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Gravity Flow on Steep Slope

CHRISTOPHE ANCEY

10.1 Introduction

Particle-laden, gravity-driven flows occur in a large variety of natural and industrial
situations. Typical examples include turbidity currents, volcanic eruptions, and sand-
storms (see Simpson 1997 for a review). On mountain slopes, debris flows and snow
avalanches provide particular instances of vigorous dense flows, which have special
features that make them different from usual gravity currents. Those special features
include the following:

• They belong to the class of non-Boussinesq flows since the density difference between the
ambient fluid and the flow is usually very large, whereas most gravity currents are generated
by a density difference of a few percent.

• Whereas many gravity currents are driven by pressure gradient and buoyancy forces, the
dynamics of flows on slope are controlled by the balance between the gravitational acceler-
ation and dissipation forces. Understanding the rheological behavior of particle suspensions
is often of paramount importance when studying gravity flows on steep slope.

This chapter reviews some of the essential features of snow avalanches and debris
flows. Since these flows are a major threat to human activities in mountain areas, they
have been studied since the late 19th century. In spite of the huge amount of work
done in collecting field data and developing flow-dynamics models, there remain great
challenges in understanding the dynamics of flows on steep slope and, ultimately, in
predicting their occurrence and behavior. Indeed, these flows involve a number of
complications such as abrupt surge fronts, varying free and basal1 surfaces, and flow
structure that changes with position and time.

Subaqueous landslides and debris avalanches have many similarities with subaerial
debris flows and avalanches (Hampton et al. 1996). The correspondence, however, is
not complete since subaqueous debris flows are prone to hydroplane and transform
into density currents as a result of water entrainment (Elverhøi et al. 2005); the slope
range over which they occur is also much wider than the slope range for subaerial

1 The basal surface is the interface between the bottom of the flow and the ground/snowcover.
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flows. Powder-snow avalanches are related to turbidity currents on the ocean floor
(Parker et al. 1986) and pyroclastic flows from volcanoes (Huppert and Dade 1998;
Bursik et al. 2005). Powder-snow avalanches sometimes experience a rapid decel-
eration of their dense cores, which eventually separate from their dilute clouds and
form stepped thickness patterns in their deposits. This behavior is also seen with
submarine flows and pyroclastic flows. In addition to being non-Boussinesq flows,
powder-snow avalanches differ from submarine avalanches in that they are closer
to fixed-volume, unsteady currents than to the steady density currents with constant
supply.

10.2 A Physical Picture of Gravity Flows

10.2.1 Debris Flows

Debris flows are mass movements of concentrated slurries of water, fine solids, rocks,
and boulders (Iverson 1997; 2005). They are highly concentrated mixtures of sedi-
ments and water, flowing as a single-phase system on the bulk scale. Debris flows look
like mudslides and landslides, but the velocities and the distances they travel are much
larger. They differ from floods in sediment transport in that they are characterized by
a very high solids fraction (mostly exceeding 80%).

There are many classifications of debris flows and related phenomena based on
compositions, origins, and appearances. Many events categorized as “mudflows,”
“debris slides,” lahars, and “hyperconcentrated flows” can be considered as particular
forms of debris flows (Fannin and Rollerson, 1993; Iverson, 1997). Debris flows may
result from the following:

• Mobilization from a landsliding mass of saturated unsorted materials, often after heavy
and/or sustained rainfalls (Iverson et al. 1997)

• Transformation from a sediment-laden water flood into a hyperconcentrated flow, probably
as a result of channel-bed failure (Tognacca 1997)

• Melting of ice and snow induced by pyroclastic or lava flows and accompanied by
entrainment of large ash volumes (Voight 1990)

• Collapse of a moraine-dammed lake generating an outburst flood (Clague and Evans 2000).

The material volume mobilized by debris flows ranges from a few thousands cubic
meters to a few millions, exceptionally a few billions. The velocity is typically a few
meters per second, with peak velocities as high as 10 m/s (VanDine 1985; Major and
Pierson 1992; Hürlimann et al. 2003). Debris flows usually need steep slopes (i.e., in
excess of 20%) to be initiated and to flow, but occasionally they have been reported
to travel long distances over shallow slopes (less than 10%).

Figure 10.1 shows two deposits of debris flows. In Figure 10.1a, a debris flow
involving well-sorted materials embedded in a clayey matrix came to a halt on an
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(a) (b)

Figure 10.1. (a) Debris-flow deposit in the Ravin-des-Sables watershed (France);
the bucket gives a scale of the deposit thickness. (b) Debris flow on the road to la-
Chapelle-en-Valgaudemar (France). For a color version of this figure please see the
color plate section.

alluvial fan2; note that there was no water seepage, which implies that the material
was still water-saturated a few hours after stoppage. Figure 10.1b shows a car hit by
a debris flow made up of coarse material; the conspicuous streaks of muddy water
indicate that water and the finest grain fraction separated from the coarsest grain
fraction as soon as the flow approached the arrested state.

10.2.2 Snow Avalanches

Avalanches are rapid, gravity-driven masses of snow moving down mountain slopes.
Many, if not most, catastrophic avalanches follow the same basic principle: Fresh
snow accumulates on the slope of a mountain until the gravitational force at the top
of the slope exceeds the binding force holding the snow together. A solid slab of the
surface layer of snow can then push its way across the underlying layer, resulting in
an avalanche. The failure may also arise from a temperature increase, which reduces
snow cohesion. Typically, most avalanches travel for a few hundred meters at a rather
low velocity (a few meters per second), but some can move up to 15 km and achieve
velocities as high as 100 m/s. They can also pack an incredible punch, up to several
atmospheres of pressure. It is helpful to consider two limiting cases of avalanches
depending on the flow features (de Quervain 1981):

• The flowing avalanche: A flowing avalanche is an avalanche with a high-density core at the
bottom. Trajectory is dictated by the relief. The flow depth does not generally exceed a few
meters (see Figure 10.2a). The typical mean velocity ranges from 5 to 25 m/s. On average,
the density is fairly high, generally ranging from 150 to 500 kg/m3.

