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We investigated the dam-break problem for Herschel–Bulkley fluids: a fixed volume of a viscoplastic
material (a polymeric gel called Carbopol ultrez 10) was released and flowed down an inclined flume.
Using Particle Image Velocimetry techniques, we measured the velocity profiles far from the sidewalls,
the front position as a function of time, and the flow depth evolution at a given place. The experimental
data were compared to three models of increasing complexity: the kinematic wave model, an advection
diffusion model (lubrication theory), and the one-layer Saint-Venant equations. Surprisingly, the best
agreement was obtained with the simplest model (kinematic wave model) even though it could not cap-
ture the details of the head profile (regarded as a shock wave, i.e., a discontinuity). Lubrication theory (the
advection diffusion model) performed well from a qualitative viewpoint. Computed velocity profiles and
depth evolution were in reasonably good agreement with data, but this model overestimated initial
acceleration, which resulted in a systematic difference between theoretical and experimental curves of
the front position over time. This shortcoming was not fixed when using a more elaborate model
(Saint-Venant equations), rather it was exacerbated. The relatively modest performance of the more elab-
orate models was intriguing (for Newtonian liquids, the best agreement was obtained with the most
sophisticated model).

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Viscoplastic models such as the Herschel–Bulkley and Casson
models have been extensively used in engineering and geophysical
fluid mechanics as an idealization of materials that behave like sol-
ids when at rest, but like liquids when sufficient stress is applied
[15,3]. The significance of viscoplastic models has been extensively
debated from different perspectives. Their relevance to natural
flows such as snow avalanches and debris flows has been ques-
tioned: while a few field observations and experiments support
their relevance [24,36,22,38], there is also increasing evidence that
the behavior of sediment laden flows may contrast significantly
with the predictions of viscoplastic flow theory [35]. From the rheo-
metric standpoint, there are also considerable difficulties related to
the measurements of rheological properties in conventional rheom-
eters, which arise from technological constraints (e.g., proper com-
putation of shear rate in a wide-gap rheometer, wall slip control)
[2,50] and/or occurrence of more complicated effects (e.g., visco-
elasticity, thixotropy) [49]. The mere existence of a true yield stress
has been a hot topic for a long time [14,17]. Controversies and de-
bates also arose in the development of flow-dynamics models for
ll rights reserved.
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viscoplastic fluids, i.e. models that compute pressure-driven flows
in pipes or the spreading of a fluid over a surface. A feature of visco-
plastic flows is the occurrence of rigid regions (where the material
does not deform under the action of applied stresses) surrounded
by flow regions (where the material has yielded and deforms con-
tinuously). A key issue is then the interplay between the flowing
and unsheared/stagnant regions. The occurrence of rigid regions
(also referred to as plugs) raises a number of difficulties from the
mathematical and numerical points of view. Naïve use of computa-
tional methods that perform well for Newtonian fluids leads to par-
adoxes. One classic example is the existence of genuinely unsheared
region in nonuniform free-surface flows [52,11]: since for free-sur-
face flows, the shear stress tends to zero approaching the free sur-
face, it has been argued that the upper layers should be
unyielding and move as a rigid block, but if the flow is nonuniform,
the plug velocity should also vary in the downstream distance to
accommodate flow depth changes, which conflicts with the rigidity
of the upper layers. A consistent asymptotic treatment shows that
the upper layers are not unyielding, but slightly sheared [11].
Regularization of viscoplastic constitutive equations in numerical
models has also led to convergence problems [27]. The lessons
one can learn from these investigations are that (i) it is much harder
to find correct approximations of the stress field for viscoplastic
materials than for Newtonian fluids and (ii) small errors in the stress

http://dx.doi.org/10.1016/j.advwatres.2012.03.015
mailto:christophe.ancey@epfl.ch
http://dx.doi.org/10.1016/j.advwatres.2012.03.015
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres


80 C. Ancey et al. / Advances in Water Resources 48 (2012) 79–91
estimates may lead to substantial errors in the strain rate computa-
tion. In this context, gleaning information about the performance of
simple flow-dynamics models is of paramount importance.

The objective of the present paper is to review some of the ef-
forts to model viscoplastic flows down an inclined flume, highlight
the crucial assumptions, and compare the results with a set of new
data. Most current models exploit the flow shallowness to simplify
the local mass and momentum balance equations (Cauchy equa-
tions) a great deal and derive governing equations that are analyt-
ically tractable or easier to solve numerically than the original
conservation equations. For viscoplastic flows over horizontal or
inclined surfaces, the use of a lubrication approximation dates back
to Liu and Mei [43,44]. Further theoretical insights and extensions
were given by Balmforth et al. [10,13,12], Matson and Hogg [46],
Hogg and Matson [30], and Ancey and Cochard [5]. Lubrication
models are regarded as appropriate approximations provided that
the flow is sufficiently slow for inertia to have negligible effects
[47]. When the inertia terms can no longer be neglected in the
momentum balance equation, the governing equations are usually
derived by averaging the local conservation equations over the
stream depth. While the earliest models were ad hoc adaptations
of the shallow water equations (also referred to as the Saint-Venant
equations) [21,39,26], growing attention has been paid to deriva-
tions of the governing equations using consistent asymptotic
expansions of near-equilibrium solutions to the Cauchy equations
[32,25].

An outline of our paper is as follows. In Section 2, we start with
a review of the main notions used hereafter, in particular the veloc-
ity profiles and shear stress distribution for uniform and slightly
nonuniform flows of Herschel–Bulkley fluids. Emphasis is given
to simple shear flows (we do not provide a full overview of rheo-
logical behavior and stress computation for viscoplastic materials).
In Section 3, we describe the experimental facility and protocol.
We also provide velocity profiles for different slopes and times.
In Section 4, we outline three theoretical models in common use:
the kinematic wave model, an advection diffusion model (lubrica-
tion theory), and the one-layer Saint-Venant equations. We briefly
describe the governing equations and how solutions can be ob-
tained. Note that the goal was not to develop new models or
numerical solvers, but to present a fair comparison of models of
increasing complexity. A failed attempt to solve the three-dimen-
sional problem using commonly used numerical techniques (gen-
eralized Navier–Stokes solver based on a finite-difference
scheme, level-set function for the free-surface, Chorin projection
and implicit solver for the stress term) is presented in Rentschler’s
PhD thesis [54]; this relative failure underlines the difficulties
encountered in the numerical simulations of three-dimensional
free-surface viscoplatic flows. We end the paper with a few con-
cluding remarks (see Section 5).
2. Fundamentals: velocity and shear stress profiles

2.1. Steady uniform flow

Let us consider a steady uniform flow of viscoplastic fluid over
an inclined surface. Slope is denoted by h. The x coordinate aligns
with the streamwise direction, and the y-axis is normal to the flow
direction. We focus on Herschel–Bulkley fluids, which are simple
viscoplastic fluids with a well-defined yield stress sc. The material
is incompressible, with density q. Independently of the constitu-
tive equation, the shear stress distribution throughout the depth
is s(y) = qg(h � y) sin h, where h denotes the flow depth and g is
the gravitational acceleration. The no-slip condition is assumed
for the streamwise velocity component u at the bottom: u(0) = 0.

