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Experiments were undertaken to investigate dam-break flows where a finite volume
of highly viscous fluid (glucose with viscosity μ ≈ 350 Pa s) maintained behind a
lock gate was released into a horizontal or inclined flume. The resulting sequence
of flow-depth profiles was tracked using a three-dimensional visualization system.
In the low-Reynolds-number and high-capillary-number limits, analytical solutions
can be obtained from the Navier–Stokes equations using lubrication theory and
matched asymptotic expansions. At shallow slopes, similarity solutions can also be
worked out. While the variation in the front position scaled with time as predicted
by theory for both horizontal and sloping flumes, there was a systematic delay in
the front position observed. Moreover, taking a closer look at the experimental flow-
depth profiles shows that they were similar, but they noticeably deviated from the
theoretical similarity form for horizontal planes. For sloping beds, the flow-depth
profile is correctly predicted provided that different scalings are used at shallow and
large slopes.

1. Introduction
The flow of a Newtonian fluid along a solid boundary has been extensively studied

over the last 30 years owing to its importance and relevance to a wide range of
applications in nature or industry. Much of the early work focused on buoyancy-
driven flows at large Reynolds numbers as well as dense viscous gravity-driven
currents (Simpson 1997; Huppert 2006). In the latter, a large body of literature has
investigated contact-line instabilities arising from the competition between viscous
and surface-tension effects, i.e. at low capillary numbers (Hocking 1990; Goodwin
& Homsy 1991; Veretennikov, Indeikina & Chang 1998). The spread of a finite
volume of viscous fluid along a horizontal surface or down a plane has also been
extensively studied from the analytical point of view when surface tension and
inertia are negligible compared to viscous forces. Attention was more specifically
paid to the short- and long-time behaviour of fixed-volume and constant-inflow flows
generated from a point or a line source (Smith 1969, 1973; Nakaya 1974; Huppert
1982a,b; Grundy 1983a; Gratton & Minotti 1990; Lister 1992). While most analytical
results were worked out by seeking similarity solutions to the governing equations,
a few results were also obtained using conformal-mapping techniques (Garabedian
1966; van Vroonhoven & Kuijpers 1990). Specific mathematical issues related to the
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existence of moving boundaries and how the solution to a particular initial value
problem approaches the similarity form at infinite times have also been investigated
(Ockendon 1978; Grundy & McLaughlin 1982; Grundy 1983b; Witelski & Bernoff
1998; Mathunjwa & Hogg 2006). In all the papers mentioned above, the governing
equations were derived from the Navier–Stokes equations using lubrication theory;
another approach taken by Hunt (1994) was to use flow-depth averaged equations of
motion (i.e. the shallow-water equations) and solve them using singular perturbation
techniques.

While buoyancy-driven turbulent flows have been carefully studied in the laboratory
(Simpson 1997), there are few experimental investigations of time-dependent flows
involving a Newtonian fluid over a solid boundary. Didden & Maxworthy (1982)
and Maxworthy (1983) verified that for horizontal beds, inertial gravity currents
eventually reach a viscous regime for which similarity theory provides a proper
scaling of front evolution. A similar conclusion was drawn by Nsom, Debiane
& Piau (2000) and Nsom (2002), who investigated the inertial-viscous transition
for a glucose solution with viscosity μ = 12 Pa s. Huppert (1982a,b) studied
axisymmetric flows over both horizontal and sloping beds resulting from the collapse
of small volumes (up to 1 litre) of silicon oils or glycerine with viscosities in the
0.1 − 1.5 Pa s range. Although he worked with flows at fairly low capillary numbers
(Ca as low as 10−2), he observed that the front played no role in determining
the shape and motion of the flow when the bottom was horizontal; in contrast,
for sloping beds, the front quickly became unstable under surface-tension effects.
Lister (1992) reported data related to point-source constant-flux and fixed-volume
experiments carried out with glycerol or silicone (dynamic viscosities in the 0.1–35 Pa s
range) and plane inclinations ranging from 2.5◦ to 17.5◦; he found good agreement
between these data and the contact-line position predicted by similarity forms. Diez,
Gratton & Gratton (1992) observed good agreement between similarity solutions
and experimental results for converging axisymmetric flows on a horizontal bottom.
Hunt (1994) presented experimental data obtained with plastic-bead suspensions
placed on an inclined conveyor belt. Comparison with his asymptotic solutions to the
shallow-water equations showed good agreement, but few details were provided. More
recently, Takagi & Huppert (2007) investigated the effect of confining boundaries on
front propagation. In all experimental results cited above, it is worth noting that the
flow regime was characterized by low capillary numbers, which leads to the thinking
that flows on sloping beds were affected to some degree by surface-tension effects; for
most experimental settings, the flow Reynolds number Re was relatively large, with
the low-Reynolds-number regime achieved at long times only. Moreover, attention
was focused on how the front position scaled with time; there was no systematic
comparison between experimental data and theory, in particular for the flow-depth
profiles.

In this paper, we experimentally investigate the dam-break problem for a Newtonian
fluid, where a fixed volume of fluid is suddenly unleashed from a reservoir and flows in
a flume, which can be inclined or horizontal. We focus our attention on flow regimes
in the large-capillary-number and low-Reynolds-number limit such that inertia and
surface tension can be neglected in the analysis of flow motion. As far as we are aware,
these experimental data are unique. In § 2, we begin with a review of earlier theoretical
work on thin viscous sheets. We consider the idealized two-dimensional problem of the
instantaneous removal of a dam. The dam perpendicular to the slope initially retains a
reservoir, as shown in figure 1. The fluid can then spread along a dry horizontal flume
or flow down an inclined flume. For this setting, the governing equations are derived
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Figure 1. Sketch defining the flow configuration.

from the Navier–Stokes equations using lubrication theory, as shown by Mei (1966)
and Buckmaster (1977). We then review and extend the results obtained by Huppert
(1982a,b) and Lister (1992). Like these authors, we seek similarity solutions and use
the method of matched asymptotic expansions to work out analytical solutions for
determining the short- and long-time behaviour of the flow. Since this analysis holds
for shallow slopes only, we then extend the theory to take slope effect into account
(see § 3). In § 4, we present our experimental results. An innovative point is the
measurement system, made up of a high-speed camera and micro-mirror projector,
which makes it possible to accurately reconstruct the free surface of the flow at fairly
high acquisition rates (up to 45 Hz). Finally, the experimental results are compared
with analytical approximations of the Navier–Stokes equations, with emphasis given
to front evolution and flow-depth profiles.