• The powder snow avalanche: It is a very rapid flow of a snow cloud, in which most
of the snow particles are suspended in the ambient air by turbulence (see Figure 10.2b).
Relief has usually weak influence on this aerial flow. Typically, for the flow depth, mean
velocity, and mean density, the order of magnitude is 10–100 m, 50–100 m/s, 5–50 kg/m3,
respectively.

2 An alluvial fan is a fan-shaped deposit formed typically at the exit of a canyon, as a result of the sudden change in
the bed gradient, which causes massive sediment deposition.



Chassignet: “Chap10” — 2011/10/10 — 19:56 — PAGE 375 — #4

10.3 Anatomy of gravity currents on slope 375

(a) (b)

Figure 10.2. (a) Wet-snow avalanche deposit in the southern face of Grammont
(Switzerland); the snowballs are approximately 10 cm in diameter. (b) Powder-snow
avalanche in the northern face of Dolent (Switzerland); the typical flow depth is 20 m.
For a color version of this figure please see the color plate section.

10.3 Anatomy of Gravity Currents on Slope

Knowing how a gravity-driven flow is organized is of paramount importance to
understanding its properties. Contrary to most fluid-mechanics problems in which
the fluid volume is bounded or infinite, a gravity current is characterized by moving
boundaries:

• The free surface at the interface with the ambient air and
• The surface of contact with the ground (or snow cover), where much of the energy dissipation

occurs.

These boundaries can be passive (i.e., they mark the boundaries of the volume occupied
by the flowing material). On some occasions, they may be active (e.g., by promoting
mass and momentum exchanges with the ambient fluid and/or the bed).Also, a gravity-
driven flow often is split into three parts: the head at the leading edge, the body, and
the tail. The structure of these regions depends on the material and flow properties. It
is quite convenient to consider two end members of gravity flows to better understand
their anatomy: debris flows are typical of dense granular flows, for which the ambient
fluid has no significant dynamic role, whereas powder-snow avalanches are typical of
flows whose dynamics are controlled to a large extent by the mass and momentum
exchanges at the interfaces.

10.3.1 Anatomy of Debris Flows

On the whole, debris flows are typically characterized by three regions, which can
change with time (see Figure 10.3):

• At the leading edge, a granular front or snout contains the largest concentration of big rocks;
boulders seem to be pushed and rolled by the body of the debris flow. The front is usually
higher than the rest of the flow. In some cases, no front is observed because the body has
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Figure 10.3. Idealized representations of a debris flow (longitudinal profile and cross-
section). The different sections correspond to the dashed lines of the upper panel.
Adapted from Johnson and Rodine (1984).

overtaken (a frequent occurrence when the debris flow spreads onto the alluvial fan) or
because the materials are well sorted and no significant variation in the bulk composition
can be detected.

• Behind the front, the body is the flow of a rock and mud mixture. Usually, the debris flow
body is not in a steady state but presents unsteady surges (Zanuttigh and Lamberti 2007). It
can transport blocks of any size. Many authors have reported that boulders of relatively small
size seem to float at the free surface, while blocks of a few meters in size move merely by
being overturned by the debris flow. The morphological characteristics of the debris flow are
diverse depending on debris characteristics (size distribution, concentration, mineralogy)
and channel geometry (slope, shape, sinuosity, width). Flowing debris can resemble wet
concrete, dirty water, or granular material, but irrespective of the debris characteristics and
appearance, viscosity is much higher than for water. Most of the time, debris flows move in a
completely laminar fashion, but they can also display minor turbulence; on some occasions,
part of the debris flow may be highly turbulent.

• In the tail, the solid concentration decreases significantly and the flow looks like a turbulent
muddy water flow.

In recent years, many outdoor and laboratory experiments have shed light on the
connections existing between particle-size distribution, water content, and flow fea-
tures for fixed volumes of bulk material (Davies 1986; Iverson 1997; Parsons et al.
2001; Chambon et al. 2009). In particular, experiments performed by Parsons et al.
(2001) and Iverson (1997) have shown that the flow of poorly sorted materials was
characterized by the coexistence of two zones, each with a distinctive rheological
behavior: the flow border was rich in coarse-grained materials, whereas the core was
fine grained. This self-organization has a great influence on the flow behavior; notably,
the flow core behaves more like a viscoplastic material, while the flow region close
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(a)

(b)

Figure 10.4. Schematic of the behavior contrast between fine-grained and coarse-
grained flows. (a) Conveyer-belt-like flow at the front. (b) Formation of a frictional
front. After Parsons et al. (2001).

to the levees (lateral deposits) are in a Coulomb frictional regime (sustained solid
frictional contacts between grains). Moreover, the runout distance can be signifi-
cantly enhanced as a result of levee formation limiting lateral spreading and energy
dissipation.