For a simple shear flow, the Herschel–Bulkley model reads
s ¼ sc þ l _cn; ð1Þ

where _c ¼ du=dy denotes the shear rate, l is called consistency and
n is the shear-thinning index (shear-thinning because for most
materials n < 1) [15]. The shear stress is undefined for _c < 0. The
case n = 1 is called the Bingham model. The integration of the con-
stitutive equation provides the cross-stream velocity profile

uðyÞ ¼ nA
nþ 1

Y1þ1=n
0 � ðY0 � yÞ1þ1=n

� �
for y 6 Y0;

Y1þ1=n
0 for y P Y0;

8<
: ; ð2Þ

where

Y0 ¼ h� hc; A ¼ .g sin h
l

� �1=n

; and hc ¼ sc=ð.g sin hÞ: ð3Þ

We refer to hc as the critical flow depth (no steady uniform flow is
possible for h < hc) and Y0 the position of the yield surface, i.e. the
interface separating the sheared (y < Y0) and unyielding (y > Y0) re-
gions. A further integration leads to the depth-averaged velocity

�u ¼ nA
ðnþ 1Þð2nþ 1Þ

hð1þ nÞ þ nhc

h
Y1þ1=n

0 ð4Þ

provided that sb > sc (or equivalently h > hc): when sb < sc, no steady
uniform flow takes place. Eq. (4) allows us to derive an expression
for the bottom shear stress as a function of �u=h by substituting
.gsinh with sb/h into (4)

l
sc

� �1=n 2nþ 1
n

�u
h
¼ sb

sc

� �1=n

1� sc

sb

� �1þ1=n

1þ n
nþ 1

sc

sb

� �
: ð5Þ

This nonlinear implicit equation is seldom used in this form. Huang
and Garcìa [32] used the following formulation that is reminiscent
of the Newtonian case

sb ¼ sc þ l n
nþ 1

up

Y0

� �n

; ð6Þ

with up the plug velocity [up = u(Y0) in Eq. (2)]. Although this equa-
tion is fully consistent with Eq. (5), it involves Y0 in its parametriza-
tion, which makes it less helpful for one-layer flow models (Y0 is
unknown for nonuniform flow conditions). Huang and Garcìa [32]
bypassed this difficulty by using a two-layer model to compute
not only the flow depth h, but also the yield surface position Y0.

Closed equations for the bottom shear expression have been
proposed for particular values of the shear-thinning index. For
n = 1/3, Coussot [21] proposed the following fit

sb ¼ scð1þ 1:93G3=10Þ with G ¼ l
sc

� �3 �u
h
; ð7Þ

which was obtained by solving Eq. (5) for a wide range of the
dimensionless group G and interpolating the data with a power-
law function. The relative divergence in the estimate of sb between
Eqs. (5) and (7) is less than 2% for G in the 10�3–103 range. Much of
the analysis has been done for n = 1 (Bingham model). Huang and
Garcìa [31] derived an exact expression for the bottom shear stress
sb = sc + 2lup/Y0 with up the plug velocity: up ¼ 3h�u=ð3h� Y0Þ. This
expression has the disadvantage of Y0 dependence, as for the gen-
eral case, which makes it of little help to simple models. Pastor
et al. [51] reviewed several empirical approximations to Eq. (5) with
n = 1, which can also be cast in the equivalent form

ð1� n2Þð2þ nÞ ¼ an; ð8Þ

with n = sc/sb and a ¼ 6l�u=ðhscÞ. As the discriminant of this equa-
tion is negative, the analytical solutions produced by Cardan’s for-
mula are complex numbers, but their imaginary part cancels out
(the three roots are thus real); the only physically admissible solu-
tion is the one that satisfies 0 6 n 6 1. It can be more convenient to
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use numerical approximations which are easier to compute. Pastor
et al. [51] proposed the following second-order polynomial to
approximate the third-order polynomial:

3
2

n2 � 57
16
þ a

� �
þ 65

32
¼ 0: ð9Þ
2.2. Nonuniform flow

When the flow is slightly nonuniform, the shear stress alters as
a result of the changes in the free-surface gradient. A common ap-
proach is to start from the Cauchy momentum balance equation in
which the inertia terms have been neglected together with the nor-
mal stress gradient [43,47]. Here we closely follow Mei’s derivation
used by almost all subsequent authors [47]. With the assumption
of negligible inertia, the downstream projection of the momentum
balance equation reads

0 ¼ qg sin h� @p
@x
þ @s
@y
;

For slightly nonuniform flows, the pressure is found to be hydro-
static to leading order: p = qg(h � y)cosh. The shear stress distribu-
tion is then

s ¼ qgðh� yÞ cos h tan h� @h
@x

� �
: ð10Þ

The integration of the constitutive Eq. (1) yields:

uðyÞ¼ nK
nþ1

tanh�@h
@x

� �1=n Y1þ1=n
0 �ðY0�yÞ1þ1=n

� �
for y6Y0;

Y1þ1=n
0 for y P Y0;

8<
:

ð11Þ

where we introduced the yield surface position Y0 and parameter K

Y0 ¼ h� hc 1� cos h
@h
@x

� ��1

and K ¼ .g cos h
l

� �1=n

: ð12Þ

The definition of the critical depth is the same: hc = sc/(qgsinh). A
new integration leads to the depth-averaged velocity for nonuni-
form flows

�u ¼ nK
ðnþ 1Þð2nþ 1Þ tan h� @h

@x

� �1=n hð1þ nÞ þ nhc

h
Y1þ1=n

0 : ð13Þ

The departure from the steady uniform flow is reflected through a
correction factor (1 � cot h@xh)1/n and the non-constant position of
the yield surface Y0. The correction factor can take large values be-
cause, on the one hand, 1/n is usually large (typically 3 or greater)
and, on the other hand, the free-surface gradient @xh becomes sig-
nificant within the head. Note also the influence of slope on the cor-
rection factor: for shallow slopes (h ? 0), the effect of the free-
surface gradient is greatly amplified since cot h ?1. Following a
long tradition in hydraulics [20], the bottom shear stress for non-
uniform flows is usually computed as if the flow were locally uni-
form. Although this assumption makes sense for turbulent water,
it is arguable here because of the strong nonlinearities in the rheo-
logical behavior. Indeed, as stated in the introduction, small errors
in the stress field computation may lead to large errors in the strain
rate computation.

2.3. Sidewall effect correction

All the calculations above hold for infinitely wide flows over in-
clined rigid boundaries. The effect of finite width on the flow rate
of viscoplastic fluids has been investigated by a few authors. Whip-
ple [57] carried out numerical finite-element simulations to study
the flow rate of Bingham fluids through rectangular, trapezoidal,
and semi-circular cross-sections. For wide sections, he found that
his simulations were consistent with the shear stress predicted
by Eq. (8). Coussot [21] fit a function of the same form as (7) to
his experimental data (kaolin suspensions in rectangular channels)
to take the flume width W into account

sb ¼ scð1þ aG3=10Þ with a ¼ 1:93� 0:43 arctan 10
h

W

� �20
" #

:

ð14Þ

It is worth noting that this equation leads to a decrease in the bot-
tom shear stress with increasing ratio h/W, which contrasts mark-
edly with the behavior of Newtonian fluids and turbulent flows.
Burger et al. [18,19] extended the Darcy–Weisbach formulation to
non-Newtonian fluids, including Herschel–Bulkley fluids

sb ¼
1
2

fq�u2 with f ¼ K
Re
: ð15Þ

They introduced a generalized Reynolds number whose expression
was

Re ¼ 8q�u2

sc þ l 2�u
Rh

� �n with Rh ¼
Wh

W þ 2h

for a rectangular cross-section through a Herschel–Bulkley fluid,
where Rh denotes hydraulics. By studying steady uniform flows of
power-law and viscoplastic flows, they found K = 16.4 for rectangu-
lar cross-sections. Taking a closer look at Eq. (15) in the limit
h/W ? 0 (which should provide a solution close to that given by
Eq. (6)) shows that this empirical relation holds for n ? 1 and
sb� sc (i.e., Bingham fluids with low yield stress). In conclusion,
we emphasize that these earlier works barely scratched the surface
of the topic. As far as we know, there is no general method for com-
puting sidewall drag for open channel flows of viscoplastic fluid.