2. Diffusive–convective regime
2.1. Notation and governing equation

We consider an infinite plane tilted at an angle θ to the horizontal. We use a Cartesian
coordinate system, where x̃ denotes the downstream coordinate measured from the
top of the plane, while ỹ denotes the coordinate normal to the slope (see figure 1).
Tilde variables are physical variables (the corresponding variables with no tilde are
dimensionless). A rectangular box of length �̃ , equipped with a gate perpendicular
to the slope and placed at the plane inlet is partially filled with a volume Ṽ of a
Newtonian fluid with viscosity μ, surface tension γ and density ρ. The leftward end
of this reservoir is chosen to be the origin of the x-axis. At time t̃ = 0, the gate is
suddenly opened and the fluid is released onto the plane. Initially the flow depth is
denoted by

h̃i(x̃) = h̃g + (x̃ − �̃ ) tan θ, (2.1)

with h̃g the gate aperture.
We are interested in determining the position xf of the front and the flow-depth

profile h(x, t) with time t; h is the flow depth measured normal to the plane. We focus
on shallow gravity-driven flows of highly viscous fluids on slopes, i.e. in the limit of
high capillary number and low Reynolds and aspect-ratio numbers: Ca = μU∗/γ � 1,
ε = H∗/L∗ � 1 and Re = ρU∗H∗/μ � 1, where H∗ denotes the flow-depth scale,
while U∗ and L∗ are the velocity and length scales, respectively. We also define the
characteristic time T∗ = L∗/U∗ and pressure scale P∗ = ρgH∗ cos θ . To be consistent
with volume conservation, we select the length and depth scales L∗ and H∗ such that

L∗H∗ = Ṽ , that is, L∗ =
√

Ṽ /ε and H∗ =
√

εṼ .
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We introduce the dimensionless velocity components (ũ, ṽ) = (U∗u, εU∗v), pressure
p̃ = P∗p, coordinates (x̃, ỹ) = (L∗x, H∗y). The governing equations are given by the
Navier–Stokes equations in a dimensionless form

∂u

∂x
+

∂v

∂y
= 0, (2.2)

εRe
du

dt
= φ cos θ

(
tan θ − ε

∂p

∂x

)
+ ε2 ∂2u

∂x2
+

∂2u

∂y2
, (2.3)

ε2Re
dv

dt
= −φ cos θ

(
1 +

∂p

∂y

)
+ ε3 ∂2v

∂x2
+ ε

∂2v

∂y2
, (2.4)

with φ = ρgH 2
∗ /(μU∗) a dimensionless group. The mass and momentum balance

equations are subject to the kinematic boundary conditions:

u = v = 0 for y = 0 (2.5)

at the bottom, while at the free surface, we have

v =
∂h

∂t
+ u

∂h

∂x
for y = h. (2.6)

In addition, the dynamic condition at the free surface implies

(−pφ cos θ1 + σ ) · n +
ε2

Ca

n
R

= 0 for y = h, (2.7)

with n = (−ε∂xh, 1) a vector normal to the free surface, R = (1+ ε2(∂xh)2)3/2/∂xxh the
curvature radius of the free surface and σ the extra-stress tensor. Mass conservation
also implies that

V =

∫ xf

0

h(x, t) dx =
1

2
�(2hg − κ�) = 1, (2.8)

with κ = L∗ tan θ/H∗ = tan θ/ε. The flow depth vanishes at the front

h(xf , t) = 0. (2.9)

The initial value for h is

h(x, 0) = hg + κ(x − �). (2.10)

Hereafter we will address three limiting regimes: the purely diffusive regime occurs
on horizontal bottoms (θ = 0); motion is dictated by the balance between the
streamwise gradient of the pressure and the cross-stream gradient of the shear stress,
which implies that the proper velocity scale is U∗ = ρgH 3

∗ /(3μL∗) and φ = 3/ε. This
regime has been extensively studied (Mei 1966; Nakaya 1974; Grundy & McLaughlin
1982; Huppert 1982b; Didden & Maxworthy 1982; Gratton & Minotti 1990) and for
the sake of completeness we will briefly outline the results hereafter. For non-zero, but
shallow slopes, the pressure/shear-stress balance is disturbed by the gravity forces.
The resulting regime is referred to as the diffusive–convective regime. Since the aspect
ratio ε cancels out in the dimensional equations, we have some freedom to select an
appropriate value. Here we pose ε = tan θ and φ = 3/ sin θ such that the streamwise
gravitational component, the streamwise gradient of the pressure and the cross-stream
gradient of the shear stress are of the same order; the corresponding velocity scale
is then U∗ = ρgH 2

∗ sin θ/(3μ), that is, the mean velocity of a viscous sheet in a
steady uniform regime. For larger slopes, this scaling no longer holds: motion is then
governed by the balance between the gravity force and the cross-stream gradient
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of the shear stress except for the tip region, where the strong curvature of the free
surface gives strength to the pressure gradient. Here this regime is called the slope-
dominated regime. In § 3, we will show using matched asymptotic expansions that
ε scales as tan2 θ . The velocity scale and the dimensionless group φ are the same
as for the diffusive–convective regime; we will show that the slope-dominated and
diffusive–convective regimes are physically very similar in spite of the differences in
the aspect-ratio number ε.

2.2. Purely diffusive and diffusive–convective regimes

Keeping Re order one, taking the limit Ca → ∞ and removing terms of order ε

or higher in the governing equations (2.2)–(2.4), we transform the Navier–Stokes
equations to obtain the following set of equations, where inertia and surface tension
are negligible:

∂u

∂x
+

∂v

∂y
= 0, (2.11)

3

(
1 − ∂p

∂x

)
+

∂2u

∂y2
= 0, (2.12)

1 +
∂p

∂y
= 0, (2.13)

with the following boundary conditions at the free surface: ∂yu = 0, v = ∂th + u∂xh

and p = 0. At the bottom, the no-slip condition holds: u = 0. Integrating the mass
balance equation (2.11) yields the governing equation for h

∂h

∂t
+

∂hū

∂x
= 0,

with ū the flow-depth averaged velocity given by integrating (2.12) twice: ū =
h2(∂xp − 1). The pressure is obtained by integrating (2.13): p = h − x. We end up
with a nonlinear diffusion–convection equation that governs the flow-depth variation
with time