Parsons et al. (2001) ran a series of experiments to investigate the effect of the
composition (i.e., the importance of the finest- and coarsest-grain fractions). They used
a semicircular inclined flume and measured the velocity profile at the free surface.
Different slurries were prepared by altering the sand, clay, and silt fractions. They
obtained muddy slurries when the matrix was rich in silt and clay, and poorly sorted
mixtures when the silt and clay contents were reduced. Surprisingly enough, the change
in the fine-particle content did not significantly modify the appearance of the body,
whereas it markedly altered the composition of the front and its behavior. Reducing
the fine fraction in the slurries induced a radical change of behavior for the front (see
Figure 10.4):

• For muddy, fine-grained slurries, the front took the form of a blunt nose. Lack of slip along
the flume bottom caused a conveyer-belt-like flow at the front.

• For coarse-grained slurries, the front took the form of a dry granular locked nose slipping
along the bed as a result of the driving force exerted by the fluid accumulating behind the
snout. Additional material was gradually incorporated into the snout, which grew in size
until it was able to slow the body.

Interestingly enough, the changes in the rheological properties mainly affected the
structure of the flow, especially within the tip region.

Iverson and his colleagues investigated slurries predominantly composed of a water-
saturated mixture of sand and gravel, with a fine fraction of only a few percent (Iverson
1997, 2003a, 2005; Iverson et al. 2010). Experiments were run by releasing a volume
of slurry (approximately 10 m3) down a 31-degree, 95-m-long flume.At the base of the
flume, the material spread out on a planar, nearly horizontal, unconfined runout zone.
Flow-depth, basal normal stress, and basal interstitial-flow pressure were measured
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at different places along the flume. Iverson and his co-workers observed that at early
times (just after the release), an abrupt front formed at the head of the flow, which
was followed by a gradually tapering body and a thin, more watery tail. The front
remained relatively dry (with pressure of interstitial water dropping to zero) and of
constant thickness, while the body elongated gradually in the course of the flow. Over
the longest part of the flume, the basal pore pressure (i.e., the pressure of the interstitial
water phase) nearly matched the total normal stress, which means that shear strength
was close to zero and the material was liquefied within the body (Iverson 1997). In
their recent data compilation, Iverson et al. (2010) confirmed the earlier observations
made by Parsons et al. (2001): Mud enhanced flow mobility by maintaining high pore
pressures in flow bodies. They also observed that roughness reduced flow speeds, but
not runout distances. The explanation for this apparently strange behavior lies in the
particular role played by debris agitation and grain-size segregation. Indeed, if the bed
is flat, particles slip along the bottom, and shear is localized within a thin layer close
to the bed, with almost no deformation through the flow depth (i.e., uniform velocity
profile). In contrast, if the bed is corrugated, particles undergo collisions and are more
agitated, which promotes the development of a nonuniform velocity profile through
the depth and causes the flow to slightly dilate and the particles to segregate (see
Section 10.4.3). Velocity shear and dilatancy act together as a sieve that constantly
and randomly opens gaps. The finest particles are more likely to drop down into the
gaps under the action of gravity than the coarsest ones are, which eventually creates
inversely graded layers of particles (coarse particles on top, fine particle near the base of
the flow). Here, particle segregation has two effects: (i) it reduces bottom friction (small
particles acting as rolling balls) as shown in granular avalanche experiments carried
out by (Phillips et al. 2006; Linares-Guerrero et al. 2007); (ii) the largest particles con-
centrate in the fast-moving upper layers (next to the free surface) and are transported
to the flow front, where they are shouldered to the side by the core (made up of more
mobile fine particles) and create static coarse-grained lateral levees that channelize the
flow.

Figure 10.5 shows a sequence of aerial photographs taken when the material spread
out on the runout surface. Self-organization of the slurry flow into a coarse-grained
boundary and a muddy core became conspicuous as the flow traveled the runout
surface. Lateral levees were formed by the coarsest grains that reached the front,
being continuously shouldered aside by the muddy core. These levees then confined
the ensuing muddy body. Note the levee formation is probably not induced by particle
segregation alone since it is also observed for dry granular flows involving spherical
equal-size particles (Félix and Thomas, 2004). Figure 10.6(a) shows the lateral levees,
which can be used to evaluate the crosssection of the flow, and Figure 10.6(b) shows
a granular levee formed by a debris flow on the alluvial fan. Similar features are also
observed for wet-snow avalanches (Jomelli and Bertran 2001) and pyroclastic flows
(Iverson and Vallance 2001).
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Figure 10.5. Snapshots showing slurry flow discharging from the U.S. Geological
Survey Debris-Flow Flume and crossing the unconfined, nearly horizontal runout
zone. The dark-toned material around the perimeter of the flow was predominantly
gravel; the light-toned material in the center of the flow was liquified mud. Figure
reproduced from Iverson (2003a); courtesy of Richard M. Iverson.

(a) (b)

Figure 10.6. (a) Crosssection of the Malleval stream after a debris flow in August
1999 (Hautes-Alpes, France). (b) Levees left by a debris flow in the Dunant river in
July 2006 (Valais, Switzerland); courtesy of Alain Delalune. For a color version of
this figure please see the color plate section.

10.3.2 Anatomy of Powder-Snow Avalanches

Although there is probably no unique typical outline, powder-snow avalanches are
usually made up of two regions when they are in a flowing regime (see Figure 10.7).
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body leading edgetail

Figure 10.7. Anatomy of a powder-snow cloud.