3. Experimental facility and procedure

3.1. Experimental facility and procedure

We used Carbopol ultrez 10 at a mass concentration of 0.15%.
Given the low concentration of Carbopol, the density is that of
water: q = 1000 kg m�3. All the experiments reported here were
carried out with an initial volume V ¼ 6 l. The sample was pre-
pared as follows: the Carbopol powder was gently poured and dis-
persed in a large volume of demineralized water heated at 55 �C.
The dispersion was left to rest for a few hours (typically one night).
The pH was adjusted to 7.70 ± 0.05 by adding a sodium hydroxide
solution. After mixing the sample vigorously, we added a tiny
amount of polyamid particles (for PIV measurements, see below).
To ensure homogeneity and remove air bubbles trapped during
the previous phases, we mixed the sample very slowly (4 rpm)
for 12 h. We measured the rheological properties using a parallel
plate geometry (with serrated plates, diameter 60 mm and gap
2 mm) mounted on a Bohlin CVOR rheometer. On average, we
had: sc = 33 Pa, n = 0.33, and l = 26 Pa sn. Reproducibility tests car-
ried out with other geometries showed that the uncertainty on the
rheological parameters was more pronounced than for Newtonian
liquids. We estimated that the maximum deviation was Dsc = 2 Pa
(relative uncertainty 6%), Dn = 0.02 (relative uncertainty 6%), and
Dl = 4 Pa sn (relative uncertainty 15%). Additional tests showed
that Carbopol ultrez 10 was negligibly viscoelastic and thixotropic.

All our Carbopol samples were seeded with polyamid particles
for particle imaging velocimetry. The particles (manufactured by
Dantec Dynamics, mean diameter 20 lm) were marked with rho-
damine by leaving them in a concentrated rhodamine solution
(maintained at 60 �C) for one month. They were then rinsed with



Fig. 2. Sketch of the measurement system for the velocity profiles within the
moving fluid. Because of the fluid/air interface and the three-dimensional nature of
the flows, we were forced to film the flow from below. In that case, the CCD sensor
is no longer parallel to the filmed plane and the images are blurred. To get around
this issue, one can use the Scheimpflug principle, which involves tilting the camera
until the image plane (on the CCD), the lens plane, and the object plane (lit by the
laser sheet) have a common line of intersection.
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alcohol several times to avoid subsequent contamination of the
samples by rhodamine.

Experiments were conducted in a PMMA-bottomed flume with
aluminium sidewalls. Fig. 1 shows a sketch of the facility. The
flume was 3.5 m long and 10 cm wide. It could be inclined from
0 deg to 35 deg. Its position was accurately controlled using a dig-
ital inclinometer with a precision of 0.1 deg. The upper part of
flume was equipped with a sluice gate mounted on a pneumatic
jack and was used as a reservoir. The jack was quickly raised by
injecting air pressured at 7 MPa, which made it possible to lift
the gate within 0.5 s. The gate was a ultrahigh molecular weight
polyethylene plate that minimized friction with the suspension re-
tained behind it. This reduced friction limited upward fluid motion
when the gate was raised.

We took the following measurements: (i) the velocity profile
throughout the experiment at x = 255 cm in a vertical plane Oxy
passing through the centerline of the flume (z = 5 cm) and normal
to the flume bottom, (ii) the position of the front as a function of
time, and (iii) the flow depth evolution at x = 255 cm. To that
end, we used a dual head, diode pumped, Q-switched Nd:YLF Laser
(Litron LDY 303). The laser had two optical cavities emitting a 527-
nm beam (green), with energy up to 20 mJ per pulse at 1 kHz.
Velocities were measured using high-speed cameras and particle
image velocimetry (PIV) techniques. For PIV measurements, we
used a Basler A504k camera (working in the 200–1000 Hz range),
mounted with a Nikkor 105 mm macro lens and an orange filter.
The images were then processed using classic PIV techniques
[53]. Velocity fields were computed using the open source soft-
ware, MatPIV [56]. The front position was monitored using two
Basler A403kc cameras.

Fig. 2 illustrates how we measured the velocity profiles from
below using the Scheimpflug principle [see [53], chap. 7]. Filming
from the side, it was not possible to measure velocities within
the head far from the sidewall owing to the strong curvature (in
both x- and z-axis) and flow shallowness of the front. Conversely,
filming from below gave direct optical access to the vertical plane
passing through the centerline, but the disadvantage of this config-
uration was that the largest part of the filmed plane was out of fo-
cus. To eliminate this problem, we adjusted the inclinations of the
camera CCD and the lens so that the Scheimpflug rule was satisfied
(the image was then in focus). A prism (made up of a PMMA block,
50 cm
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sluice gate

reservoir

guide
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z
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Fig. 1. Flume used for the experiments. We defined a two-dimensional Cartesian
coordinate system in which the x-axis points down the flume, the y-axis is in the
direction of the upward pointing normal, and the z-axis is the cross-stream
direction. The upper end of the flume is at x = 0, while the lower end is at
x = 350 cm. z = 0 refers to the right sidewall (when looking at the flume from the
inlet), while z = W = 10 cm refers to the left sidewall.
with the same refractive index as that of the flume bottom) was
necessary to avoid refraction. As this system caused significant im-
age distortion, we had to correct it to properly compute the veloc-
ity field; this was done by taking a shot of a test chart and using the
Matlab built-in function cp2tform to undistort the images.

3.2. Experimental velocity profiles

We start the comparison of theoretical predictions with exper-
imental data by taking a closer look at the velocity profiles ob-
tained with a Carbopol gel for two slopes: h = 15 deg and
h = 25 deg. As the other flow variables such as the front position
and flow depth profile involve further theoretical computations,
they will be introduced in the next section. To provide further
points of comparison and discussion, we have included an appen-
dix that presents a few results obtained with a Newtonian fluid
(98.5%-glycerol solution, viscosity l = 1.11 Pa s, and density
q = 1260 kg m�3).

For the sake of simplicity and brevity, we have decided to pres-
ent only two flume inclinations, which were representative of the
flow pattern observed. For slopes shallower than 10 deg, the flow
came to a halt rapidly. As shown presently, slopes h = 15 deg and
h = 25 deg exhibited distinctive features even though the flows
looked similar.

Fig. 3 shows the measured profiles and theoretical velocity pro-
files (11) for a flume inclination h = 25 deg. Each subplot corre-
sponds to a different time, but rather than providing the time at
which the velocity measurements were taken, we gave the position
of the front xf relative the point of measurement (x = 255 cm). When
compared to the mean flow depth h � 20 mm, this relative distance
Dx = x � xf indicates whether the flow slice that we were filming be-
longs to the head or the body. Note that in Fig. 3, the flow was from
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Fig. 3. Velocity profiles at x = 255 cm for h = 25 deg and an initial volume V ¼ 6 l. Dots: experimental values; (red) curves: theoretical profiles given by Eq. (11) with
q = 1000 kg m�3, sc = 33 Pa, n = 0.33, and l = 26 Pa sn. We also report the distance Dx between the front position xf and the point of measurement x = 255 cm (Dx < 0 because
the front is on the right of the point of measurement) together with the time at which the profile was measured. Use of Eq. (11) requires an equation specifying the gradient of
the free surface @xh(x, t). We evaluated @xh(x, t) experimentally by interpolating the measured flow depths by a piecewise linear function: the slope of each segment gave a
fairly good local estimate of @xh(x, t). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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left to right, thus Dx was negative. As detailed below, there was
clearly a difference between the velocity field within the head
(jDx/hj 6 3) and the velocity field within the body (jDx/hj > 3).
When the front was far away from the point of measurement at
x = 255 cm, i.e. when the distance to the front was large
Dx 6 �73.2 mm, there was good agreement between the theoreti-
cal velocity profile (11) (for nonuniform flow conditions) and the
experimental data. In contrast, close to the front (Dx P �32.8 mm),
this agreement became poorer and poorer: the theoretical velocities
were significantly higher than those observed. The discrepancy near
the contact line was expected since the theoretical profile was de-
rived for flow conditions slightly departed from the steady uniform
regime; within the tip region, the assumption of slightly nonuni-
form should break down because of the curvature of the surface. An-
other interesting feature was the existence of a pseudo-plug far
from the front whereas the leading edge was entirely sheared across
the depth (see the discussion in the introduction). This was qualita-
tively consistent with the rapid increase in the shear stress induced
by the free-surface curvature predicted by Eq. (10). From a quanti-
tative viewpoint, however, the discrepancy between theoretical
and experimental velocity profiles may indicate that the flow condi-
tions within the head could not be described within the framework
of lubrication theory and/or the rheological behavior could not be
fully captured by the Herschel–Bulkley equation.