∂h

∂t
+

∂h3

∂x
=

∂

∂x

(
h3 ∂h

∂x

)
. (2.14)

In this equation, the second term on the left-hand side represents convection of h at
a velocity 3h2, while the third term represents nonlinear diffusion of the flow depth,
with a diffusion coefficient equal to h3. When the channel slope is zero, the convection
term ∂xh

3 must be removed from the governing equation (2.14) and the governing
equation is then the nonlinear diffusion equation

∂h

∂t
=

∂

∂x

(
h3 ∂h

∂x

)
. (2.15)

There is no similarity solution to (2.14), but such solutions exist at early or late times
when diffusion or convection, respectively, predominates. Without losing generality,
we can seek solutions in the form

h(x, t) = t−nH (ξ, t), (2.16)

with ξ = x/tn and n > 0. Substituting form (2.16) into (2.8) yields

−3H 2

(
∂H

∂ξ

)2

t1−5n − H 3 ∂2H

∂ξ 2
t1−5n + 3H 2 ∂H

∂ξ
t1−3n = Hn + nξ

∂H

∂ξ
− ∂H

∂t
t. (2.17)
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The first two terms on the left-hand side represent diffusion, while the third
term arises from convection; the right-hand side represents the flow-depth variations
with time. At long times, t1−3n � t1−5n, implying that convection is the prevailing
mechanism, while at short times, t1−3n � t1−5n implies predominance of diffusion. For
these respective contributions to be of finite order, we pose n = 1/5 when seeking
similarity solutions on short times and n = 1/3 for long times.

2.3. Short-time similarity solutions

To find similarity solutions, we pose n = 1/5 and H (ξ, t) = �0 + tλ1�1(ξ ) + · · · +
tλi �i(ξ ) + · · ·, with λi > 0 and �i functions of ξ . In the limit of t → 0 and with
ξ = O(1), (2.17) reduces to

�0 + ξ� ′
0 + 15(�0�

′
0)

2 + 5�3
0�

′′
0 = 0,

whose integration provides

ξ�0 + 5�3
0�

′
0 = c,

with c a constant of integration. Since at the front ξf , the flow depth vanishes, we
obtain c = 0. A new integration leads to the solution

h(x, t) = t−1/5

(
3

10

(
ξ 2
f − ξ 2

))1/3

. (2.18)

A mass balance equation (2.8) allows us to determine ξf :

ξf = V 3/5

(
3

√
3/10

√
π� (1/3)

5� (5/6)

)−3/5

≈ 1.411V 3/5, (2.19)

where � denotes the gamma function. We retrieve the solution worked out notably
by Nakaya (1974) and Huppert (1982b). Equation (2.18) arises also in a number of
nonlinear diffusion processes, where it is referred to as the Barrenblatt–Pattle solution.

2.4. Long-time similarity solutions

We now pose n = 1/3, H (ξ, t) = H0 + t ν1H1(ξ ) + · · · + t νi Hi(ξ ) + · · · with νi > 0 and
Hi functions of ξ . As t → ∞ while ξ = O(1), (2.17) becomes

3H 2
0

∂H0

∂ξ
− H0n − nξ

∂H0

∂ξ
= 0.

whose integration yields

H 3
0 = 1

3
ξH0 + c,

with c a constant of integration. Here we cannot apply the boundary condition
H0(ξf ) = 0, which may mean that a boundary layer arises in the close vicinity of the
front. H0 is then the outer solution. We set H0 = 0 at ξ = 0, which imposes c = 0.
We finally find

H0(ξ ) =

√
ξ

3
. (2.20)

The front position ξf is still determined using mass balance conservation (2.8):

ξf =
(

3
√

3
2

V
)2/3

, (2.21)

consistently with earlier results obtained by Huppert (1982a) and Lister (1992). A
boundary layer occurs at the front because it is no longer possible to neglect the
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curvature effect and diffusive terms in the governing equation (2.17). The following
variable change is made to magnify what is occurring within this boundary layer:

ξ = ξf − ηtσ ,

with σ < 0 a constant to be determined such that η = t−σ (ξf − ξ ) = O(1). With this
variable change, (2.17) becomes(

−3H 2 +
1

3
ξf

)
∂H

∂η
t−σ +

∂H

∂t
t − H

3
− η

3

∂H

∂η
− ησ

∂H

∂η

=

[
3H 2

(
∂H

∂η

)2

+ H 3 ∂2H

∂η2

]
t−2/3−2σ .

Since σ < 0, the right-hand side must counterbalance the first two terms on the
left-hand side, which imposes σ = −2/3. We then use the expansion for the inner
similarity solution:

H (ξ, t) = K0 + tχ1K1(ξ ) + · · · ,
with χi < 0 and Ki functions of ξ alone. The equation governing K0 is

−3K2
0

dK0

dη
+

1

3
ξf

dK0

dη
− 3K2

0

(
dK0

dη

)2

− K3
0

d2K0

dη2
= 0, (2.22)

with the following conditions:

K0(ηf ) = 0, (2.23)

lim
η→∞

K0 = lim
ξ→ξf

H0(ξ ) =

√
ξf

3
= K∞, (2.24)

ηf being the value of η at the front. Integrating (2.22) yields

η − ηf = ηs(K0) =

∫ K0

0

dk

(1/3)(ξf /k2) − 1
= K∞ tanh−1

(
K0

K∞

)
− K0. (2.25)

Equation (2.25) is an implicit equation for the flow depth K0(η) within the boundary
layer. To determine ηf , we assume that within the boundary layer, mass is merely
redistributed with no creation or loss:

|ηf |Ke − K∞

∫ Ke

0

ηs(K)dK = K∞

∫ K∞

Ke

ηs(K)dK − (K∞ − Ke)|ηf |,

where Ke is the K value for which ηs(Ke) = 0. After rearrangement, we find

K∞|ηf | = K2
∞

(
log 2 − 1

2

)
,

which gives

ηf = −
(
log 2 − 1

2

)
K∞ ≈ −0.193K∞ < 0.

The thickness of the boundary layer accounts for approximately 20% of the front
depth given by the outer solution.