• The leading edge is the frontal zone where intense mixing occurs. Motion is produced by
the density contrast between the suspension and the surrounding fluid. Since the surround-
ing fluid is entrained into the current, the snow concentration decreases inside the current,
leading, in turn, to a decrease in the buoyancy force unless the current is supplied by a
sufficiently strong input of particles. Bed erosion and entrainment of the surrounding fluid
into the head are therefore the two main processes that control the bulk dynamics. As long as
this balance is maintained, the interface with the ambient fluid is a sharp surface that clearly
delineates the avalanche and the ambient air. When air entrainment becomes the prevailing
mechanism, the interface becomes a blurred layer. Turbulence is needed in the leading edge
to counteract the particle settling; with sufficient turbulence, snow particles (ranging from
snowflakes to snowballs) are maintained in suspension. The key condition for the formation
and development of a powder cloud is that the vertical velocity fluctuations exceed the par-
ticle settling velocity, a condition that is reminiscent of the “ignition” of a gravity current
on the ocean floor (Parker, 1982).

• The tail or “turbulent wake” is the volume of fluid behind the head, and it is often separated
from the leading edge by a billow. The density contrast with the ambient fluid is usually
much less marked than for the head. For some events, the powder-snow avalanche leaves
behind a motionless cloud whose size may still be growing as a result of turbulent diffusion.
It rapidly settles as turbulent energy falls off.

In the release and runout phase, the structure is usually very different. Indeed,
in the release phase, the cloud is not formed (the avalanche looks like a flowing
avalanche), whereas in the runout phase, the cloud collapses and settles to form a
vast, thin deposit (thickness less than 1 m). For many events, it has been observed
that the cloud separates from the dense core, which comes to a halt as soon as the
slope gradient is too low (typically lower than 20–25%). This “decoupling” process is
similar in many respects to the abrupt transition observed by Hallworth et al. (1998b)
in their laboratory experiments on the instantaneous release of particle-driven gravity
currents in a water-filled flume; it probably results from enhanced friction between
particles, which implies higher dissipation rates in the core than in the dilute cloud.
Figure 10.8a shows a powder-snow avalanche in a flowing regime. The trees on either
side of the avalanche path give a scale of the depth of this avalanche. Its velocity
was close to 60 m/s. Figure 10.8b also shows a powder-snow avalanche, but in its
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(a)

(b) (c)

Figure 10.8. (a) Powder-snow avalanche in a flowing regime. Photograph taken in
the Vallée-de-la-Sionne field site (Switzerland) in January 2004; courtesy of François
Dufour, SLF. (b) Runup of a cloud of a powder-snow avalanche in a runout phase.
Photograph taken at le Roux-d’Abriès, France in January 2004; courtesy of Maurice
Chave. (c) Deposit of the dense core for the same avalanche; courtesy of Hervé
Wadier. For a color version of this figure please see the color plate section.

runout phase. Note that the depth is much higher than the trees. Although its velocity
was quite high, this cloud did not cause any damage to the forest, which implies that
the impact pressure, and thus the bulk density, were low. Figure 10.8c shows that for
this avalanche, part of the avalanche mass was concentrated in a dense core, which
stopped prior to reaching the valley bottom.

There are not many field observations of the internal structure of powder-snow
avalanches (Issler 2003; Rammer et al. 2007) and much of our current knowledge stems
from what we can infer from small-scale experiments in the laboratory, which were
conducted with a partial similitude with real flows. Field observations and laboratory
experiments reveal the following four important aspects:

• Existence of eddies: Field measurements (based on radar or pressure-sensor measurements)
show that the internal velocity is higher than the front velocity and varies cyclically with time,
which was interpreted as the hallmark of rotational flows. Experiments of gravity currents
in tanks have shown that the leading edge is associated with a pair of vortices, one located
at the leading edge and another one at the rear of the head (see Figure 10.9). In experiments
conducted by Simpson (1972), the development of the flow patterns was made visible using a
blend of dense fluid and fine aluminum particles.Astretching vortex occupying the tip region
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was clearly observed at the leading edge and produced an intense roll-up of fine aluminum
particles, which makes it possible to visualize the streamlines and the two vortices; in the
upper part of the head, a counterclockwise rotating vortex occurred. Experiments carried
out by Ancey (2004) on finite-volume gravity currents moving down a slope also revealed
that the particle cloud was composed of two evident eddies: when the surge involving a
glass-bead suspension in water moved from left to right, he observed a small vortex ahead
of the front, spinning clockwise, and a large counterclockwise eddy occupying most of the
surge volume. Theoretically, this is in line with the paper of McElwaine (2005) who extended
Benjamin’s results by considering steady finite-volume currents flowing down a steep slope,
which experience resistance from the surrounding fluid. Like Benjamin (1968), he found that
the front makes a π/3 angle with the bottom line. More recently, Ancey et al. (2006; 2007)
worked out analytical solutions to the depth-averaged equations and the Euler equations,
which represent the flow of non-Boussinesq currents; it was also found that the flow must
be rotational and that the head is wedge-shaped.

• Vertical density stratification: Turbulence is often not sufficient to mix the cloud efficiently
and maintain a uniform density through the cloud depth. Instead, a dense layer forms at the
bottom and the density decreases quickly upward (Issler 2003). For many events, it has also
been observed that the dilute component of the avalanche flowed faster than the core and
eventually detached from it, which leads us to think that there was a sharp transition from
the dense basal layer to the dilute upper layer. For instance, from impact force measurement
against static obstacles, it was inferred that the dense layer at the base of the flow was 1–3 m
thick, with velocity and (instantaneous) impact pressure as high as 30 m/s and 400 kPa. The
transition layer is typically 5 m thick, with kinetic pressure in the 50–100 kPa range. In the
dilute upper layer, which can be very thick (as large as 100 m), the kinetic pressure drops to
a few pascals, but the velocity is quite high, with typical values close to 60–80 m/s.

