made. The front position A has the
same asymptotic time dependence as the point M, as expected.
We also note that the actual front abscissa xa is not too far from
the position xm computed in Section 5.4. For instance, taking
n = 5/2 (i.e., δ = 3/2), α = 3, and β = 1 gives ξa ≈ 1.648,
ξb ≈ 1.190, and ξm/ξa = 1.05. Fig. 13 reports the variations
of the similarity variables ξa and ξm as functions of the Froude
number α in the particular case n = 5/2. The ratio ξm/ξa is
independent of the aperture β and depends only on the Froude
number α and the growth rate n. We observed that the variables
ξa and ξm are very close, especially at low α values. We failed to
find any physical reason why this should be so. The head length
xa − xb is fairly large at low Froude numbers, which means that
the front cannot be reduced to a thin region. However, its length
progressively decreases with increasing Froude numbers, which
shows that the front is much steeper at high Froude numbers.

The only assumption made in arriving at this result has been
stating that the velocity is fairly constant within the tip, an
assumption that it is not correct, as we will show below, but
provides a satisfactory approximation at long times. On the
whole, the front dynamics is entirely controlled by a balance
between the pressure gradient and the momentum variation
inside the front. As is expected for supercritical flows, the front
exerts no control on the body.

6.2. Refined analysis of the front structure

We now return to the local Navier–Stokes equations (E.2)
and (E.3) made dimensionless, but now with ε ∼ 1 because
Fig. 13. Variation of the front position ξa (solid line) and ξb (dashed line) as a
function of the Froude number α (computations made with β = 1 and n = 5/2).
We have also reported the variation ξm (dotted line). ξa , ξb , and ξm are given
by Eqs. (46), (47) and (43), respectively.

of the significant variation in the flow depth within the leading
edge. Introducing the stream function ψ (u = ψy and v =

−ψx ) and taking the curl of the equations to get rid of the
pressure gradient provides the vorticity equation, where ω =

−1ψ is the vorticity

∂

∂t
1ψ +

(
∂ψ

∂y
∂

∂x
−
∂ψ

∂x
∂

∂y

)
1ψ = 0. (48)

This equation remains invariant under the transformation
(x, y, t, ψ) → (x + xa(t), y, t, ψ + yẋa), which represents
a nonuniformly accelerated translation [12]. Let us consider a
Cartesian frame of reference fixed with respect to the leading
edge, i.e. positioned at A and moving at the velocity ẋa =

δAtδ−1 with respect to a fixed frame (attached to the bed).
For δ < 2 (n < 4), this frame is nonuniformly accelerated,

but the acceleration term is proportional to ẍa ∝ tδ−2, which
implies that at long times, the acceleration effects are negligible
and we can consider the frame as nearly Galilean. This prompts
us to express the stream function in this frame as a time series:
ψ = ψ0(x, y) + t−1ψ1(x, y) + · · ·. Using this expansion
provides a hierarchy of equations. At order O(t0), we have(
∂ψ0

∂y
∂

∂x
−
∂ψ0

∂x
∂

∂y

)
1ψ0 = 0. (49)

At order O(t1), we have ψ1,y(1ψ0)x + ψ0,y(1ψ1)x = 0 and
ψ1,x (1ψ0)y + ψ0,x (1ψ1)t = 0.

The boundary conditions are the following: at the bottom
v = −ψ0,x (x, 0) = 0. At order O(t0), the free boundary is a
stationary line that coincides with a streamline. Without loss of
generality, we can set ψ0 = 0 along the free surface. Moreover,
if the free surface is a streamline, this implies that according
to the Bernoulli theorem, the velocity is constant along this
boundary since the pressure is constant at the free surface. The
bottom is also a streamline since a particle is forced to have a
trajectory parallel to the bed line; since this streamline and the
streamline at the free surface intersect at the leading edge, they
have the same value; hence we have ψ0 = 0 along the bottom.
In order to compute the vorticity 1ψ0, we need to know the
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Fig. 14. (a) Notation used in the computation. (b) Vortices within the head.
2

vorticity in the far field. Using Eqs. (27)–(39), we find that

ω =
∂u
∂y

−
∂v

∂x
=
(y(H ′)2V ′)t−δ−1

H3/2 +
U ′t1−δ

√
H

+
((H ′)2 + 2H H ′′)(−tδ−3)V

2
√

H
,

which implies that at order O(t0), the vorticity vanishes and the
flow is irrotational in the body.

Since the flow is irrotational in the far field, we could first
seek an irrotational solution to Eq. (49), but as shown in detail
in Appendix F, this type of solution is hardly admissible from
the physical point of view unless the front is associated with
a mass sink. We are then looking for a rotational solution
to Eq. (49). Using polar coordinates (r, θ) [see Fig. 14(a)],
we assume that the variables are separable, i.e., the stream
function can be expressed in the form: ψ0 = f (r)g(θ/φ(r)),
where we have further assumed that the free boundary can
be represented by a function θ = φ(r). We also introduce
the shorthand notation: Θ = θ/φ(r). We then have three
functions to determine: f (r), g(Θ), and φ(r). At the free
surface, three conditions must be satisfied: (i) the radial velocity
u = r−1ψ0,θ = f (r)φ−1(r)g′(Θ) must be independent of
r since the pressure is constant at the free surface, (ii) the
free boundary is a streamline f (r)g(Θ) = 0 for Θ = 0 or
Θ = 1, (iii) the orthoradial component of the velocity vanishes
v = ψ0,r = f ′(r)g(Θ) − f (r)φ−2(r)φ′(r)g′(Θ) = 0. In
addition, since the computations are made in the moving frame,
the net mass flux across a surface r = cst spanning the tip
must be zero, which implies that we must look for a piecewise
continuous radial component of the velocity u = g′ that is
alternatively positive and negative such that