2.5. Summary and remarks

To summarize the computations, we have found that the front position is given by

xf = ξf t1/3 +
(
log 2 − 1

2

) √
ξf

3
t−1/3, (2.26)
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Figure 2. Flow-depth profiles provided by the numerical solutions (solid line) of the nonlinear
diffusion equation (2.15) for θ = 0◦ and at times t = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and
1024. The similarity solutions (2.18) are also reported (dashed line).

with ξf given by (2.21). The flow depth is the composite of the inner and outer
solutions

h(x, t) = t−1/3

(√
1

3

x

t1/3
+ K0

(
(ξf − xt1/3)t2/3

)
−

√
ξf

3

)
. (2.27)

Huppert (1982a) and Lister (1992) derived the same outer solution (2.20). In their
derivation, the diffusive term arising from the flow-depth gradient in the mean velocity
is neglected†.

Apart from analytical approximations (e.g. the similarity solutions worked out
above), there is no full analytical solution to the initial boundary value problem
(2.2)–(2.10), which must be then solved numerically. For this purpose we used the
pdepe routine provided in Matlab to solve parabolic differential equations in one
space variable.

Figure 2 shows flow-depth profiles at different times ranging from 1 to 1024 when
the flume inclination is set to zero. We also reported the similarity solutions (2.18)
corresponding to pure diffusion. As documented in earlier papers (Mathunjwa &
Hogg 2006), the solution of the initial value problem tends rather quickly towards
the similarity solutions. Even at short times, there is not much difference between the
front position computed numerically and that given by (2.19). For time values above
10, no difference in the shape of the flowing mass can be seen.

For non-zero inclinations, the convergence towards the similarity solution is slower.
As shown in figure 3 for a flume inclination θ = 6◦, we have to wait until t = 256
for the deviation between the numerical and composite solutions to drop to zero.
Note however that for t � 32 the front position given by the composite solution
(2.27) slightly deviates from the front computed numerically by less than 5 % and
the shapes are very close. Indeed, as shown in figure 4, the similarity solution closely
approximates the numerical solution at sufficiently long times, i.e. for t � 32.

3. Slope-dominated regime
We now use perturbation methods and matched asymptotic expansions to study

the behaviour of the Newtonian fluid released down a sloping bed, whose inclination

† Lister (1992) gave certain details on how to find the inner solution, but did not provide a
complete solution.
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Figure 3. Flow-depth profiles provided by numerical equation (solid line) of the nonlinear
diffusion equation for θ = 6◦ at dimensionless times t = 1, 2, 4, 8, 16, 32, 64, 128 and 256.
In subplot (a), we plotted the analytical approximation (2.27) obtained by composing the
inner and outer similarity solutions (dashed line). In subplot (b), the analytical solution (3.7)
corresponding to pure convection is reported. Computations were made with κ = 0.186.
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Figure 4. Flow-depth profiles h(η, t)/t−1/5 normalized by hmax =
√

ξf /3: we plotted our
numerical simulations (thin dashed lines marked with symbols) and composite solutions (thick
line) obtained by taking the t → ∞ limit of (2.27) for θ = 6◦ at dimensionless times t = 1, 2,
4, 8, 16, 32, 64, 128 and 256. Computations were made with κ = 0.186.

may be large. As sketched in figure 1, the flow can be split into two different regions:
the body and the front, where the flow depth drops to zero. For the body, the leading-
order terms of the governing equations are obtained by removing the contributions
that depend on ε in (2.3) and (2.4) while keeping Re order one. As readily seen in
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the momentum equations, the bulk of the flow is in a nearly steady regime, where
gravity acceleration is counterbalanced by the cross-stream gradient of the shear
stress. Since this behaviour conflicts with the boundary condition (2.9), a boundary
layer correction is needed at the front. Indeed, the steady-regime solution is no longer
valid within the tip region because the pressure gradient ε∂xp becomes non-negligible.
The dynamics of the front is then controlled by the balance between the streamwise
pressure and stress gradients, ε∂xp ∼ εh/ξ and ∂yσxy ∼ (u/h)/h, respectively,

ε
h

ξ
∼ (u/h)

h
, (3.1)

with ξ = x − xf and u ∝ h2. The extent of the boundary layer can then be estimated
as ξ = O(εh). In this subsection, we will describe the solution for the body, referred
to as the outer solution, while in the next subsection, attention will be focused on
the boundary layer correction (called the inner solution). The inner solution smoothly
connects to the outer solution at x = xf for the flow depth. For the velocity field,
a more refined matching procedure is required, in which an intermediate expansion
must be considered to patch the inner and outer solutions; this situation is also
encountered in some capillary-driven flows (Hocking & Rivers 1982; Cox 1986).

3.1. Body behaviour

We pose the following asymptotic expansions for the velocity, pressure and flow
depth: u = u0 + εu1 + · · ·, p = p0 + εp1 + · · · and v = v0 + εv1 + · · ·. Taking Re = O(1)
and Ca � 1 and keeping terms of order zero in the governing equations (2.2)–(2.4),
we transform the Navier–Stokes equations to obtain the following set of equations:

3 +
∂2u0

∂y2
= 0, (3.2)

1 +
∂p0

∂y
= 0, (3.3)

with the same boundary conditions as previous for the diffusive–convective regime.
The pressure is still hydrostatic to leading order: p0 = h0 − x. Integrating (2.12) twice
provides the flow-depth averaged velocity: ū0 = h2

0. We end up with a nonlinear
convection equation that governs the flow-depth variation with time

∂h0

∂t
+

∂h3
0

∂x
= 0. (3.4)

This equation is similar to the governing equation of h for the body of a viscous
sheet in a diffusive–convective regime at long times. As previously, we can solve
the governing equation by seeking similarity solutions, but a full analytical solution
to the boundary initial value problem can be worked out by using the method of
characteristics. The governing equation (3.4) can be recast into the characteristic form

dh

dτ
= 0 with

∂t

∂τ
= 1 and

∂x

∂τ
= 3h2, (3.5)

where τ is a dummy variable. The convection equation being hyperbolic,
discontinuities can develop and propagate at a velocity ṡ given by

ṡ[[h]] = [[h3]], (3.6)

where [[h]] is the jump experienced by h across the shock located at x = s(t). Taking
the initial conditions t(0) = 0, x(0) = x0 and h(0) = hi(x0) given by (2.10) into account
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Figure 5. (a) Characteristics of the convection equation (3.4) in the x–t plane. The thin solid
lines represent the characteristics emanating from x = 0 with a slope imposed by the initial
flow-depth profile. The dot-dashed lines are the characteristic fan originating from the point
of origin O and representing the rarefaction wave at the tail of the flowing mass. The thick
line is the locus of the front position x = s(t); at point A, the steepest characteristic x = m0t
emanating from O intersects the shock curve, which produces a kink in the shock curve.
(b) Evolution of h(x, t) from t = 0 (dashed line) to 2 by 0.25 time step (solid lines); for
t > tA = 1.49, the profiles become parabolic. Computations made for κ = 1/2.