• Snow entrainment: It alters speed and runout distance. The primary mode of entrainment
appeared to be frontal ploughing, although entrainment behind the avalanche front was
also observed (Gauer and Issler 2003; Sovilla and Bartelt 2006). When there is snow
entrainment, the front is wedge shaped. It can present lobes and clefts, more occasion-
ally fingering patterns, which appear and quickly disappear. The total flow depth lies in the
10–50 m range and varies little with distance. Theoretical calculations predict a wedge angle
of π/3, which seems consistent with field observations (McElwaine 2005). In the absence
of entrainment, the front becomes vertical, with a typical nose shape. The surface is diffuse
and smoother. The flow depth can be as large as 100 m and quickly varies with distance.

• Air entrainment: Changes in cloud volume result primarily from the entrainment of the
surrounding air. Various mixing processes are responsible for the entrainment of an ambient,
less-dense fluid into a denser current (or cloud). It has been shown for jets, plumes, and
currents that (1) different shear instabilities (Kelvin-Helmoltz, Hölmböe, etc.) can occur
at the interface between dense and less dense fluids, and (2) the rate of growth of these
instabilities is controlled by a Richardson number (Turner 1973; Fernando 1991), defined
here as

Ri = g′H cosθ

U2
, (10.1)
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turbulent wake head

erodible snow covereddies

Figure 10.9. Typical structure of the head of a powder-snow avalanche as interpreted
from field measurements and laboratory experiments.

where g′ denotes the reduced gravity g′ = g��̄/�a and ��̄ = �̄−�a is the density mismatch
between the cloud and the ambient fluid. Note that the Richardson number is the inverse
square of the Froude number used in hydraulics. The Richardson number can be seen as the
ratio of the potential energy (g��̄H cosθ ) to the kinetic energy (�aU

2) of a parcel of fluid
at the current interface. Usually a smaller Ri value implies predominance of inertia effects
over the restoring action of gravity, thus resulting in greater instability and therefore a higher
entrainment rate; it is then expected that the entrainment rate is a decreasing function of the
Richardson number. Mixing is observed to occur in gravity currents due to the formation
of Kelvin-Helmoltz instabilities at the front, which grow in size, are advected upward, and
finally collapse behind the head. The lobe-and-cleft instability is also an efficient mechanism
of entrainment (Simpson 1997). Although the details of the mixing mechanisms are very
complex, a striking result of recent research is that their overall effects can be described
using simple relations with bulk variables (Turner 1973; Fernando 1991). For instance, as
regards the volume balance equation, the most common assumption is to state that the volume
variations result from the entrainment of the ambient fluid into the cloud and that the inflow
rate is proportional to the exposed surface areas and a characteristic velocity ue: V̇ = EvSue

whereEv is the bulk entrainment coefficient andue =√
�̄/�aU for a non-Boussinesq current.

10.4 Fluid-Mechanics Approach to Gravity Currents

Gravity-driven flows usually take the appearance of more or less viscous fluids flowing
down a slope, and this observation has prompted the use of fluid-mechanics tools for
describing their motion. However, the impediments to a full fluid-mechanics approach
are many: a wide range of particle size (often in the 10−3–1-m range), composition that
may change with time and/or position, poorly known boundary conditions (e.g., erodi-
ble basal surface) and initial conditions, time-dependent flows with abrupt changes
(e.g., surge front, instabilities along the free surface), and so on. All these difficul-
ties pose great challenges in any fluid-mechanics approach for modeling rapid mass
movements and have given impetus to extensive research combining laboratory and
field experiments, theory, field observation, and numerical simulations.
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Figure 10.10. Different spatial scales used for describing avalanches (and related
flows): (a) the avalanche as a rigid body moving at velocity u(t); (b) the avalanche
as a stream of depth h(x, t) and velocity u(x, t); (c) the avalanche as a continuum.

Avalanches and debris flows can be considered at different spatial scales (see Figure
10.10). The larger scale, corresponding to the entire flow, leads to the simplest mod-
els. The chief parameters include the location of the gravity center and its velocity.
Mechanical behavior is mainly reflected by the friction force F exerted by the bottom
(ground or snowpack) on the avalanche. The smallest scale, close to the size of snow
particles involved in the avalanches, leads to complicated rheological and numerical
problems. The flow characteristics (velocity, stress) are calculated at any point of the
occupied space. Intermediate models have also been developed. These models benefit
from being less complex than three-dimensional numerical models and yet are more
accurate than simple ones. Such intermediate models are generally obtained by inte-
grating the equations of motion through the flow depth, as is done in hydraulics for
shallow water equations.

We start our review of these three approaches with a discussion of the flow regimes
(see Section 10.4.1). We then briefly describe the rheological behavior of natural
materials involved in gravity flows in Section 10.4.2. Since most gravity flows are
made up of different sized particles, the rheological properties usually on the solids
concentration of each component. As a result of various processes such as kinetic
sieving, particles can migrate and segregate. In Section 10.4.3, we tackle the difficult
issue of particle segregation. The second part of this section is devoted to presenting
three fluid-mechanics approaches. In Section 10.4.4, we outline the simplest approach:
the sliding-block model, which can be used to give some crude estimates of the speed
and dynamic features as well as scaling relations between flow variables and input
parameters. A more involved approach consists of taking the depth average of the
local governing equations (see Section 10.4.5), which enables us to derive a set of



Chassignet: “Chap10” — 2011/10/10 — 19:56 — PAGE 385 — #14

10.4 Fluid-mechanics approach to gravity currents 385

partial differential equations for the flow depth h and mean velocity ū. In principle,
the local governing equations could be integrated numerically, but the numerical cost
is very high and the gain in accuracy is spoiled by the poor knowledge of the rheologic
properties or the initial/boundary conditions. Here we confine attention to analytical
treatments, which involves working out approximate solutions by using asymptotic
expansions of the velocity field (see Section 10.4.6).