∫ 1
0 g′(Θ)dΘ = 0

at any r .
These equations admit at least one solution: we assume that

there are two real constants χ and c0 such that φ(r) = χ

and f (r) = c0r . Because g(Θ) is assumed to be a nontrivial
solution that vanishes on Θ = 0 and Θ = 1, we can add the
following normalization constraint on the maximum value of g
on [0, 1]: there is at least one angle Θm such that g(Θm) = 1;
the constant c0 in f (r) = c0r must then be adjusted for this
constraint to be satisfied. The free boundary must be a straight
line making an angle χ with the bed line.

We impose Ψ0 = c0rg(θ) (we no longer use the reduced
variable Θ since φ is constant) and substitute it into the
equivalent of Eq. (49) in polar coordinates. We deduce that g
must satisfy

g′(g + g′′)+ g(g′
+ g′′′) = 0, (50)

which when integrated produces: gg′′
+ g2

+ c1 = 0, where c1
is a constant of integration. Multiplying this equation by 2g′/g
and integrating it provides

g′2
+ g2

+ 2c1 ln |g| = c2,

where c2 is an integration constant. Using the normalization
constraint on g, we find c2 = 1. We failed to find an
analytical solution to this first-order differential equation, but
its behavior can be described by using asymptotic expressions
and numerical approximations. Close to the boundary, g → 0
implies that g′

∼ ±
√

−2c1 ln |g|, implying that c1 must be
positive since ln |g| < 0. This differential equation can be
integrated to provide

|g| ∼ exp
[
−erf(−1)(1 − θ

√
c1/π)

]
,

for θ → 0, where erf(−1) is the inverse of the error function.
Close to the maximum, g → 1 implies that g′

∼ ±

√
1 − g2,

i.e.,

|g(θ)| ∼ cos(θ − θm),

for θ → θm . Numerical integration reveals that

|g(θ)| ≈ sin2/3
(
π

χ
θ

)
and c1 ≈

2π2

3χ2 − 1. (51)

These numerical approximations are accurate to within a few
per cent (less than 3%). Fig. 15 shows a comparison between
the numerical solution to Eq. (50) for χ = π/6 and the
approximate function. Since the mass flux across any surface
spanning the wedge must be zero, the derivative g′ must be first
negative for 0 < θ < χ/2, then positive for χ/2 < θ < χ ;
because of the symmetry imposed on the function g′, there
is a maximum of g located at θm =

1
2χ . The pressure can

be determined by substituting the velocity components in the
polar equivalent of the Euler equations and integrating these
equations. We obtain

p = −c1c2
0 ln r = −

c1c2
0 ln((x − xa)

2
+ y2),
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Fig. 15. Numerical solution to Eq. (50) for χ = π/6. The solid line represents
the numerical solution, while the dashed line represents the numerical
approximation equation (51).

showing that the pressure is independent of the angle θ , is
not hydrostatic within the tip region, and is singular at the
leading edge; taking into account hydraulic resistance within
the tip region will probably remove this singularity. Note
that the pressure is not constant at the free boundary, but
this does not violate the Bernoulli relation since the radial
velocity becomes infinite along the streamline ψ0 = 0: the
velocity components in the moving frame are u = c0g′(θ)

and v = −c0g(θ). This singularity can be removed by
considering appropriate boundary conditions at the free surface:
as suggested by McElwaine [46], the intrusion of a high-speed
gravity current entails the motion of the ambient fluid, which
means that there is a more complicated relation between the
surge and its environment. As shown by McElwaine [46], the
singularity in the u and p solutions drops out when the stream
function has a highly pronounced dependence on r : typically,
we should impose ψ0 = c0rm g(θ) with m > 2; the case m = 2
corresponds to constant vorticity [23].

From the local components of the velocity in the moving
frame, we deduce the streamwise velocity in the fixed Cartesian
frame

u = ẋa + c0g′(tan(−1) z) cos(tan(−1) z)

− c0g(tan(−1) z) sin(tan(−1) z)+ O(t−1),

with z = y/(x − xa). This equation shows that the velocity
profile is not uniform across the flow depth, but the vorticity
contribution to u becomes less important with increasing time
and, at long times, the assumption of a uniform velocity profile
becomes reliable.

In short, we have found a first-order solution to Eq. (48),
showing that the free boundary is a straight line, at least close
to the front. The flow is rotational with an infinite vorticity at
the leading edge (r = 0) and along the boundaries (g(θ) = 0)

ω0 = −∇
2ψ0 = −c0

g′′
+ g
r

=
c0

r
c1

g(θ)
,

due to the simplified boundary conditions considered here. For
the flow to be irrotational far from the leading edge, we must
contemplate a counter-clockwise vortex in the rear of the head,
as depicted in Fig. 14(b). This vortex has no specific role other
than creating a counter-reaction to the vorticity at the leading
edge.