and eliminating τ , we find that

h(x, t) =

√
12κt(κ(x − �) + hg) + 1 − 1

6κt
. (3.7)

Initially, at x = 0 and x = κ , the flow depth discontinuously drops to 0. At the right
end of the reservoir, this initial discontinuity gives rise to a shock, which propagates
at the velocity ṡ prescribed by (3.6): ṡ = h2

f , where hf denotes the flow depth at
the front and is evaluated using (3.7) at x = s. At the left end of the reservoir, a
centred rarefaction wave propagates into the tail of the flowing mass (see figure 5). Its
features are deduced by seeking wave solutions in the form H(ζ ) to the convection
equation (3.4), with ζ = x/t (Courant & Friedrich 1948). We find that

H(ζ ) =
√

1
3
ζ . (3.8)

The characteristics associated with this rarefaction wave form a fan of straight lines
emanating from the point of origin (x, t) = (0, 0): x = mt , with m a parameter
satisfying 0 � m � m0 and m0 = 3(hg − κ�)2 (as shown in figure 5a). At time tA, the
steepest characteristic coming from O intersects the frontal shock curve x = s(t) at
point A. For time t � tA, the flow-depth profile is piecewise continuous with h(x, t)
given by (3.7) for m0t � x � s(t) and by (3.8) for 0 � x � m0t . Time tA is the time at
which the flow depth becomes independent of the initial conditions and conforms to
a parabolic shape given by (3.8) (as shown in figure 5b).



12 C. Ancey, S. Cochard and N. Andreini

3.2. Behaviour within the tip region

As shown in the previous subsection, there is a boundary layer of size ε at the front.
To see what is occurring in this boundary layer, we make the following change of
variable:

x ′ =
x − xf (t)

ε
.

In the mobile frame attached to the front, the dominant balance in the momentum
balance equation (2.3) is between the streamwise gradient of the pressure and the
cross-stream gradient of the shear stress, suggesting that the proper velocity scale
is now Udiff = ε3/2U∗ (like in the purely diffusive regime, with a corrective term to
account for slope effect). The flow depth must then scale as h = O(ε) so that the
streamwise gradient of the pressure balances the cross-stream gradient of the shear
stress provided that S = cot θε1/2 = O(1); we then pose

ε = tan2 θ. (3.9)

Setting S = 1 is arbitrary, but entails no loss of generality. We now embody this
scaling analysis into an asymptotic analysis by substituting the following stretched
variables into the governing equations (2.3)–(2.4): x = xf + εx ′, y = εy ′, t = εt ′,
u = ε3/2u′ = ε3/2u′

0 + · · ·, v = ε3/2v′ = ε3/2v′
0 + · · ·, h = εh′

0 + · · · and p = εp′
0 + · · ·.

The re-scaled momentum balance equations are

ε1/2Re

(
du

dt ′ − ẋf

∂u

∂x ′

)
= 3ε1/2 − 3S

∂p

∂x ′ + ε2 ∂2u′

∂x ′2 +
∂2u′

∂y ′2 , (3.10)

ε3/2Re

(
dv

dt ′ − ẋf

∂v

∂x ′

)
= −3 cot θ

(
1 +

∂p

∂y

)
+ ε5/2 ∂2v′

∂x ′2 + ε1/2 ∂2v′

∂y ′2 . (3.11)

The stress boundary conditions at the free surface y = h(x, t) imply that p′ = 0 and
∂y ′u′ = 0. The matching conditions also demand that the velocity fields and flow
depth smoothly connect to the outer solution for x ′ → −∞; among others, we have

lim
x ′→−∞

h(x ′, t ′) = hf , (3.12)

with hf the flow depth at x = xf given by the outer solution. Keeping Re order
one and dropping all terms of order one or higher, we can integrate the momentum
balance equations (3.10) and (3.11) to obtain

p0 = h0 − y and u′
0 = − 3

2
S∂x ′h′

0(2h′
0 − y ′)y ′. (3.13)

Note that the velocity field given above does not patch with the outer solution, which
imposes u′ ∝ 3 (h′ − (1/2)y ′) y ′ in the x ′ → −∞ limit. To cure this, we must introduce
an intermediate variable x = ε1/2x ′′ as well as y = ε1/4y ′′, u = ε1/2u′′, h = ε1/4h′′ and
p = ε1/4p′′. This produces a velocity profile u′′ = 3(1−cot θ∂x ′′h0)(2h′′

0 −y ′′)y ′′/2, which
smoothly connects to the inner and outer solutions in the x ′′ → 0 and x ′′ → −∞
limits, respectively. This transition zone is rather thin and can be neglected here.

Integrating the velocity profile (3.13) leads to the flow-depth averaged velocity
ū′ = −S∂x ′hh′2 or equivalently ū = −Sε−1/2∂x ′hh2 = − cot θ∂x ′hh2 to leading order.
The evolution equation for the flow depth is then

∂h

∂t ′ +
∂

∂x ′ G(h) = 0, with G(h) = −h3 cot θ
∂h

∂x ′ (3.14)

and subject to the boundary condition (3.12). Since the volume of fluid contained
in the inner region is order ε, mass is merely redistributed with no creation or loss
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within the head. The initial condition for the evolution equation (3.14) is

h(x ′, 0) = hf for x ′ � 0,

h(x ′, 0) = 0 for x ′ > 0.

}
. (3.15)

The initial boundary value problem (3.14) and (3.15) must be solved numerically.
For this purpose we used the pdepe routine provided in Matlab to solve parabolic
differential equations in one space variable. Note that (3.14) also admits asymptotic
solutions as seen in § 2.2.

After substituting the stretched variables (x ′, t ′) with the original scaled variables
(x = xf + εx ′, t = εt ′) in the solution to (3.14), we obtain a composite solution made
up of the outer solution houter and the inner solution hinner

hcomp. = houter + hinner − hf ront , (3.16)

where hf ront = hf is their overlap value (i.e. the flow depth at the front of the outer
solution), houter the solution to (3.4) and hinner the solution to (3.14). The composite
solution provides a uniform approximation of the solution to leading order.