10.4.1 Scaling and Flow Regimes

Here we will examine how different flow regimes can occur depending on the relative
strength of inertial, pressure, and viscous contributions in the governing equations.
Dimensional analysis helps clarify the notions of inertia-dominated and friction-
dominated regimes. In the analytical computations, we will use the shallowness of
flows to derive approximate equations.

We consider a shallow layer of fluid flowing over a rigid impermeable plane inclined
at an angle θ (see Figure 10.11). The fluid is incompressible; its density is denoted by
� and its bulk viscosity by η = τ/γ̇ , with γ̇ the shear rate (i.e., in a simple shear flow, it
is the velocity gradient in the y-direction). Note that this bulk viscosity may depend on
γ̇ (this is the general case when the behavior is non-Newtonian). The ratio ε = H∗/L∗
between the typical vertical and horizontal length scales, H∗ and L∗, respectively, is
assumed to be small. The streamwise and vertical coordinates are denoted by x and y,
respectively.

A two-dimensional flow regime is assumed (i.e., any cross-stream variation is
neglected). The depth of the layer is given by h(x, t). The horizontal and vertical
velocity components of the velocity u are denoted by u and v, respectively. The pres-
sure is referred to as p(x, y, t), where t denotes time, whereas the extra stress tensor
(or deviatoric stress tensor) is denoted by σ . The surrounding fluid (assumed to be air)
is assumed to be dynamically passive (i.e., inviscid and low density compared to the

x

y

θ

O

u(y )
y = h(x,t)

Figure 10.11. The configuration of the flow: h(x, t) the flow depth, u(y) the cross-
stream velocity profile, and θ the bed inclination.
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moving fluid) and surface tension is neglected, which implies that the stress state at
the free surface is zero.

The governing equations are given by the mass and momentum balance equations

∇ · u = 0, (10.2)

�
∂u
∂t

+�(u · ∇)u = �g −∇p +∇ ·σ , (10.3)

supplemented by the following boundary conditions at the free and bottom surfaces

v(x,h, t) = dh

d t
= ∂h

∂t
+u(x,h, t)

∂h

∂x
, v(x,0, t) = 0 . (10.4)

There are many ways of transforming these governing equations into dimensionless
expressions (Liu and Mei 1990a; Balmforth and Craster 1999; Keller 2003; Ancey
and Cochard 2009). Here we depart slightly from the presentation given by Liu and
Mei (1990a). The characteristic streamwise and vertical velocities, the timescale,
the typical pressure, and the order of magnitude of bulk viscosity are referred to as
U∗, V∗, T∗, P∗, and η∗, respectively. Moreover, in addition to the lengthscale ratio
ε, we introduce the following dimensionless numbers that characterize free-surface,
gravity-driven flows: the flow Reynolds number and the Froude number

Re = �U∗H∗
η∗

and Fr = U∗√
gH∗ cosθ

.

The following dimensionless variables will be used in this section:

û = u

U∗
, v̂ = v

V∗
, x̂ = x

L∗
, ŷ = y

H∗
, and t̂ = t

T∗
.

A natural choice for T∗ is T∗ = L∗/U∗. The stresses are scaled as follows:

σ̂xx = η∗U∗
L∗

σxx , σ̂xy = η∗U∗
H∗

σxy , σ̂yy = η∗U∗
L∗

σyy , and p̂ = p

P∗
,

where σxx , σxy , and σyy are the normal stress in the x-direction, the shear stress, and
the normal stress in the y-direction, respectively. Here we are interested in free-surface
flows. This leads us to set P∗ = �gH∗ cosθ since we expect that, to leading order, the
pressure adopts a hydrostatic distribution (see later). If we define the vertical velocity
scale as V∗ = εU∗, the mass balance equation (10.2) takes the following dimensionless
form

∂û

∂x̂
+ ∂ v̂

∂ŷ
= 0. (10.5)

Substituting the dimensionless variables into the momentum balance equation (10.3)
leads to

ε Re
d û

d t̂
= ε Re

Fr2

(
1

ε
tan θ − ∂p̂

∂x̂

)
+ ε2 ∂σ̂xx

∂x̂
+ ∂σ̂xy

∂ŷ
, (10.6)
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ε3 Re
d v̂

d t̂
= ε Re

Fr2

(
−1 − ∂p̂

∂ŷ

)
+ ε2 ∂σ̂xy

∂x̂
+ ε2 ∂σ̂yy

∂ŷ
. (10.7)

The momentum balance equation expresses a balance between gravity acceleration,
inertial terms, pressure gradient, and viscous dissipation, whose order of magnitude
is �g sin θ , �U2∗/L∗, P∗/L∗, and η∗U∗/H 2∗ , respectively. Depending on the values
considered for the characteristic scales, different types of flow regime occur. At least
four regimes, where two contributions prevail, could be achieved in principle:

1. Inertial regime, where inertial and pressure-gradient terms are of the same magnitude. We
obtain

U∗ =√
gH∗ cosθ.

The order of magnitude of the shear stress is ∂σxy/∂y = �gO(ε−1 Re−1). This regime
occurs when ε Re � 1 and Fr = O(1).

2. Diffusive regime, where the pressure gradient is balanced by viscous stresses within the
bulk. In that case, we have

U∗ = �g cosθH 3∗
η∗L∗

.

Inertial terms must be low compared to the pressure gradient and the slope must be shallow
(tan θ � ε). This imposes the following constraint: ε Re � 1. We deduced that Fr2 =
O(ε Re) � 1.