7. Patching and comparison with the shallow-water
equations

7.1. Patching

An obvious shortcoming of the analysis pursued in
Sections 5 and 6 is that the velocity profiles within the body
and the head do not match, which means that a transitional slice
between these regions associated with a significant increase
in vorticity must exist. The same abrupt change in the flow
behavior was predicted by the shallow-water equations in the
form of a hydraulic jump. Although there is some analytical
work for laminar viscous flows [29,63] and turbulent flows [11,
31], further analyzing the characteristics of the transitional slice
here is beyond the scope of this paper and therefore, for the
comparison with the shallow-water equations, we settle for
patching the two pieces of the solution worked out in Sections 5
and 6.

The position of the head can be approximated using the
integral formulation used in Section 6.1, while its structure is
computed using the results of Section 6.2, where it has been
shown that the head is wedge-shaped. The only unknown is
the wedge angle χ . We assume that the free boundary remains
straight within the head (xb ≤ x ≤ xa). By using the mass
equation (44) and by approximating M ≈

1
2 (xa − xb)

2 tanχ ,
we infer

tanχ =
2δ3

nα2
ξ2

a

ξa − ξb
t−(n−4)/3, (52)

showing that the wedge becomes increasingly acute with time.
The angle χ is here only imposed by mass balance, whereas in
finite-volume gravity currents investigated by McElwaine [46],
the angle is controlled by dynamic conditions at the interface
with the surrounding fluid.

7.2. Comparison

In order to compare the approximate similarity solution
computed in Sections 5 and 6 with the similarity solution to the
shallow-water equations, we need to compute the Boussinesq
coefficient. After a few manipulations, integrating the velocity
profile equation (37) leads to

γ =
9α2

− 4
8α2 ,

showing that the condition γ ≥ 1 leads to α ≥ 2. Note that
this condition provides a stronger constraint on α than Eq.
(38). There is no immediate interpretation of these bounds,
but recalling that the similarity form used for the velocity
profile in Section 5.2 means that the velocity field must adapt
instantaneously to any change in the flow depth, we can
speculate that the flow must be rapid (i.e., supercritical) enough
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Fig. 16. (a) Flow depth profile, (b) velocity profile for the similarity solutions
to the shallow-water equations (dashed line) and the approximate similarity
solution Navier–Stokes equations in the high-Reynolds-number limit (solid
line). Computations made for α = 3, β = 1, δ = 3/2 (n = 5/2), γ = 77/72.

for the information on flow depth changes to be promptly
conveyed; indeed, in a shallow flow, information is transmitted
on average at velocity

√
gh(Fr ± 1) [66].

Fig. 16 shows the two solutions for the particular case
α = 3, β = 1, δ = 3/2, already addressed in Fig. 9, where
the similarity solutions to the shallow-water equations were
reported for two values of the Boussinesq coefficient: γ = 1
and γ = 77/72. As seen in Fig. 16, there is no difference
between the similarity solutions to the shallow-water equations
(4) and (5) and the shallow-wave equations (19) and (20) for
the body, provided the Boussinesq coefficient is prescribed
in advance. Differences arise for the head. Since there is no
true similarity solution for the head velocity, we report the
asymptotic value ẋ f computed using Whitham’s approach in
Section 6.1. The velocity profile computed using the shallow-
water equations is not constant, but rises with increasing ξ ;
the departure from the asymptotic value, however, ẋ f , remains
small since it does not exceed 6%.

8. Concluding remarks

In this paper, we have addressed the existence and features
of similarity solutions to the shallow-water equations for
describing high-speed (i.e., at high Reynolds numbers), non-
Boussinesq flows along the horizontal plane. The velocity
profile in the vertical direction may be nonuniform and in this
case, the Boussinesq coefficient γ = u2/ū2 exceeds unity.

The existence of similarity solutions has been proved for
Boussinesq currents. In that case, the flow depth does not drop
to zero, but to a finite value given by Eq. (2) [25,26]. From
the mathematical point of view, it has also been demonstrated
that the boundary value problem made up of the governing
equations (4) and (5) and boundary conditions (9) and (10) is
well-posed [51]. In Section 4, relying on a thorough analysis of
the phase plane and the topological features of the governing
equation, we have shown that the necessary condition for
finding a similarity solution to the shallow-water equations for
non-Boussinesq currents is that the front point P in the phase
plane is a singular point. Indeed, no regular integral path, which
represents a solution to the shallow-water equations, passes
through P. However, when P is a singular point, there is an
exceptional solution that passes through it. This exceptional
solution is a piece of the solution sought. For P to be a singular
point, the Boussinesq coefficient must drop to unity in the head.
Another condition is placed on the growth rate of the current
and the initial Froude number: for the similarity solution to be
physically admissible, the current volume must grow as tn , with
n ≥ 1, and the flow must be supercritical at the inlet (Fr > 1).
Except for currents with steady inflow (n = 1), the current head
is separated from the body by a hydraulic jump and is wedge-
shaped. The head is in a subcritical regime (Fr < 1), while
the body is in a supercritical regime (Fr > 1). Since a jump
is associated with a significant change in the velocity profile,
it is also possible to construct solutions where the Boussinesq
solution is unity within the leading edge, but is in excess of
unity within the body [4].

Strikingly, these severe restrictions on the existence
of similarity solutions in the non-Boussinesq case differ
substantially from the Boussinesq case, where Gratton and
Vigo [25] showed that solutions of this kind exist for a
wide range of flow conditions, including subcritical entrance
conditions and low growth rates n < 1. As pointed out
by Gratton and Vigo [25], the non-Boussinesq case could be
considered as a limiting Boussinesq regime when the Froude
number at the front tends to infinity, and in this perspective,
one would expect to retrieve nearly the same solutions. This is
not the case. As for tension-driven coating films, we find that
imposing zero or finite values on the flow depth at the front can
lead to significantly different results.