3.3. Remarks and summary

Except for the aspect-ratio number ε, the inner and outer solutions for the slope-
dominated regime have the same behaviour as the solutions related to the diffusive–
convective regime: at fairly short times after the slumping phase, the body (outer
solution) is in a convective regime close to a steady-uniform flow, while the head
dynamics is dominated by the balance between pressure gradient and viscous
dissipation. Physically, there is not much difference between the diffusive–convective
and slope-dominated regimes and thus no real transition from one to another one. In
particular, the long-term approximation for the flow-depth profile pertaining to the
body (outer solution) is the same for both regimes [see (2.20) and (3.8)], while the
head has nearly the same shape. Taking a closer look at the outer solution worked
out in § 3.1 unveils some interesting features: to solve the initial boundary value
problem, we had to solve a double Riemann problem at the left and right ends of
the initial volume. The left-end discontinuity gives rise to a rarefaction wave, which
quickly overtakes the shock wave issuing from the right end. As shown in figure 5
on a particular example, the rarefaction wave catches up the shock wave at the end
of the slumping phase, after the front travelled a distance �; the details of the initial
conditions dissipate rapidly, which explains why the similarity solution provides a
fairly good representation of behaviour although the initial volume is considered a
point source. This also shows that although the flow is in a subcritical regime (with a
Froude number lower than 0.1) for which both upstream and downstream boundary
conditions are expected to play a role, its dynamics is entirely controlled by the
rarefaction wave emanating from the tail; the head is pushed forward by the body
and must then accommodate change imposed by the latter.

4. Experiments
4.1. Experimental facility

We used a 30 cm wide, 4 m long flume fed by a reservoir, as sketched in figure 1.
The flume laid on an aluminium plate, which was 4 m long, 1.8 m wide and could
be inclined from 0◦ to 45◦. Its position was accurately controlled using a digital
clinometer with a precision of 0.1◦. The plate was supported by a frame made of
profiled aluminium beams to ensure rigidity.
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Figure 6. Reconstruction of the free surface using image processing for slope θ = 12◦ and
time t = 28 s (after Cochard 2007).

The reservoir was positioned at the top of the inclined plane behind the dam wall.
The maximum capacity of the reservoir was 120 kg. The dam wall was composed of a
1.6×0.8 m2 ultralight carbon plate. Two pneumatic jacks opened the sluice gate at the
desired aperture within 0.5 s. An ultralight dam wall was needed to reduce dam-wall
inertia, plane vibration and jerk. The two jacks were quickly raised by injecting air
pressured at 7 MPa. Two electromagnetic sensors were located at the tip of each jack
to control its position and reset the clock.

Before each run, the fluid was gently poured into the reservoir, while the inclined
plane was kept in the horizontal position. The flume was then inclined at a given
slope. The material was then left at rest until its free surface became horizontal. At
time t = 0, the sluice gate was raised and the material started accelerating and flowing.
The surge motion was imaged by a digital camera. When the front went beyond the
imaged area, we stopped recording images. The material was then removed from the
flume and the plane was carefully cleaned out.

To accurately measure the surge’s free-surface variations with time, we have
developed a new imaging system, consisting of a digital camera (Basler A202k Pixels
camera provided by Qualimatest, Geneva, Switzerland) coupled with a synchronized
micromirror projector (modified z-Snapper provided by ViaLux, Chemnitz, Germany).
The object’s surface was imaged into a camera and patterns were projected onto the
surface under an angle of incidence that differed from the imaging direction (Cochard
2007; Cochard & Ancey 2008). From the deformed pattern recorded by the camera,
the phase could be extracted and, using unwrapping algorithms, the height was
computed and the free surface reconstructed. We were able to measure the free
surface of the flow to within 1 mm every 22 ms.

As shown in figure 6, we measured the flow-depth profile at the centreline of the
flow. To attenuate noise effects, the flow depth was averaged over at 10 pixel band
along the centreline (approximately 1 cm). Note also in this figure that the contact line
was a flattened parabola, whose shape was nearly independent of time (except at early
times during the slumping phase) and since we worked at high capillary numbers, the
contact line was stable. The position of the front was evaluated at the flow centreline
seeking the position at which the flow thickness dropped below a given threshold. On
some occasions, locating the front accurately was difficult because of glints arising at
the free surface near the contact line; these glints blurred the projected patterns and
introduced noise in the post-treatment phase. The uncertainty on the front position
could then be as high as 5 mm.
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θ (deg.) Mass (kg) h̃g (cm) μ (Pa s) Re Ca L∗ (m) H∗ (cm) T∗ (s)

0 56.1 25.8 345 10−3 to 0.05 15–261 1.18 10 131
6 56.7 28.8 352 6 × 10−3 to 0.13 81–671 3.47 3.8 1712

12 57.0 31.6 352 11 × 10−3 to 0.35 161–1606 1.72 7.7 104
18 57.6 34.8 345 17 × 10−3 to 0.72 239–2895 1.13 11.9 19.1
24 50.8 34.7 345 23 × 10−3 to 0.94 315–378 0.77 15.3 5.99

Table 1. Features of each experimental run: for each slope θ , the mass of glucose contained in
the reservoir, the maximum gate aperture h̃g and the viscosity μ measured at room temperature
are reported. The typical range of variation of the Reynolds and capillary numbers Re and
Ca, respectively, are also indicated. We also report the length, flow depth and time scales
L∗ =

√
V/ε, H∗ =

√
V ε and T∗, respectively.

4.2. Material

Highly concentrated glucose–water solutions were used. Compared to industrial oils,
glucose syrup offers many advantages: it is a non-toxic product that is easy to clean
out of the flume (using hot water) and is relatively inexpensive. It can be coloured
in white using titanium dioxide, which is essential to enhancing contrast for image
processing. Depending on the glucose concentration in the solution, the dynamic
viscosity ranges from 10−3 to 104 Pa s. There are, however, some disadvantages that
make its use somewhat delicate. At high concentrations, glucose syrup is unstable
and crystallizes rather quickly, in particular when impurities (e.g. titanium dioxide)
are added to the solution. In practice, once prepared, the solution must be used
within 2 days. To reach high glucose concentrations, one must heat the solution at
temperatures as high as 110 ◦C, but because of Maillard’s reaction, the syrup may
blacken, which is a major impediment for image contrast.