3. Visco-inertial regime, where inertial and viscous contributions are nearly equal. In that case,
we have

U∗ = 1

ε

η∗
�H∗

.

The pressure gradient must be low compared to the viscous stress, which entails the
following condition: η∗ � ε�

√
gH 3∗ . We obtain ε Re ∼ 1 and Fr = η∗/(�ε

√
gH 3∗ ) � 1.

4. Nearly steady uniform regime, where the viscous contribution matches gravity acceleration.
In that case, we have

U∗ = �g sin θH 2∗
η∗

.

Inertia must be negligible, which means ε � 1 (stretched flows). We obtain Re = O(Fr2)

and tan θ � ε (mild slopes).

In the inertia-dominated regime, the rheological effects are so low that they can be
neglected and the final governing equations are the Euler equations; this approximation
can be used to describe high-speed flows such as powder-snow avalanches in the
flowing regime (Ancey et al. 2007). The visco-inertial regime is more spurious and
has no specific interest in geophysics, notably because the flows are rapidly unstable.
More interesting is the diffusive regime that may be achieved for very slow flows
on gentle slopes (θ � 1), typically when flows come to rest, or within the head (Liu
and Mei 1990b; Balmforth et al. 2002; Ancey and Cochard 2009; Ancey et al. 2009).
We will further describe this regime in Section 10.5.3. The nearly-steady regime
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will be exemplified in Section 10.5.2 within the framework of the kinematic-wave
approximation.

Note that the partitioning into four regimes holds for viscous (Newtonian) fluids
and non-Newtonian materials for which the bulk viscosity does not vary significantly
with shear rate over a sufficiently wide range of shear rates. In the converse case,
further dimensionless groups (e.g., the Bingham number) must be introduced, which
makes this classification more complicated.

10.4.2 Rheology

In geophysical fluid mechanics, there have been many attempts to describe the rhe-
ological behavior of natural materials (Ancey 2007). However, since rheometric
experiments are not easy (see later), scientists use proxy procedures to characterize the
rheological behavior of natural materials. Interpreting the traces of past events (e.g.,
shape of deposits), running small-scale experiments with materials mimicking the
behavior of natural materials, and making analogies with idealized materials are com-
mon approaches to this issue. Because of a lack of experimental validation, there are
many points of contention within the different communities working on geophysical
flows. A typical example is provided by the debate surrounding the most appropri-
ate constitutive equation for describing sediment mixtures mobilized by debris flows
(Iverson 2003a). A certain part of the debris flow community uses soil-mechanics con-
cepts (Coulomb behavior), whereas another part prefers viscoplastic models. A third
part of the community merges the different concepts from soil and fluid mechanics to
provide general constitutive equations.

Over the last 20 years, a large number of experiments have been carried out to
test the rheological properties of natural materials. The crux of the difficulty lies in
the design of specific rheometers compatible with the relatively large size of particles
involved in geophysical flows. Coaxial-cylinder (Couette) rheometers and inclined
flumes are the most popular geometries. Another source of trouble stems from addi-
tional effects such as particle migration and segregation, flow heterogeneities, fracture,
layering, etc. These effects are often very pronounced with natural materials, which
may explain the poor reproducibility of rheometric investigations (Major and Pierson
1992; Contreras and Davies 2000; Iverson 2003b). Poor reproducibility, complexity
in the material response, and data scattering have at times been interpreted as the
failure of the one-phase approximation for describing rheological properties (Iver-
son, 2003b). In fact, these experimental problems demonstrate above all that the bulk
behavior of natural material is characterized by fluctuations that can be as wide as the
mean values. As for turbulence and Brownian motion, we should describe not only the
mean behavior, but also the fluctuating behavior to properly characterize the rheolog-
ical properties. For concentrated colloidal or granular materials (Lootens et al. 2003;
Tsai et al. 2001), experiments on well-controlled materials have provided evidence
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(a)

(c)

(b)

(d)

Figure 10.12. Different types of snow observed in avalanche deposits. (a) Block of
wet snow (size: 1 m). (b) Slurry of dry snow including weak snowballs formed during
the course of the avalanche (the heap height was approximately 2 m). (c) Ice balls
involved in a huge avalanche coming from the north face of the Mont Blanc (France);
the typical diameter was 10 cm. (d) Sintered snow forming broken slabs (typical
length: 40 cm, typical thickness 10 cm). For a color version of this figure please see
the color plate section.

that to some extent; these fluctuations originate from jamming in the particle network
(creation of force vaults sustaining normal stress and resisting against shear stress,
both of which suddenly relax). Other processes such as ordering, aging (changes in
the rheological behavior over time as a result of irreversible processes), and chemical
alteration occur in natural slurries, which may explain their time-dependent properties
(Marquez et al., 2006). Finally, there are perturbing effects (e.g., slipping along the
smooth surfaces of a rheometer) that may bias measurement.

Snow is a very special material. To illustrate the diversity of materials involved in
snow avalanches, Figure 10.12 reports different types of snow observed in avalanche
deposits. Experiments have been done in the laboratory to characterize snow’s rhe-
ological behavior. Authors such as Dent and Lang (1982) and Maeno (1993) have
measured the velocity profile within snow flows and generally deduced that snow
generates a non-Newtonian viscoplastic flow whose properties depend a great deal on
density. Carrying these laboratory results over to real avalanches is not clearly reli-
able because of size-scale effects and similarity conditions. Furthermore, given the
severe difficulties inherent in snow rheometry (sample fracture during shearing tests,
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variation in the snow microstructure resulting from thermodynamic transformations
of crystals, etc.), properly identifying the constitutive equation of snow with mod-
ern rheometers is out of reach for the moment. More recently, Ancey and Meunier
(2004) showed how avalanche-velocity records can be used to determine the bulk
frictional force; a striking result is that the bulk behavior of most snow avalanches
can be approximated using a Coulomb frictional model. Kern (2004; 2009) ran out-
door experiments to measure shear-rate profiles inside snow flows to infer rheological
properties; this preliminary experiment is rather encouraging and clears the way for
precise rheometrical investigations of real snow avalanches.