To make this difference between Boussinesq and non-
Boussinesq currents clear, we have refined our analysis by
seeking similarity solutions to the Navier–Stokes equations in
the high-Reynolds-limit number (Euler equations). A particular
difficulty stems from the shallowness approximation used
in the derivation of the shallow-water equations. Since this
approximation is not valid within the leading edge, we
distinguished the head and body dynamics:

• Similarity solutions were derived for the body and were
fully consistent with those worked out for the shallow-water
equations (27) and (28). This consistency results directly
from our primary choice of the similarity forms (27) and (28)
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used for solving the shallow-wave equations (19) and (20).
Indeed, in these similarity forms, we did impose a constant
Froude number. Physically, this result is in agreement with
experimental [45] and intuitive observations since from a
force balance in the momentum equation, we can interpret
the similarity phase as a flow regime characterized by a
balance between inertia and the pressure gradient

u
∂u
∂x

∼ g
∂h
∂x
,

which leads to finding a nearly constant Froude number.
Similarity solutions to Eqs. (19) and (20) exist provided that
the Froude number is in excess of 4

√
2/3 ≈ 1.88. As for

the shallow-water equations, we retrieve the condition that
flows must be supercritical. There is, however, a significant
difference between the limiting Froude number for a
similarity solution to exist: Fr ≥ 1 for the shallow-water
equations versus 4

√
2/3 for the shallow-wave equations.

One question which was not addressed concerns the flow
stability. Stability analysis of the shallow-water equations
shows that steady uniform flows become unstable for Fr >
2 [67], but since this analysis cannot easily be extrapolated
to transient flows, we do not investigate this question further.

• We failed to find a similarity solution representing the head
behavior, but we found approximate similarity solutions
when the volume growth rate n satisfies n < 4. In this
case, the front acceleration tends to zero when time elapses
so that we can expand the velocity into a time series
and retain the terms at the leading order. Analyzing the
governing equations showed that the flow must be rotational
and that the head is wedge-shaped. The shape is in fairly
good agreement with that computed using the shallow-water
equations. The leading edge is associated with a pair of
vortices, one located at the leading edge and another one at
the rear of the head. This wedge structure, including vortices,
has been observed in experiments on gravity currents in
tanks. In experiments conducted by Simpson [58,59], the
development of the flow patterns was made visible using a
blend of dense fluid and fine aluminum particles: a stretching
vortex occupying the tip region was clearly observed at
the leading edge and produced an intense roll-up of fine
aluminum particles, which makes it possible to visualize the
streamlines and the two vortices; in the upper part of the
head, a counter-clockwise rotating vortex occurred. Our own
experiments on finite-volume gravity currents moving down
a slope also revealed that the particle cloud was composed
of two evident eddies [2]: when the surge involving a
glass-bead suspension in water moved from left to right,
we observed a small vortex ahead of the front, spinning
clockwise, and a large counter-clockwise eddy occupying
most of the surge volume. In his seminal paper, Benjamin [7]
supplemented the earlier heuristical analysis of von Kármán,
demonstrating that a steady front makes an angle of
π/3 with respect to the horizontal: Benjamin provided an
approximate analytical solution describing the shape for the
lock-exchange problem when the flow depth is half the
total depth and again found that the front angle was π/3.
Recently, McElwaine [46] has extended Benjamin’s results
by considering steady finite-volume currents down a steep
slope, which experience resistance from the surrounding
fluid. He also found that the front makes an angle π/3
with the bottom line. Our result contrasts with the earlier
findings: the front angle is not constant, but varies with
time. Therefore, there appear to be significant changes
in dynamics in the front angle between steady and time-
dependent flow conditions. This observation may have a
potential impact since until now, most models have used
a constant-Froude-number boundary condition even though
the flow is not steady.

When hydraulic resistance becomes significant or when
the surrounding fluid exerts a sufficient resistance to the
surge spreading, the shape of the front bulges out. A typical
example of the rising influence of hydraulic resistance and
its consequence on the front shape is provided in the paper
by [30], where the motion of the surge resulting from the
collapse of a fluid volume (dam break) is investigated: when
the surge starts being affected by drag, it becomes blunt-nosed
with H(ξ) ∝ (ξ f − ξ)1/2, rather than adopting a linear profile
close to the front; indeed, the current develops an increased
streamwise pressure gradient to counter the drag force exerted
by the bottom. In this respect, we should expect that at late
times, drag also arises in the particular context investigated here
since the flow becomes increasingly thin: the front angle tanχ
varies as t−2 according to (52).
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Appendix A. Similarity solutions

A.1. Similarity and resulting governing equation

The shallow-water equations admit many symmetry groups
[15,36], including the stretching group that enables us to
derive similarity solutions. A particularly appropriate form for
working out similarity solutions is the following:

ū = δξ tδ−1V (ξ),

h = δ2ξ2t2(δ−1)Z(ξ),

where we have introduced the similarity variable

ξ =
x
tδ
,

with δ a positive constant. There are many possible ways
of constructing similarity solutions. In the class of problems
dealt with here, symmetry analysis usually suggests seeking
similarity relations in the form ū = tc1 V̂ (ξ) and h = tc2 Ẑ(ξ),
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where c1 and c2 are two constants [9,19,22]. It is sometimes
more advantageous to write down these relations in the form
ū = tc1ξ c3 Ṽ (ξ) and h = tc2ξ c4 Z̃(ξ), where c3 and c4 are two
other constants, Ṽ (ξ) = ξ−c3 V̂ (ξ) and Z̃(ξ) = ξ−c4 Ẑ(ξ), so
that the governing equations (4) and (5) can be transformed into
an autonomous differential equation [i.e., in Eq. (15), ξ does not
appear], which makes it then possible to use the phase-portrait
techniques. In doing so, we find c1 = δ − 1, c2 = 2δ − 2,
c3 = 1, c4 = 2. Note that it is also advantageous to do the same
with parameter δ and include it in the similarity relations so that
we can get rid of it in the final governing equation (15), which
simplifies a great deal the examination of the critical points of
the phase plane.

Substituting the similarity forms into the governing
equations (4) and (5), we obtain two ordinary first-order
differential equations for Z and V that can be cast in a matrix
form

M(V, Z)
dw
dξ

+
Z
δξ

S(V, Z) = 0, (A.1)

with w = [Z , V ]
T,

M =

[
V − 1 Z

(γ − 1)V 2
+ Z Z(V (2γ − 1)− 1)

]
, and

S =

[
3V δ − 2

2δZ + V (V (4γ − 3)δ − 1)

]
.

The determinant of the matrix M is det M = δZ(Z − I (V )),
with

I (V ) = 1 + (V − 2)V γ.

In the phase plane, we introduce the curve C I of equation Z =

I (V ). This curve plays a very important role since usually no
continuous integral path can reach or cross it. Very occasionally,
when the cofactor matrix is also zero (see below), crossing or
reaching C I is permitted. In the usual case, when no continuous
path can cross C I , one can sometimes use the Rankine shock
conditions (11) and (12) to work out discontinuous solutions
(see Appendix A.2). Note that along the V -axis (Z = 0), the
determinant is also zero, but its role is less significant since
this line lies on the borderline of the first quadrant (V ≥ 0,
Z ≥ 0) and only the integral paths in this domain are physically
interesting.

In the regions where det M is nonzero, the system of Eq.
(A.1) can be inverted to provide

ξ
dZ(ξ)

dξ
=

F(V, Z)
δ(Z − I (V ))

, (A.2)

ξ
dV (ξ)

dξ
=

G(V, Z)
δ(Z − I (V ))

, (A.3)

with

F(V, Z) = −Z(2Zδ + V (−2V δγ + 4γ + 3δ − 3)− 2),
G(V, Z) = Z(2 − (V + 2)δ)

+ V (V (2γ + ((V − 4)γ + 3)δ − 3)+ 1).

Instead of solving this system of differential equations, we form
the ratio of the two equations to arrive at a single ordinary
differential equation

dZ
dV

=
F(V, Z)
G(V, Z)

.

This allows us to work in the V –Z plane, as discussed at length
in Section 4.

When det M is zero, the system may have solutions if the
determinant of the cofactor matrix

N =

[
V − 1 3V δ − 2

(γ − 1)V 2
+ Z 2δZ + V (V (4γ − 3)δ − 1)

]
,

is also zero. In the space (V , Z ), the locus of the points for
which det N = 0 is a continuous curve CG of the equation

Z = J (V ) =
V (γ δV 2

+ (−4δγ + 2γ + 3δ − 3)V + 1)
(V + 2)δ − 2

.

Note that the curve CG is also the locus of points where
G(V, Z) = 0, which means that:

• Any integral path crossing CG admits a vertical tangent at
the point of crossing.

• The points where CG and C I coincide are singular solutions
to Eq. (A.1).

To close our boundary value problem, we need to specify the
boundary conditions. The boundary conditions (9) and (10) at
the front impose

Z(ξ f ) = 0 and V (ξ f ) = 1, (A.4)

where ξ f denotes the front position. At the source, Eqs. (6)–(8)
imply that Z and V tend toward infinity as follows:

Z ∝
β

δ2ξ2 and V ∝
α
√
β

δξ
when ξ → 0. (A.5)

Since the solution may admit discontinuities, we supplement
the following condition derived from Eq. (6), which ensures that
the mass balance is not violated:∫ ξ f

0
ξ2 Z(ξ)dξ = δ−2 A. (A.6)

When there is no discontinuity, this equation is redundant with
Eq. (A.5).

Eventually, note that the coefficient δ is fixed by the volume
growth rate: replacing h and u by their similarity forms into the
initial conditions (6), we find δ = (n + 2)/3.

A.2. Flow discontinuity in the phase plane

The two Eqs. (11) and (12) involve three unknown variables
and therefore are not closed. To close the equations, we use the
volume balance equation (A.6). When a shock occurs and if
we know the flow variables Z1 and V1 upstream (respectively,
downstream) of the shock, we can solve the shock equations
(11) and (12) to determine the shock velocity σ and a curve
referred to as the shock curve V2(Z2|Z1, V1), which is the locus
of all the points satisfying the jump conditions (11) and (12).
Solving this system of equations, we derive the shock velocity
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and the variation in upstream velocity V2 with upstream flow
depth Z2:

σ =
γ

β
V1 ±

1
β

√
1
2
(β(Z1 + Z2)+ 2(γ − 1)V 2

1 )
Z2

Z1
, (A.7)

V2(Z2|Z1, V1) =
V1

β
±
(Z2 − Z1)

β

×

√
1
2
β(Z1 + Z2)+ 2(γ − 1)V 2

1
Z1 Z2

, (A.8)

with β = γ + (1 − γ )
Z2
Z1

.
In the derivation of (A.7) and (A.8), we have assumed that

the Boussinesq coefficient is the same either side of the jump.
Similar albeit far more complicated relations can be derived
when the jump is associated with a modification in the velocity
profile; we will not report these relations here since they do not
entail any change when we compute the shock from upstream
to downstream (although the converse is not true).