Fig. 4 shows the velocity profiles for a flume inclination
h = 15 deg. At first sight, these profiles look like those pertaining
to h = 25 deg, but a closer look at the profiles reveals distinctive
features. First, although the velocity data were noisy, the pseudo-
plug seemed to be slightly sheared, a point that was consistent
with lubrication theory [11]. Second, the velocity profiles did not
drop to zero at the bottom within the head, but tended to a con-
stant value of 1.7 mm/s. Interestingly, slipping was observed at
the shallowest slopes, but not at the steepest. Careful inspection
of the close-up images confirmed that slip occurred for
h = 15 deg, whereas it could not be observed for h = 25 deg. This
may be consistent with other experimental investigations that re-
ported an increase in the slip velocity with wall shear stress [37]:
the shear stress increase in the tip region would cause slipping.
However, this interpretation conflicts with experimental observa-
tions for h = 25 deg: for that inclination, no wall slip was observed,
even in the close vicinity of the neighborhood, a region of higher
shear stress.

To sum up, we found that the theoretical velocity profiles were
in good agreement with experimental data as long as the flow
depth curvature was small. In contrast, within the head, there
was partial or poor agreement between theory and experiment. A
noticeable feature was the appearance of wall slip at the shallow-
est slopes.
4. Comparison with theoretical models

To compare theoretical and experimental velocity profiles, the
knowledge of the flow depth and depth-gradient is sufficient to
compute the theoretical profile (11). To go farther into the analysis
of the performance of the Herschel–Bulkley model for time-depen-
dent free-surface flows, we need to use flow-dynamics models that
compute various flow variables such as the flow depth and the
front position. In the following, we will investigate the dam-break
problem, i.e. the flow of a fixed volume of viscoplastic fluid over an
inclined surface. Three different models of increasing complexity
will be addressed: (i) the kinematic wave approximation, which re-
sults in a hyperbolic nonlinear advection equation for the flow
depth, (ii) the (non linear) advection diffusion equation obtained
using lubrication theory, and (iii) the Saint-Venant equations,
which are a set of hyperbolic partial differential equations.

We consider the following boundary initial value problem (see
Fig. 5). Initially, a volume V (per unit width) of fluid is contained in
a reservoir of length ‘. The flume inclination is h. The fluid is at rest
with initial depth profile:

hðx;0Þ ¼ h0ðxÞ ¼ hg þ ðx� ‘Þ tan h; ð16Þ

with hg the depth at the lockgate, hg ¼ V=‘þ 1
2 ‘ tan h. If the volume

is too small, the reservoir is not entirely filled. There is a condition
on the fluid volume:

V P Vc ¼
1
2
‘2 tan h ð17Þ

for the reservoir to be filled (i.e. with the upstream and downstream
walls in contact with the fluid). If this condition is not satisfied, then
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Fig. 4. Velocity profiles at x = 255 cm for h = 15 deg and an initial volume V ¼ 6 l. Dots: experimental values; (red) curves: theoretical profiles given by Eq. (11) with
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Fig. 5. Sketch defining the initial flow configuration. Initially, the fluid is at rest and
the free surface (dashed line) is a straight line whose equation is given by (16). The
fluid then spreads out. In the following, we are interested in computing the flow
depth profile h(x, t) and the front position, i.e. the point xf at which the depth drops
to zero.
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the fluid wets only the downstream wall (lockgate) and fills the res-
ervoir over a length

‘r ¼
ffiffiffiffiffiffiffiffiffiffiffi
2V

tan h

r
: ð18Þ
4.1. Kinematic wave model

The kinematic wave approximation is a common approach to
describing slightly nonuniform flow for which the depth-averaged
velocity adapts instantaneously to any change in the flow depth
[42]. Surprisingly, the approximation is sufficiently robust to pro-
vide fairly good results for strong time-dependent flows such as
dam-break waves for turbulent water flows [33] and laminar New-
tonian flows [34,6]. For this reason, it has been used to model dam-
break waves for Bingham and Herschel–Bulkley fluids [9,31,32].

In the framework of the kinematic wave approximation, the
flow is assumed to be locally uniform. The variations in the
depth-averaged velocity are then dictated by the flow depth alone:
�u ¼ �uðhÞ is then given by Eq. (4). The bulk mass balance

@h
@t
þ @h�u

@x
¼ 0 ð19Þ

provides the governing equation for h:
@h
@t
þ f 0ðhÞ @h

@x
¼ 0; ð20Þ

with

f 0ðhÞ ¼ Ahðh� hcÞ1=n and A ¼ .g sin h
l

� �1=n

:

This nonlinear advection equation can be solved easily using the
method of characteristics. Eq. (20) can be put into the so-called
characteristic form

dh
dt
¼ 0 along the characteristic curve

dx
dt
¼ f 0ðhÞ: ð21Þ

These characteristic curves are straight lines whose slope is dictated
by the initial depth:

x ¼ f 0ðh0ðx0ÞÞt þ x0; ð22Þ

where h0(x0) is the initial value of h at x0, which is given by the ini-
tial condition (16). As h = h0 along the characteristic curve, and
using (16) to eliminate x0, we obtain an implicit equation for h:

x ¼ Ahðh� hcÞ1=nt þ ðh� hgÞ cot hþ ‘: ð23Þ

For the Bingham case (n = 1), this is a second-order polynomial that
can be solved analytically [31]. For other n values, this equation has
to be solved numerically.

The method of characteristics holds everywhere that the initial
depth is continuous. At time t = 0 (and at short times), it does not
work at the reservoir boundaries where the depth profile exhibits
discontinuities. When the reservoir is not entirely filled (see Fig. 6),
the fluid thickness drops continuously to zero: h0 = 0 at x = ‘r, but
at the lockgate x = ‘ it is discontinuous. When the reservoir is filled
(see Fig. 7), there are two discontinuities. A Riemann problem is
associated with each discontinuity. Let us take a closer look at this
double Riemann problem.

On the left (at x = 0), a rarefaction wave takes place. It is the
similarity solution H(f) (with f = x/t) to Eq. (20)

f 0ðHÞ ¼ f) Ahðh� hcÞ1=n ¼ f; ð24Þ

which does not admit analytical solutions except for n = 1 (Bingham
fluid) and n = 1/2. For the Bingham case, it is straightforward to
show that the flow depth is



Fig. 6. Characteristic diagram when the reservoir is partially filled (V < Vc).
Construction of the solution to the boundary initial-value problem: the solution
is constant along characteristic curves, which are the one-parameter family of
curves given by _x ¼ f ðhÞ. Solving this equation on the interval [‘r,‘] provides the
lines along which h is constant. The value of the constant along a characteristic
emanating from any abscissa x0 is given by the initial value h0(x0). The front
characteristic is a shock wave as the initial depth is discontinuous at x = ‘. Its
equation is given by the Rankinge–Hugoniot jump condition (26).