In practice, we prepared large volumes of glucose by melting 75 kg of dextrose
monohydrate (in three 25 kg batches). While vigorously mixing the solution on a
regular basis, we maintained it in an oven at a temperature of 130 ◦C until it was
fully liquid and homogeneous (i.e. with no crystals). The solvent was deionized water,
which was progressively added such that the final mass solution concentration was
95.8%, which allowed us to reach viscosities close to 350 Pa s at 20 ◦C (Schenck
2007). A small quantity of titanium oxide (50 g) was also added to whiten the syrup.
The solution was then cooled to 20 ◦C as quickly as possible to avoid crystallization.
A mass of approximately 50 kg was then gently poured into the reservoir. A fluid
sample was collected and its rheological behaviour was characterized using a Bohlin
CVOR rheometer and cone-and-plate geometry. All runs were carried out in a room
at constant temperature and hygrometry.

Table 1 summarizes the value of the parameters for each experimental run. The
surface tension was γ = 0.06 Pa m and the density was ρ = 1420 kg m−3. In table 1,
the range of variation of the Reynolds and capillary numbers is also reported. Initially
the aspect-ratio number hf /xf ranged from 0.5 (θ = 0◦) to 0.68 (θ = 24◦), but rapidly
dropped below 0.1. On average, the Reynolds number was close to 10−2, while the
capillary number was of the order of 200.

4.3. Results for a horizontal flume

Figure 7(a) reports flow-depth profiles at physical times t̃ = 2k s with k = 0, 1, . . . , 8,
i.e. dimensionless times t = 0.0076×2k . We also plotted the similarity solutions (2.18).
The shape of the flowing mass is correctly predicted, but taking a closer look at
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Figure 7. (a) Flow-depth profiles h(x, t): experimental data (solid lines) and similarity
solutions (dashed lines) at times t = 7.6 × 10−3, 15.2 × 10−3, 30.4 × 10−3, 60.8 × 10−3,
0.122, 0.243, 0.486 and 0.973. (b) Flow-depth profile (h/t−1/5)3 as a function of ξ = x/t1/5:
experimental data and similarity form (solid line) given by (2.18) are reported; the dashed line
(h/t−1/5)3 = (9/10)(1.3 − ξ ) is the best-fit line.

figure 7(b), where we scaled the data by plotting (h/t−1/5)3 as a function of ξ = x/t1/5,
shows that the data collapse onto a single curve, but this curve differs slightly from
the expected similarity form. The experimental curve (h/t−1/5)3 has a finite slope that
matches the theoretical value at the leading edge, but there seems to be a systematic
shift between the two curves: the theoretical curves are ahead of �ξ = 0.15. This
phenomenon is even clearer when plotting the front position as a function of time
(see figure 8). At short times, we observed that the front hardly moved, then for
times greater than 5 × 10−3, it accelerated more frankly. This slumping phase is not
properly described by the similarity solution, which is normal since it describes how
the flowing mass behaves after a certain period of time when the initial conditions no
longer influences flow dynamics. At longer times, the experimental curve parallels the
theoretical curve for the range of experimental times 10−2 to 1. There is little evidence
that it would have converged towards the theoretical curve just after the maximum
observation time.
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Figure 8. Front position with time for θ = 0◦ in a log-linear plot: experimental data (solid
line) versus theoretical curve (dashed line) xf = ξf t1/5 with ξf given by (2.19).

Returning to figure 7(b), we also observe that far away from the contact line,
the experimental profile (h/t−1/5)3 varies nearly linearly with ξ , while the similarity
solution predicts a profile varying as ξ 2

f −ξ 2. In summary, the t1/5 scaling for the front
position is in agreement with experiments, but there is a systematic shift with the
experimental data. The normalized flow-depth profiles (h/t−1/5)3 approach a similarity
form closer to 9/10(1.3 − ξ ) than 3/10(ξ 2

f − ξ 2).
This systematic shift between experimental and theoretical curves may result from

the initial conditions. Indeed, when the gate was opened, a fluid layer of approximate
thickness

√
μ�t�/ρ = 0.3 m (with �t� ∼ 0.5 s the typical time needed to open the

gate) was lifted up with the plate. This uplift of the fluid was sufficient to cause delay
and may partly explain why the experimental curve deviates from the theoretical
curve. As shown with numerical simulations, when the flume inclination is zero, the
asymptotic solution is approached at long times (typically longer than 200); at short
times, the similarity solution was significantly ahead of the numerical solution (see
figure 3). Another explanation lies in the three-dimensional nature of the flows in our
flume. Because of sidewalls, there was a shear gradient in the cross-stream direction. A
crude analysis shows that the ratio R of the downstream-to-cross-stream shear stresses
is of the order of W/h, with W the flume width. Here, typically at t̃ = 120 s, we had
h ∼ 4 cm, which yields R ∼ 7, showing that even at late times, the flow structure
remained three-dimensional. This may explain why the front was late relative to the
theoretical solution, but this does not explain why the flow-depth profile far away
from the contact line deviates from the similarity form. Indeed, since the flow-depth
profile was measured at the centreline, the cross-stream shear rate was virtually zero
and the flow structure was expected to be two-dimensional there.

4.4. Results for sloping flumes

Theoretically, we expect the front xf = ξf t1/3 with ξf given by (2.21), which implies
that (xf /ξf )3 varies linearly with time. Figure 9 shows that for flume inclinations
ranging from 6◦ to 24◦, this ratio effectively tends towards a straight line at sufficiently
long times, but this experimental trend parallels the theoretical curve (x/ξf )3 = t (solid
line) without converging towards it. Again, we find a systematic shift between the
experimental and theoretical curves. On the same figure, we have plotted the front
position xf + εx ′

f for the composite solution (3.16) computed for each plane inclination
(dashed lines). The curves converge towards the similarity solution at sufficiently long
times. While they provide a reasonable approximation of the observed behaviour
at short times, they parallel the experimental trend at long times without tending
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slopes are indicated. The solid line represents the theoretical curve (x/ξf )3 = t corresponding
to the outer similarity solution (2.21). The thick dashed lines stand for the front position
xf + εx ′

f for the composite solution (3.16) computed for each slope.

towards them. We do not report here flow-depth profiles since they present the same
type of information as figure 7(a) if we remain at a qualitative level. The systematic
delay between the experimentally observed and computed front positions makes it
difficult to test the model reliability by merely looking at the evolution of h(x, t)
profiles. To further expand our analysis we need to replot the flow-depth profiles
as functions of η − ηf or xf − x to compare the experimental data with the curves
provided by the composite solutions (2.27) and (3.16) at different times.