Since there is a quadratic dependence on velocity in (11)
and (12), we actually find two shock curves, but a single one
is physically admissible by requiring that energy dissipation
through the shock be positive.

Appendix B. Critical points and separatrix

To understand the phase portraits, it is worth recalling
some basic properties of the singular points. Through a regular
(i.e., nonsingular) point, a single integral path can pass and all
the curves in its close neighborhood have the same behavior. In
contrast, a singular point can be crossed either by an infinity
of curves (if the point is a node) or a single curve (if it is
saddle); here, we will not mention the case of focus points.
The singularity type can usually be obtained by linearizing Eqs.
(A.2) and (A.3) around a singular point (V0, Z0) [6,38]:

d
dξ

[
V − V0
Z − Z0

]
=

[
∂V F ∂Z F
∂V G ∂Z G

]
·

[
V − V0
Z − Z0

]
. (B.1)

Note that since the singular behavior results from F and G
vanishing at (V0, Z0), it is no use considering the denominator
Z(Z − I (v)) in the linearization. We are then seeking solutions
in the form v = v0e−λt . It is straightforward to deduce that λ
must be an eigenvalue of the linear system above, while v0 is
an eigenvector.

When the two eigenvalues are real and of the same sign, the
singular point is a node, and when ξ → ∞ or ξ → −∞,
the two solutions converge to the singular point by following
the directions given by the eigenvectors (see Fig. B.1). These
solutions are special solutions called separatrices since they
can usually be used to delineate different regions in the phase
plane. If we now consider a point in the immediate vicinity of
the singular point and integrate Eqs. (A.2) and (A.3) from this
point, the resulting integral path will pass through the singular
point, and its tangent at that point is collinear with one of
the eigenvectors. This means that one of the special curves is
also the limiting curve at which all the integral paths passing
Fig. B.1. Saddle and nodes in the phase plane. The solid lines represent the
special solutions; the arrows indicate the direction pointed by increasing ξ . The
dashed lines represent the integral paths.

through the singular point are tangent (except for the other
special solution).

When the two eigenvalues are real and of opposite sign, the
singular point is a saddle, and when ξ → ∞ or ξ → −∞,
one of the two solutions converges to the singular point by
following the direction given by one of the eigenvectors, while
the other solution diverges (see Fig. B.1). The solutions are also
special solutions and their curves are called separatrices. For a
saddle, there is only one curve passing through it (one of the
separatrices); all integral paths are deflected when approaching
this point.

For both saddle and node points, separatrices play a key
role. Their equations can be derived theoretically by seeking
the symmetry groups leaving Eq. (15) invariant [8,19] or
numerically by using L’Hôpital’s rule [19]. Basically, the latter
technique involves expanding the different terms in Eq. (15)
into a power series of F . Let us refer to the equation of the
separatrix by Z = Zs(V ). Since Zs(V ) is an exceptional
solution of Eq. (15), we can write

Z ′
s(V0)(V − V0)+

1
2

Z ′′
s (V0)(V − V0)

2
+ · · ·

=
(V − V0)D(1)F +

1
2 (V − V0)

2D(2)F + · · ·

(V − V0)D(1)G +
1
2 (V − V0)2D(2)G + · · ·

with D(1) = ∂V + Z ′
s∂Z , D(2) = ∂V V + 2Z ′

s∂V Z + Z ′2
s ∂Z Z +

Z ′′
s ∂Z , etc. the total derivatives of order 1, 2, etc. Then collecting

the coefficients associated with the same power of V −V0 makes
it possible to find a Taylor series of the separatrix. Note that
there are two possible values for the first-order term and these
values correspond to the slope of the eigenvectors of the matrix
of Eq. (B.1). We end up with a power series in the form

Zs(V ) = Z0 + Z (1)s (V − V0)+
1
2

Z (2)s (V − V0)
2
+ · · · , (B.2)

with

Z (1)s = Z ′
s(V0, Z0)

=
∂Z F − ∂V G ±

√
(∂Z F)2 − 2∂V G∂Z F + (∂V G)2 + 4∂V F∂Z G

2∂Z G
,

Z (2)s = Z ′′
s (V0, Z0)