Fig. 7. Characteristic diagram when the reservoir is filled (V P Vc). Essentially, the main
difference with Fig. 6 lies in the nature of the rear characteristic curve. As the solution is
discontinuous at x = 0, we need to solve a Riemann problem. Here the solution is a
centered rarefaction wave, i.e. a fan of characteristic curves emanating from the point
x = 0. The slope of these characteristic curves ranges from 0 to f0(hb). Note also that, when
solving the Rankine–Hugoniot Eq. (26), we find that the fastest characteristic curve
emanating from the point x = 0 catches up with the front. When this occurs (at point A),
the effects of the initial conditions have dissipated and the flow dynamics are controlled
by the rarefaction wave.
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hðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

.g sin h
x
t
þ hc

2

� �2
s

þ 1
2

hc: ð25Þ
In the characteristic diagram, this solution is represented by an
expansion fan of straight lines emanating from the origin point:
x = mt, with 0 6m 6 f 0(hb) (where hb = h0(0) = hg � ‘ tan h is the
fluid thickness at the upstream end).
On the right (at x = ‘), there is a shock that moves along the
x = s(t) curve. Its features can be computed using the Rankine
Hugoniot relation:

_s ¼ sf ðhÞt
sht

¼ nA
ðnþ 1Þð2nþ 1Þ

hf ð1þ nÞ þ nhc

hf
ðhf � hcÞ1þ1=n

; ð26Þ

with hf the flow depth at the front. There is no analytical solution to
this equation. Its numerical resolution involves closing Eq. (26) with
an equation specifying the variations in the front height hf. Two
cases have to be considered depending on what occurs behind the
front:

� At short times, the details of the initial conditions influence
motion and Eq. (23) holds true on the left of the shock wave.
By solving the system of Eqs. (23) and (26), we obtain the equa-
tion for the front depth hf until time tA. This time corresponds to
the intersection of the shock curve with the rarefaction wave
emanating from x = 0 (see Fig. 7). The system of Eqs. (23) and
(26) has to be solved numerically.
� At longer times (t > tA), the behavior of the tail is dictated by the

rarefaction wave. The governing equation for the front is then
given by Eqs. (26) and (24).

A shortcoming in the kinematic wave approximation lies in the
front behavior. The key assumption that underpins the derivation
of the governing Eq. (20) is that for the bulk of the flow, the depth
varies uniformly and slowly so that inertia and pressure gradient
terms can be neglected in the momentum balance equation (the
gravitational forces are then counterbalanced by the shear-stress
gradient). This assumption should break down in the tip region. In-
deed the flow depth drops to zero at the front and therefore, the
pressure gradient can no longer be neglected in the momentum
balance equation. It can be shown that a boundary layer correction
at the front can fix this issue, but at the cost of more complicated
calculations [5]. As this correction goes beyond the scope of the
present paper, we will not use it.

Fig. 8 shows the evolution of the front position xf(t) and the time
variations in the flow depth at x0 = 255 cm for h = 25 deg. Both
experimental and theoretical results have been reported. There
was excellent agreement between theory and experiment for this
slope. The main difference concerned the shape of the h(x0, t)
curves: since theory predicted that the front was a shock wave
while the body was a rarefaction wave, there was a sudden in-
crease of the flow depth followed by a slow decrease. Experimen-
tally, the passage of the front was smoother; in particular, there
was no kink point at the front (this slight shortcoming can be rem-
edied by using the boundary layer correction mentioned above).
Another difference was the front behavior at short times (t < 1 s),
but since the assumptions underpinning the kinematic wave
approximation (shallow flow close to a steady uniform flow) were
violated, this shortcoming could be anticipated.

Fig. 9 shows the same plots (front position xf(t) and depth evo-
lution h(x0, t)) for h = 15 deg. There was partial concordance be-
tween theory and experiments. For the front position xf(t), the
experimental data revealed that, initially, the bulk accelerated less
vigorously than predicted. After the slumping phase (correspond-
ing to the first 5 s after the lockgate was removed), there was a sec-
ond phase, in which the flow decelerated slowly and the changes in
the front position scaled as xf / tm with m = 0.02 ± 0.005. This sec-
ond phase was fairly well accounted for by theory since theory pre-
dicted xf / t0.034. Although these exponent values did not match,
they were fairly close. In contrast, there was no agreement be-
tween the theoretical and measured evolution of flow depth
h(x0, t). As for h = 25 deg, theory predicted a discontinuous evolu-
tion of the flow depth whereas experimentally, the flow depth
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increased slowly and smoothly. Indeed, the shape of the leading
edge was closer to a blunt nose than a shock wave. As a result,
the passage of the front was not reflected by an abrupt increase
in the flow depth, but by a slow growth.

4.2. Advection diffusion equation

We can elaborate on the kinematic wave model by considering
that in elongating flows, the depth averaged velocity should de-
pend on the free-surface gradient. In that case, the mean velocity
is given by Eq. (13) instead of Eq. (4). Substituting the former rela-
tion into the mass conservation Eq. (19), we obtain the following
governing equation for h

@h
@t
þ nK

@

@x
tan h� @h

@x

� �1=n hð1þ nÞ þ nhc

ðnþ 1Þð2nþ 1ÞY
1þ1=n
0

" #
¼ 0; ð27Þ

with Y0 ¼max 0;h� hc 1� cos h
@h
@x

����
����
�1

 !
: ð28Þ

As far as we are aware, this equation was first obtained by Liu and
Mei [44] for Bingham fluids, then used and/or extended to Her-
schel–Bulkley fluids and three-dimensional problems by a number
of authors including Balmforth et al. [10], Mei et al. [47], Mei and
Yuhi [48], Balmforth et al. [13,12], Hogg and Matson [30], and Ancey
and Cochard [5]. When the dependence on the free-surface gradient
is taken into account, a diffusive term appears in the governing
equation, which is likely to play a key role in regions with a marked
curvature of the free surface (e.g., the head).

There is no analytical method available to solve, even approxi-
mately, this parabolic partial differential equation. There are a
few solvers available, which are well-suited to computing numer-
ical solutions to parabolic-elliptic equations in one space variable
[55,16]. We used the Matlab built-in routine called pdepe, which
is based on an algorithm developed by Skeel and Berzins [55].
Fig. 10 shows the front position over time and the evolution in
the flow depth x0 = 255 cm for a flume slope h = 25 deg. Surpris-
ingly, this model, which was more complicated than the kinematic
wave model seen above, provided less satisfactory results. In par-
ticular the difference between the theoretical and experimental
front position was increased. Note that the long-term trend
(xf / t0.02) was preserved, which shows that the deviation mainly
resulted from the short-time behavior of the numerical solution.
In short, the model overestimated initial acceleration.

Fig. 11 shows the front position and flow depth evolutions for a
flume slope h = 15 deg. For the front position, there was not much
difference in the model performance between the numerical solu-
tion to the nonlinear advection diffusion Eq. (27) and the solution
to the advection Eq. (20): the refined model performed as well as
the simplified kinematic wave model, but not better. In contrast,
the flow depth evolution at x0 = 255 cm was better captured, at
least at short times after the passage of the front. This tends to
show that diffusive effects are of paramount importance to the
dynamics of viscoplastic flows on mild slopes and must be taken
into account in theoretical models.