We first address the occurrence of a diffusive–convective regime, for which ε was
order tan θ . Figure 10 shows the normalized flow-depth profiles h(η, t)/hmax as a
function of the inner variable η − ηf for slopes in the 6◦–24◦ range, where hmax is
the maximum thickness of the viscous sheet at time t and η = (ξf − ξ )t2/3 (with
ξ = x/t1/3). As seen by comparing the different subplots, there is a contrasted effect
of slope on the experimental curves. For θ = 6◦, the experimental data at sufficiently
long times (t > 0.1) collapse onto a single line, which does not differ too much from
the theoretical curves computed at the same times. For θ = 12◦, the data come close
to the master curve (dashed line) obtained by taking the t → ∞ limit of the composite
solution (2.27), but do not fall on the composite-solution curve when the latter is
computed at the same time as the data; this is in line with the systematic delay
observed for the front position. For both slopes, the nose presents a very steep face.
At higher slope values (θ � 18◦), the tip region presents an acuter angle and data
are clearly below the theoretical profile (regardless of the time at which the solution
is computed). The deviation from the theoretical curve at higher slopes is expected
since the theoretical developments hold for ε = tan θ � 1.

We then address the slope-dominated regime, for which ε scales as tan2 θ . Figure 11
shows the normalized flow-depth profiles h(x, t)/hmax as a function of the distance
to the front xf − x for slopes θ ranging from 6◦ to 24◦, where hmax is the maximum
thickness of the viscous sheet at time t . For θ = 6◦, theoretical curves significantly
deviate from the experimental data (as expected). At higher slopes (θ � 12◦), the
experimental data at sufficiently long times (t > 0.1−0.2) come close to the theoretical
curves, which confirms that the scaling used in § 3 is appropriate.
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dimensionless times. We also plotted the composite solutions (thick line) by computing (3.16)
at three different times (reported above each curve).
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5. Concluding remarks
In this paper, we investigated the dam-break problem, where a fixed large volume

of glucose was unleashed into a flume. Theoretically, we idealized this setting as
a two-dimensional problem. When slope was shallow, we used lubrication theory
and followed earlier authors (Huppert 1982a,b; Grundy 1983a; Gratton & Minotti
1990; Lister 1992; Witelski & Bernoff 1998; Mathunjwa & Hogg 2006) by seeking
similarity solutions to the Navier–Stokes equations in the low-Reynolds-number
and high-capillary-number limit. Slope shallowness implies that the aspect ratio ε

must be order tan θ . This scaling no longer holds at large slopes. In that case, we
used perturbation techniques and matched asymptotic expansions to find analytical
approximate solutions to the initial boundary value problem; we also found that ε

must scale like tan2 θ .
In recent years, much attention was paid to shallow slopes, for which similarity

solutions can be worked out (our paper just summarized the early work). These
solutions represent the intermediate asymptotics, i.e. they describe the behaviour of
the flowing mass of fluid after a certain length of time when the initial conditions
have been forgotten. It is now well accepted that similarity theory is an indispensable
tool not only to provide analytic solutions to the equations of motion, but also to
shed light on the physical behaviour of a system at sufficiently long times, i.e. after
the details of the initial conditions have dissipated (Barenblatt 1996). A critical point
for the meaningfulness of similarity solutions lies in the convergence rate towards a
similarity form, that is, the time needed for the solution to any initial value problem to
approach the similarity form. The only initial parameter that matters for the similarity
solutions is the volume of fluid released, which is needed to compute the spreading
rate. We first investigated the dam-break problem for shallow slopes numerically, then
experimentally.

Numerically, we found that the solution to our initial value problem converged
rather quickly towards the similarity form when the flume inclination was zero.
In contrast, it took much more time for the initial-value solution to approach the
similarity form for non-zero flume inclinations. Typically, we found that for physical
times of the order t̃ ∼ 24μ�2/(ρgh̃3

g), the differences between numerical and similarity
solutions did not exceed 1% when the flume inclination was zero, whereas for a slope
of 6◦, it was not until t̃ ∼ 768μ/(ρg cos θh̃g) that convergence was observed. This
difference in the convergence rate reflects the difference in the governing processes.
For zero inclinations, the governing process is diffusion. In this case, the initial
discontinuity in the volume shape was rapidly smoothed out when the fluid slumped.
For non-zero inclinations, the body behaviour of the flowing mass is controlled by
convection, while the behaviour in the leading edge is dominated by a balance between
the temporal evolution of h and diffusion. The thickness of the frontal boundary layer
accounted for approximately 20 % of the flow thickness and thus decreased with time,
giving the nose the appearance of a shock wave in the course of motion.

Experimentally, the data collected in the flume tell a slightly different story. For
horizontal and sloping flumes, we observed that the front position scaled as t1/5

and t1/3, respectively, as expected using similarity theory. There was, however, a
systematic delay between the observed and computed front positions. This delay may
be explained by the uplift of part of the fluid caused by removing the gate and
the three-dimensional nature of the flows (induced by the finite width of the flume).
Another troublesome aspect was the flow-depth profiles. The experimental profiles
exhibited similarity properties, but the similarity shape differed from the theoretical
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shape. For zero flume inclination, the flow depth at the contact line was properly
described by theory, but as one goes away from the front, the flow-depth profile
varies: (xf − x)1/3 rather than (x2

f − x2)1/3. For sloping flumes, we observed that
for mild slopes (θ in the 6◦–12◦ range) the experimental profiles came close to the
theoretical profile given by the inner similarity solution.

For large slopes (θ > 12◦), a different scaling is required for ε: ε scales as tan2 θ

rather than tan θ . Except for the systematic delay between the computed and observed
front positions, good agreement is found between theory and experiment for the
flow-depth profiles. In spite of a few differences in the mathematical treatment,
the governing equations and solutions at large and shallow slopes are very similar.
At fairly short times after the slumping phase, the body (outer solution) is in a
convective regime close to a steady-uniform flow, while head dynamics is dominated
by the balance between pressure gradient and viscous dissipation. The long-time
approximation for the outer solution (body) is the same for both slope ranges [see
(2.20) and (3.8)]. Examination of the outer solution worked out in § 3.1 shows that
the details of the initial conditions dissipate rapidly, which explains why the similarity
solution provides a fairly good representation of behaviour. Another striking point
is that although the flow is in a subcritical regime (with a Froude number in the
0.001–0.1 range), its dynamics is entirely controlled by the rarefaction wave emanating
from the tail; the head is pushed forward by the body and accommodates change
imposed by the latter.
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