=
−(Z (1)s )3∂Z Z G + (Z (1)s )2(∂Z Z F − 2∂V Z G)+ 2Z (1)s (∂V Z F − ∂V V )+ ∂V V F

−∂Z F + 2∂V G + 3Z (1)s ∂Z G
.
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When several singular points lie in the same region, they
share the same separatrices. For instance, in Fig. 5, SAB is
a separatrix for the singular points Aγ and Bγ . It is worth
noting that the numerical computation of the Taylor series
decomposition of Zs may encounter severe difficulties when
two neighboring points are not of the same topological nature
(which is the usual case). A priori, there is no specific reason
for the separatrix equation to be decomposable into a Taylor
series. Fig. B.2 shows how accurate a truncated Taylor series
decomposition is when its order is increased. We first computed
the Taylor series of separatrix SAB for γ = 1 and δ > 1 by
starting from point A1 (2, 1), which is a node. The separatrix
passes through point B1 (1, 0), which is a saddle; the values of
Zs at V = 1 computed using Eq. (B.2) can then be compared
to the expected value 0 and give an idea of the accuracy of this
expansion. Fig. B.2(a) shows the value Z(1) for order 26. It is
seen that for δ < 5/4, the accuracy increases with increasing
order, as expected. However, for δ > 5/4, the converse can
be observed, which shows that the series diverges. The same
exercise was repeated by computing the separatrix equation
starting from point B1 and evaluating the expansion accuracy
at point A1. Fig. B.2(b) shows that for δ > 5/4, accuracy is
enhanced by increasing the series order, while the Taylor series
diverges for δ < 5/4.

Appendix C. Construction of the similarity solution in the
phase plane

C.1. Usual computational procedure

The solution in the phase plane can be found by solving
Eq. (15) numerically. In practice, this was achieved by
proceeding as follows [4]:

(1) We selected a pair of points (VS, ZS) standing for the
source point and such that ZS = α−2V 2

S so that the
boundary condition (A.6) is satisfied. Usually, taking VS on
the order of 104 ensured accuracy to within 10−3.

(2) The ordinary differential equation (15) was then solved
using standard techniques (i.e., the predictor–corrector
Adams method). The resulting solution was plotted in the
phase plane as an integral path C of equation Z = Z(V ).

(3) On some occasions, the integral path crossed or came close
to the critical curve C I . In that case, the numerical solution
started to diverge: a discontinuous solution (strong shock)
was then envisaged. The integral path was made up of a
continuous path on either side of C I , while the endpoints of
these pieces were linked together by the shock conditions
(A.7) and (A.8). See Appendix C.2.

(4) To resolve the dependence on ξ and determine V (ξ) and
H(ξ), we first integrated Eq. (A.3) along the integral path C
from S to any point M (with some restrictions on M if the
solution crossed the critical curve C I ) and we obtained an
equation in the form

ξM = ξS exp
(

−

∫ S

M

I (V, Z(V ))
G(V, Z(V ))

dV
)
, (C.1)
Fig. B.2. Variation in the Z(1) value computed using the Taylor expansion
given by L’Hôpital’s rule to different orders when the δ = (2 + n)/3 value
is varied.

which allowed us to compute the value ξM associated with
any point M (VM , Z M = Z(VM )). Taking into account the
asymptotic behavior when ξ → 0 given by Eq. (A.5), we
were able to get rid of the terms representing the behavior
close to the source in order to obtain a closed form for the
coordinates of M. Note that when α = 2(9 − 8γ )−

1
2 , this

computation can be done analytically:

ξM =

(
2VMδ − 2

3δ

)δ−1
α
√
β

δV δ
M
.

C.2. Numerical treatment of the discontinuities

We refer to point E (VE , Z E ) as the point at which the shock
occurs. First of all, note that:

• It is not possible to directly relate P and E using the shock
conditions (A.7) and (A.8) because a hydraulic jump cannot
form between a dry bed and the current.

• Since no regular solution except the trivial solution Z =

0 passes through P, there is no other way of joining
the subcritical and supercritical branches of C since the
subcritical branch does not exist.
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The path E′
→ P along the separatrix SAB must be integrated

numerically.
To locate the position of E along the integral path, we

used a trial-and-error procedure. On the integral path coming
from the source point, we first guessed the position of point
E in the phase plane V –Z . We deduced the position of E′ by
seeking the intersection point between the proper shock curve
and the separatrix SAB, then we computed the relations V (ξ) by
solving Eq. (A.3) numerically on either piece of the solution.
The volume of the current was then computed by integrating∫ ξ f

0 ξ2 Z(ξ)dξ and compared with the expected value Aδ−2 [see
Eq. (A.6)]. The position of E was then varied until the computed
and expected total volumes coincided.

Appendix D. Ritter solutions

For δ = n = 1 and γ = 1, the critical curves C I , and CF ,
and CG form a single curve of equation Z = (V − 1)2; the
functions F and G simplify a great deal:

F = 2Z((V − 1)2 − Z) and G = V ((V − 1)2 − Z),

so that Eq. (15) is transformed into a simple equation

dZ
dV

=
2Z
V
.

This shows that the equations of the regular integral paths are of
the form Z = k1V 2, with k1 an integration factor. The boundary
conditions at the source yield k1 = α−2. Using Eqs. (A.2) and
(A.3) to resolve the dependence on ξ , we find

ξdZ + 2Zdξ = 0,

which provides

Z = βξ−2, hence V =
√
βαξ−1,

when the boundary conditions (9) are taken into account. In
the phase plane, the corresponding curves are parabolas P of
equation Z = (V/α)2.

As is seen in Fig. 8, curves of this type do not satisfy
the boundary conditions at the front. However, they meet the
critical curve C I at point

• E′ of coordinates (α/(α + 1), (1 + α)−2) associated with
ξe =

√
β(1 + α) when α < 1.

• E of coordinates (α/(α − 1), (1 − α)−2) associated with
ξe =

√
β(1 − α) when α > 1.