4.3. Depth-averaged equations

The next step in our analysis of model performance is to con-
sider that the depth-averaged velocity is not related to the flow
depth through closed-form relations such as (4) or (13), but must
be computed by solving the momentum balance equation. To that
end, we will use the conservative form of the Saint Venant
equations

@h
@t
þ @h�u

@x
¼ 0; ð29Þ

@h�u
@t
þ @h�u2

@x
þ gh cos h

@h
@x
¼ gh sin h� sb

q
; ð30Þ
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where sb(u,h) is the bottom shear stress, which can be computed
using Eq. (7), since for our Carbopol samples, the shear-thinning in-
dex is very close to n = 1/3. These equations have been used by a
number of authors including Martinet [45], Coussot [21], Laigle
and Coussot [39], Fraccarollo and Papa [26], and Debiane [23] (the
reader is referred to [1,3,4] for a review of these computational
models for snow avalanches and mudflows). Refinements were
made by Huang and Garcìa [32], who split the momentum balance
equation into two parts to compute the yield surface position Y0 in
addition to the depth-averaged velocity and flow depth. This form,
which is very close to the shallow water equations (except for the
dissipation term), was questioned by a few authors. Piau [52] sug-
gested supplementing the source term to account for some of the
specificities of viscoplastic behavior, but additional assumptions/
empirical equations were required to close the governing equations.
More recently, Fernández-Nieto et al. [25] revisited the derivation
of the depth-averaged equation for Bingham fluids. Starting from
small perturbations to the steady solutions (to the local momentum
equations), they ended up with a set of partial differential equa-
tions, which are—by the authors’ own admission—very complicated
to handle. For the sake of simplicity, here we will use the ‘simple’
depth-averaged model (29) and (30).

Eqs. (29) and (30) are hyperbolic differential equations that call
for special numerical methods. We used a high-resolution wave-
propagation algorithm developed by LeVeque [41]. This algorithm
is a Godunov-type scheme that employs the solution to local Rie-
mann problems. It is part of an open-source library called CLAWP
CACK. More specifically, we used an approximate Riemann solver
developed by George [29], which provides a well-balanced scheme
that preserves balanced steady states, properly captures shock
waves and fronts over dry surfaces, and maintains depth non-neg-
ativity. The source term in the momentum balance equation in-
cludes two contributions: the gravitational acceleration forces
(also referred to as the topography source term) and a dissipation
term. The augmented Riemann solver developed by George [28,29]
incorporates topography into the momentum flux on the left-hand
side of Eq. (30). The remaining source term is then the dissipative
contribution sb/q. We used a fractional-step approach, with a back-
wards Euler scheme, to deal with this source term, as recom-
mended by LeVeque [41]. The numerical model was successfully
tested against analytical solutions to the dam break problem for
inviscid fluids [7]. Comparison with similarity solutions to the vis-
cous dam break problem also shows that this model performs well
with Newtonian fluids (see Appendix A for a comparison with real
fluids).

As previously, we have plotted the front position and depth
evolution at x0 = 255 cm for h = 25 deg (see Fig. 12) and
h = 15 deg (see Fig. 13). A striking feature is the lack of concor-
dance with experimental data. For both slopes, the numerical
model overestimated the front position and contrary to the
advection diffusion model, the theoretical xf(t) curve was not par-
allel to the experimental curve at long times, which means that
the model failed to find the pseudo-equilibrium regime reached
by the flow. Strikingly, the kinematic wave model, which can be
seen as a simplification of the Saint-Venant equations when the
assumption of near-equilibrium flow is made, was able to provide
the correct trend for xf(t) at any time. The one-layer Saint-Venant
model was also unable to provide accurate predictions for the
depth evolution (even though the order of magnitude was
correct).

The only success of the Saint–Venant model lies in the behavior
of the numerical solution at short times (t < 1 s). For both slopes,
the theoretical xf(t) curve paralleled the experimental curve
whereas for the other models, initial velocities were substantially
overestimated. Surprisingly, after the slumping phase, the model
predicted that the front kept accelerating whereas experimentally,
it reached a near-equilibrium regime characterized (as seen ear-
lier) by a power-law behavior: xf(t) / tm (with m � 0.2).

As we suspected that the overestimation of the front position
was due to an improper account of sidewall effects, we carried
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out additional simulations, in which the bottom shear stress was
given by Eq. (14) or (15). Taking sidewall drag into account suc-
cessfully reduced the discrepancy between experimental and com-
puted front positions. As the empirical relations (14) and (15)
could not be regarded as sufficiently accurate (see Section 2.3), it
was difficult to be conclusive and properly interpret this lack of
improvement after taking sidewall effects into account in the
numerical simulations.

5. Concluding remarks

In this paper, we investigated the dam-break problem for Her-
schel–Bulkley fluids down a sloping bed. We ran experiments with
Carbopol ultrez 10, a polymeric gel whose behavior in simple shear
flow is properly described using a Herschel–Bulkley model. The
rheological parameters were obtained independently with a rhe-
ometer. In our experimental campaign, we measured the front po-
sition as a function of time, as well as the flow depth profile and
the velocity field at a fixed position (x0 = 255 cm from the flume
inlet).

These benchmark experiments were designed to test and com-
pare numerical models developed to compute the spreading of
viscoplastic materials over inclined surfaces. We used three mod-
els of increasing complexity, which shared the same framework
(assumption of shallow flows): the kinematic wave model, an
advection diffusion model (lubrication theory), and the one-layer
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Saint-Venant equations. Except for the first model (for which im-
plicit analytical solutions were derived), the governing equations
had to be solved numerically. For the advection diffusion model,
we used a commercial solver (a Matlab built-in routine called
pdepe); tests conducted with other methods (e.g., the Adams Moul-
ton implicit scheme) did not provide significantly different results.
For the Saint-Venant equations, we used the open-source library
CLAWPACK, which provides finite-volume methods to solve hyper-
bolic partial differential equations [41]. More specifically, we uti-
lized the approximate Riemann solver developed by George
[28,29].1 Each model was successfully tested against analytical solu-
tions for flow configurations close to the problem at hand. The three
models were also used to compute the spreading of a Newtonian
fluid (98.5% glycerol solution) down a flume inclined at 6 deg (see
Appendix A).

Surprisingly enough, there have not been many experimental
investigations into the viscoplastic dam-break problem. Not only
are data scarce, but also the experimental protocol was insuffi-
ciently described for careful comparison with numerical models.
As far as we are aware, this paper provides the first set of high-res-
olution data related to the dam-break problem for Herschel–Bulk-
ley fluids. This unique dataset is interesting in that it sheds light on
unanticipated features such as wall slip (observed solely for the
shallowest slopes) and the relatively poor performance of the mod-
els tested.

Strikingly, the best agreement with data was obtained with the
simplest model: the kinematic wave model, which consists of a
nonlinear advection equation. This model performed well for pre-
dicting the front position at steep slopes, but as, the front was
merely a shock wave, it was slightly less efficient for predicting
the depth evolution in the tip region; at longer times, the model
gave satisfactory predictions of depth evolution. In an earlier paper
[5], in which experimental data obtained with more concentrated
Carbopol gels and a wider flume (30 cm instead of 10 cm) were
presented, we came to similar conclusions about the good perfor-
mance of the kinematic wave model at steep slopes.