This coalesced C I curve is a singular solution to Eq. (A.1),
which corresponds to α = 1. Indeed, along this curve, we have
det N = 0 and det M = 0. This implies that Z = (V − 1)2 and
Eq. (A.1) reduces to

3ξdV + (3V − 2)dξ = 0,

which, when integrated, provides

V =
2
3

+
k2

ξ
,

where k2 is an integration constant. When α > 1, using the
coordinates of E, we deduce the value of k2:

k2 =
2
3

√
βα.

Returning to the dimensionless physical variables, we find

ū = ξV =
2
3

(
ξ + α

√
β
)
,

h = ξ2 Z = ξ2(V − 1)2 =
1
9

(
ξ − 2α

√
β
)2

for ξ ≥ ξe, while for ξ < ξe, we have

ū = α
√
β,

h = β.

When α → 1, we retrieve the usual Ritter solution found by
Ritter [52] in his analysis of the dam-break problem. Note that
this problem, where an infinite volume of fluid retained by a
dam is unleashed at time t = 0, is nearly equivalent to a
constant-discharge problem because if we examine what occurs
at x = 0 (hence ξ = 0) for the Ritter solution, we find that the
flow depth and velocity are constant, and hence the flow rate
is in turn constant. The equivalence is, however, not complete
since the flow geometries differ slightly.

When α < 1, we can also construct a mathematical solution,
but this solution is nonphysical. Indeed, in that case, the
integration constant k2 is (2 − α)

√
β/3, which means that the

velocity∣∣∣∣V −
2
3

∣∣∣∣ =
(α − 2)

√
β

3ξ
,

tends to 2/3 and the front point P (V = 1) is never reached.

Appendix E. Scaling of the Navier–Stokes equation

The governing equations are given by the Navier–Stokes
equations. These equations can be simplified a great deal by
focusing on shallow inertial flows, i.e., keeping only the terms
whose order of magnitude is O(ε0).

The characteristic streamwise and vertical velocities, the
timescale, and the typical pressure are referred to as U∗, V∗, T∗,
and P∗, respectively. Moreover, in addition to the length scale
ratio ε, we introduce the following dimensionless numbers
that characterize free-surface, gravity-driven flows: the flow
Reynolds number Re = ρU∗ H∗/µ and the Froude number
Fr = U∗/

√
gH∗. Finally, the following dimensionless variables

will be used: u = û/U∗, v = v̂/V∗, x = x̂/L∗, y = ŷ/H∗,
t = t̂/T∗, and p = p̂/P∗, where the hat refers to dimensional
variables. Natural choices for T∗ and P∗ are T∗ = L∗/U∗

and P∗ = ρgH∗ since we expect that, to leading order, the
pressure adopts a hydrostatic distribution. If we define the
vertical velocity scale as V∗ = εU∗, the mass balance equation
takes the following dimensionless form:

∂u
∂x

+
∂v

∂y
= 0. (E.1)
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At high speeds, there is a balance between inertia and the
pressure gradient, which leads us to define the velocity scale as:
U∗ =

√
gH∗. In this case, the order of magnitude of the viscous

stress is ρgH∗O(ε−1 Re−1). For the viscous contribution to
the momentum balance to be neglected compared to inertial
and pressure terms, the following conditions must be satisfied:
εRe � 1. In this case, we also have: Fr = O(1). We refer to
this regime as the inertial flow regime. The governing equations
take the following dimensionless form:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
∂p
∂x

+ λ

(
ε2 ∂

2u
∂x2 +

∂2u
∂y2

)
, (E.2)

ε2
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −1 −

∂p
∂y

+ λε

(
ε2 ∂

2v

∂x2 +
∂2v

∂y2

)
, (E.3)

where λ = (εRe)−1
� 1.

E.1. Governing equations for the body

When λ � 1 and ε � 1, then we can get rid of higher-order
terms in Eqs. (E.2) and (E.3) and we end up with the so-called
shallow-wave equations [66]

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
∂p
∂x
, (E.4)

0 = −1 −
∂p
∂y
. (E.5)

E.2. Governing equations for the head

When λ � 1, but ε = O(1), we retrieve the dimensionless
Euler equations

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
∂p
∂x
, (E.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1 −

∂p
∂y
. (E.7)

Appendix F. Irrotational solution

Our problem boils down to finding the stream function for
an inviscid irrotational flow in a wedge of angle χ . We shall
see that the only solution to this problem is the trivial solution
ψ0 = 0 within the tip region. Indeed, the complex potential
w(z) = φ0 + iψ0, with z = x + iy and φ0 the potential function,
is analytical for an irrotational inviscid flow. If we focus our
attention on the close neighborhood of the leading edge, the free
surface at order O(t0) appears as a stationary line, making an
angle χ with respect to the bed. We solve the equation1ψ0 = 0
within a wedge. The contour line of this wedge is the streamline
ψ0 = 0. Using the conformal transformation Z = X + iY = ez ,
the wedge is transformed into an infinite strip; the Laplace
equation reads ψ0,Y Y = 0 in the Z -plane and the boundary
conditions are the following: ψ0 = 0 on Y = 0 and Y = χ .
Hence, we obtain ψ0 = 0. This result might be anticipated with
physical intuition because the only possibility for observing an
irrotational flow in a wedge is assuming that there is a sink at
the edge. The only way to overcome this paradoxical result is to
assume that there are sources of vorticity within the tip region.
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