In contrast, the results provided by the Saint-Venant equations
were in poor concordance with experimental data. This was quite
astonishing since, firstly, the kinematic wave model results from
a simplification of the Saint-Venant equations and, secondly, this
1 Albeit more sophisticated, the numerical method we used for solving the Saint-
Venant equations did not differ too much from other Godunov-type techniques used
by Laigle and Coussot [39] and Fraccarollo and Papa [26].
model is of greater complexity and generality. Taking a closer look
at the front position curves reveals that the Saint-Venant equations
significantly overestimated velocities at short times (t < 2 s), i.e.
just after the slumping phase. This overestimation might not seem
so surprising since, for nonlinear rheologies, the Saint-Venant
equations (see [40] for an example with the collapse of a granular
column) are known to run into difficulty for the following reasons:
(i) the assumption of a small aspect ratio (thin flow) breaks down
at short times, (ii) when a mass collapses, part of the momentum is
directed downwards whereas in the derivation of the Saint–Venant
equations, it is assumed that the momentum flux is predominantly
in the streamwise direction, (iii) for the initial stages of the flow,
the assumption of simple shear flow is not realistic and thus (iv)
simplified expressions such as the bottom shear stress (7) are un-
likely to be of sufficient generality for computing energy dissipa-
tion in strongly nonuniform flows. Although these limitations
provide explanation of the model failure at the shortest times, they
do not explain why (i) the results provided by the Saint-Venant
equations were much poorer than those yielded by the other mod-
els and (ii) why the model predictions were in good agreement
with experimental data for Newtonian fluids (see Appendix A).
Note also that taking sidewall friction into account did not change
the model performance, but because of the limitations of the avail-
able empirical relations for computing sidewall drag, it was diffi-
cult to be conclusive on this.

The acknowledgement of the Herschel–Bulkley constitutive
equation in the one-layer Saint-Venant equations (29) and (30) is
questionable. For instance, the expression for the bottom shear
stress (7) amounts to treating the material as a power-law liquid
since nothing is said about the approach to the arrested state2

(what happens when the shear stress drops below the yield stress?).
Should we use a two-layer formulation of the Saint-Venant equa-
tions as Huang and Garcìa [32] did? Does the failure of Eqs. (29)
and (30) call for a more complicated expression of the governing
equations as Piau [52] and Fernández-Nieto et al. [25] suggested?
The numerical method is also debatable. In the fractional-step meth-
od that we used for solving the hyperbolic problem with source term
(29) and (30), the idea is to split the governing equation into two
subproblems that can be solved independently: first, one solves
2 We ran numerical tests in which we considered different behaviors depending on
the value of the bottom shear stress compared to the yield stress or other related
values (e.g, the use of a biviscous model to regularize the constitutive equation). This
did not change the front behavior, but naturally influenced the shape of the flow tail.
For the sake of brevity, these additional runs have not been reported here.
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the homogeneous equation (i.e., (30) with no source term), then one
computes the correction imposed by the source term. This technique
is known to perform well even for equations with stiff source terms,
but there are also a large number of pathological cases for which the
fractional-step approach fails [see Ref. [41], Chapter 17]. Note that in
addition to the backward Euler scheme, we used different splitting
methods to solve the second subproblem, but this did not change
the outcome to any significant degree.

To us, the failure of the Saint-Venant equations in the present
context comes from the oversimplified expression used for com-
puting the bottom shear stress, rather than from flaws in the
numerical methods (although these could be optimized to cope
with specificities introduced by viscoplastic materials such as
deposits). Testing the performance of more complete governing
equations is another path to explore.
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Appendix A. Newtonian case

To better understand the specific behavior of Carbopol and see
how models perform for simple fluids, it is interesting to have a
point of comparison. Here we provide additional experimental re-
sults obtained with a 98.5% glycerol solution (density
q = 1260 kg m�3, viscosity l = 1110 mPa s at a temperature of
20 �C). We present a single set of data; more data are available in
[8]. The experimental facility and protocol were the same as those
described in Section 3.1. The run presented here corresponds to a
mass of 3 kg (the initial volume V is 2.38 l) and a flume inclination
h = 6 deg. The flow Reynolds number was 1.13. Fig. A.14 shows the
velocity profiles measured at x0 = 255 cm for different times. The
theoretical profiles are reported; they have been computed using
Eq. (11) with l = 1110 mPa s, n = 1, sc = 0 (then Y0 = 0). On the
whole, there was excellent agreement between theoretical and
experimental velocity profiles except for in the close vicinity of
the contact line. For Dx P �2.8 mm, theory overestimated velocity
significantly. Within the tip region, there was no slip and the fluid
was fully sheared.

Fig. A.15 shows the evolution of the front position with time. On
the whole, all models provided fairly good predictions. For t P 1 s,
the maximum error was 9% for the kinematic wave model, 8%
for the advection diffusion model, and 16% for the Saint-Venant
model. The deviation from the experimental curve was larger for
the Saint-Venant model than for the advection diffusion model,
but the long-time trend shown by the Saint-Venant model was
parallel to the experimental curve and for this reason, it could be
considered to be in closer agreement with data than the advection
diffusion model, which slightly overestimated the front velocity for
long times.

Fig. A.16 shows the time evolution of the flow depth at
x0 = 255 cm. The shape of the h(x0, t) curve predicted by the advec-
tion diffusion and Saint-Venant models was in excellent agreement
with data at short times, but at long times, concordance was
slightly lower: the experimental and numerical curves were paral-
lel, but numerical simulations underestimated the flow depth by
approximately 4 to 5% (this represented a mismatch of 0.5 mm).
Since the kinematic wave model regarded the leading edge as a
shock wave, it failed to predict the correct shape of the depth evo-
lution during the passage of the leading edge, but at longer times, it
yielded values that closely matched those obtained using the
advection diffusion and Saint-Venant models.
References

[1] Ancey C. Snow avalanches. In: Balmforth NJ, Provenzale A, editors. Selected
topics in geological and geomorphological fluid mechanics. Berlin: Springer;
2001. p. 319–38.

[2] Ancey C. Solving the Couette inverse problem by using a wavelet-vaguelette
decomposition. J Rheol 2005;49:441–60.

[3] Ancey C. Plasticity and geophysical flows: a review. J Non-Newton Fluid Mech
2007;142:4–35.

[4] Ancey C. Gravity flow on steep slope. In: Chassignet E, Cenedese C, editors.
Buoyancy driven flows. New York: Cambridge University Press; 2012.

[5] Ancey C, Cochard S. The dam-break problem for Herschel–Bulkley fluids down
steep flumes. J Non-Newton Fluid Mech 2009;158:18–35.

[6] Ancey C, Cochard S, Andreini N. The dam-break problem for viscous fluids in
the high-capillary-number limit. J Fluid Mech 2009;624:1–22.

[7] Ancey C, Iverson RM, Rentschler M, Denlinger RP. An exact solution for ideal
dam-break floods on steep slopes. Water Resour Res 2008;44:W01430.

[8] Andreini N, Epely-Chauvin G, Ancey C. Internal dynamics of Newtonian and
viscoplastic fluid avalanches down a sloping bed. Phys Fluids; submitted for
publication.

[9] Arattano M, Savage WZ. Modelling of debris flows as kinematic waves. Bull Int
Assoc Eng Geol 1994;49:3–13.

[10] Balmforth NJ, Burbridge AS, Craster RV. Viscoplastic models of isothermal lava
domes. J Fluid Mech 2000;403:37–65.

[11] Balmforth NJ, Craster RV. A consistent thin-layer theory for Bingham plastics. J
Non-Newton Fluid Mech 1999;84:65–81.

[12] Balmforth NJ, Craster RV, Rust AC, Sassi R. Viscoplastic flow over an inclined
surface. J Non-Newton Fluid Mech 2007;142:219–43.

[13] Balmforth NJ, Craster RV, Sassi R. Shallow viscoplastic flow on an inclined
plane. J Fluid Mech 2002;470:1–29.

[14] Barnes HA. The yield stress – a review or ‘pamsaq�i’ – everything flows? J.
Non-Newton Fluid Mech 1999;81:213–7.

[15] Bird RB, Dai GC, Yarusso BJ. The rheology and flow of viscoplastic materials.
Rev Chem Eng 1983;1:1–70.

[16] Blom JG, Zegeling PA. Algorithm 731: a moving-grid interface for systems of
one-dimensional time-dependent partial differential equations. ACM Trans
Math Softw 1994;20:194–214.

[17] Bonn D, Denn MM. Yield stress fluids slowly yield to analysis. Science
2009;324:1401–2.

[18] Burger J, Haldenwang R, Alderman N. Experimental database for non-
Newtonian flow in four channel shapes. J Hydraul Res 2010;48:363–70.

[19] Burger J, Haldenwang R, Alderman N. Friction factor-Reynolds number
relationship for laminar flow of non-Newtonian fluids in open channels of
different cross-sectional shapes. Chem Eng Sci 2010;65:3549–56.

[20] Chow VT, editor. Open-channel hydraulics. Civil engineering series. New
York: Mc Graw Hill; 1959.

[21] Coussot P. Mudflow rheology and dynamics. Rotterdam: Balkema; 1997.
[22] Coussot P, Proust S, Ancey C. Rheological interpretation of deposits of yield

stress fluids. J Non-Newton Fluid Mech 1996;66:55–70.
[23] Debiane K. 2000. Hydraulique des écoulements laminaires à surface libre dans

un canal pour des milieux visqueux ou viscoplastiques: régimes uniformes,
graduellement varié, et rupture de barrage. Ph.D. thesis, Joseph Fourier
University [in French].

[24] Dent JD, Lang TE. Experiments on the mechanics of flowing snow. Cold Reg Sci
Technol 1982;5:243–8.

[25] Fernández-Nieto ED, Noble P, Vila JP. Shallow water equation for non-
Newtonian fluids. J Non-Newton Fluid Mech 2010;165:712–32.

[26] Fraccarollo L, Papa M. Numerical simulation of real debris-flow events. Phys
Chem Earth B 2000;25:757–63.

[27] Frigaard IA, Nouar C. On the usage of viscosity regularization methods for
visco-plastic fluid flow computation. J Non-Newton Fluid Mech
2005;127:1–26.

[28] George DL. Finite volume methods and adaptive refinement for tsunami
propagation and indundation. Ph.D. thesis, University of Washington; 2006.

[29] George DL. Augmented Riemann solvers for the shallow water equations over
variable topography with steady states and inundation. J Comput Phys
2008;227:3089–113.

[30] Hogg AJ, Matson GP. Slumps of viscoplastic fluids on slopes. J Non-Newton
Fluid Mech 2009;158:101–12.

[31] Huang X, Garcìa MH. A perturbation solution for Bingham-plastic mudflows. J
Hydraul Eng 1997;123:986–94.

[32] Huang X, Garcìa MH. A Herschel–Bulkley model for mud flow down a slope. J
Fluid Mech 1998;374:305–33.

[33] Hunt B. Dam-break solution. J Hydraul Eng 1984;110:675–86.
[34] Hunt B. Newtonian fluid mechanics treatment of debris flows and avalanches. J

Hydraul Eng 1994;120:1350–63.



C. Ancey et al. / Advances in Water Resources 48 (2012) 79–91 91
[35] Iverson RM. The physics of debris flows. Rev Geophys 1997;35:245–96.
[36] Johnson AM, Rodine JR. Debris flow. In: Brunsden D, Prior DB, editors. Slope

instability. Chichester: John Wiley & Sons; 1984. p. 257–362.
[37] Kalyon DM. Apparent slip and viscoplasticity of concentrated suspensions. J

Rheol 2005;49(621–640).
[38] Kern MA, Tiefenbacher F, McElwaine JN. The rheology of snow in large chute

flows. Cold Reg Sci Technol 2004;39:181–92.
[39] Laigle D, Coussot P. Numerical modeling of mudflows. J Hydraul Eng

1997;123:617–23.
[40] Larrieu E, Staron L, Hinch EJ. Raining into shallow water as a description of the

collapse of a column of grains. J Fluid Mech 2006;554:259–70.
[41] LeVeque RJ. Finite volume methods for hyperbolic problems. Cambridge: Cambridge

University Press; 2002.
[42] Lighthill MJ, Whitham GB. On kinematic wavesI. Flood movement in long

rivers. Proc R Soc London Ser A 1955;229:281–316.
[43] Liu KF, Mei CC. Approximate equations for the slow spreading of a thin sheet of

Bingham plastic fluid. Phys Fluids A 1990;2:30–6.
[44] Liu KF, Mei CC. Slow spreading of a sheet of Bingham fluid on an inclined plane.

J Fluid Mech 1990;207:505–29.
[45] Martinet G. Contribution à la modélisation numérique des avalanches de neige

dense et aux laves torrentielles. Ph.D. thesis, University Joseph Fourier; 1992
[in French].

[46] Matson GP, Hogg AJ. Two-dimensional dam break flows of Herschel–Bulkley
fluids: the approach to the arrested state. J Non-Newton Fluid Mech
2007;142:79–94.

[47] Mei CC, Liu KF, Yuhi M. Mud flows – Slow and fast. In: Balmforth NJ,
Provenzale A, editors. Geomorphological fluid mechanics: selected topics in
geological and geomorphological fluid mechanics. Berlin: Springer; 2001. p.
548–77.

[48] Mei CC, Yuhi M. Slow flow of a Bingham fluid in a shallow channel of finite
width. J Fluid Mech 2001;431:135–59.

[49] Møller PCF, Mewis J, Bonn D. Yield stress and thixotropy: on the difficulty of
measuring yield stresses in practice. Soft Matter 2006;2:274–83.

[50] Ovarlez G, Mahaut F, Bertrand F, Chateau X. Flows and heterogeneities with a
vane tool: Magnetic resonance imaging measurements. J Rheol 2011;55:
197–223.

[51] Pastor M, Quecedo M, González E, Herreros MI, Fernández JA, Mira P. Simple
approximation to bottom friction for Bingham fluid depth integrated models. J
Hydraul Eng 2004;130:149–55.

[52] Piau JM. Flow of a yield stress fluid in a long domain. Application to flow on an
inclined plane. J Rheol 1996;40:711–23.

[53] Raffel M, Willert CE, Wereley ST, Kompenhans J. Particle image
velocimetry. Berlin: Springer; 2007.

[54] Rentschler M. Simulating viscoplastic avalanches. Ph.D. thesis, École
Polytechnique Fédérale de Lausanne; 2010.

[55] Skeel RD, Berzins M. A method for the spatial discretization of parabolic
equations in one space variable. SIAM J Sci Stat Comput 1990;11:1–32.

[56] Sveen JK. An introduction to MatPIV. Technical report, Department of
Mathematics, University of Oslo; 2004.

[57] Whipple KX. Open-channel flow of Bingham fluids: application in debris-flow
research. J Geol 1997;105:243–62.


	Viscoplastic dambreak waves: Review of simple computational approaches and comparison with experiments
	1 Introduction
	2 Fundamentals: velocity and shear stress profiles
	2.1 Steady uniform flow
	2.2 Nonuniform flow
	2.3 Sidewall effect correction

	3 Experimental facility and procedure
	3.1 Experimental facility and procedure
	3.2 Experimental velocity profiles

	4 Comparison with theoretical models
	4.1 Kinematic wave model
	4.2 Advection diffusion equation
	4.3 Depth-averaged equations

	5 Concluding remarks
	Acknowledgments
	Appendix A Newtonian case
	References