Since little sound field or laboratory data are available on the basic rheological
processes involved in avalanche release and flow, all avalanche-dynamics models
proposed so far rely on analogy with other physical phenomena: typical examples
include analogies with granular flows (Savage and Hutter 1989; Savage 1989; Tai et al.
2001; Cui et al. 2007), Newtonian fluids (Hunt 1994), power-law fluids (Norem et al.
1986), and viscoplastic flows (Dent and Lang 1982; Ancey 2007). From a rheological
point of view, these models rely on a purely speculative foundation. Indeed, most of the
time, the rheological parameters used in these models have been estimated by matching
the model predictions (such as the leading-edge velocity and the runout distance) with
field data (Buser and Frutiger 1980; Dent and Lang 1980;Ancey et al. 2004). However,
this procedure obviously does not provide evidence that the constitutive equation is
appropriate.

For debris flows, natural suspensions are made up of a great diversity of grains
and fluids. This observation motivates fundamental questions: How do we distinguish
between the solid and fluid phases? What is the effect of colloidal particles in a
suspension composed of coarse and fine particles? When the particle size distribution
is bimodal (i.e, we can distinguish between fine and coarse particles), the fine fraction
and the interstitial fluid form a viscoplastic fluid embedding the coarse particles, as
suggested by Sengun and Probstein (1989); this leads to a wide range of viscoplastic
constitutive equations, the most common being the Herschel-Bulkley model, described
later. The bimodal-suspension approximation usually breaks for poorly sorted slurries.
In that case, following Iverson and his co-workers (Iverson 1997; 2005), Coulomb
plasticity can help understand the complex, time-dependent rheological behavior of
slurries.

When the bulk is made up of fine colloidal particles, phenomenological laws are
used to describe rheological behavior. One of the most popular is the Herschel-Bulkley
model, which generalizes the Bingham law

τ = τc +Kγ̇ n, (10.8)

with τc the yield stress and K and n two constitutive parameters; the linear case (n = 1)
is referred to as the Bingham law. In practice, this phenomenological expression
successfully describes the rheological behavior of many materials over a sufficiently
wide range of shear rates, except at very low shear rates.
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When the bulk is made up of coarse noncolloidal particles, Coulomb friction at
the particle level imparts its key properties to the bulk, which explains (i) the linear
relationship between the shear stress τ and the effective normal stress σ ′ = σ − p

(with p the interstitial pore pressure, σ the stress normal to the plane of shearing)

τ = σ ′ tanϕ, (10.9)

and (ii) the nondependence of the shear stress on the shear rate γ̇ . Some authors have
suggested that in high-velocity flows, particles undergo collisions, which gives rise to
a regime referred to as the frictional-collisional regime. The first proposition of bulk
stress tensor seems to be attributable to Savage (1982), who split the shear stress into
frictional and collisional contributions

τ = σ tanϕ +µ(T )γ̇ , (10.10)

with T the granular temperature (root mean square of grain velocity fluctuations).
Elaborating on this model,Ancey and Evesque (2000) suggested that there is a coupling
between frictional and collisional processes. Using heuristic arguments on energy
balance, they concluded that the collisional viscosity should depend on the Coulomb
number Co = �pa2γ̇ 2/σ (with a the particle radius and �p its density) to allow for
this coupling in a simple way

τ = σ tanϕ +µ(Co)γ̇ . (10.11)

Jop et al. (2005) proposed a slightly different version of this model, where both the
bulk frictional and collisional contributions collapse into a single term, which is a
function of the inertial number I = Co1/2 (i.e., a variant of Coulomb number)

τ = σ tanϕ(I). (10.12)

In contrast, Josserand et al. (2004) stated that the key variable in shear stress was the
solid concentration φ rather than the Coulomb number

τ = K(φ)σ +µ(φ)γ̇ 2, (10.13)

with K a friction coefficient. Every model is successful in predicting experimen-
tal observations for some flow conditions, but to date, none is able to describe
the frictional-collisional regime for a wide range of flow conditions and material
properties.

10.4.3 Segregation and Particle Migration

Particle segregation refers to a sorting process that leads to separating a mixture
containing free-flowing particles, the size distribution of which is sufficiently wide (at
least a factor of 2 between the finest and coarsest grain sizes). It is an important feature
of sheared granular flows, in which the coarsest particles rise to the top of the flow,
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while the finest percolate down to the bottom. By changing the local composition
of the bulk, segregation has significant consequences on the behavior of granular
avalanches made up of different-sized particles, for example, by increasing their runout
distance (Legros 2002; Linares-Guerrero et al. 2007), forming bouldery fronts (Gray
and Kokelaar 2010), and giving rise to segregation-mobility feedback effects (Gray
and Ancey 2009). While the effects of particle segregation on bulk dynamics has
been essentially investigated in the laboratory, there is substantial field evidence that
segregation is a key mechanism in natural gravity flows such as snow avalanches
(Bartelt and McArdell 2009) and debris flows (Iverson and Vallance 2001).

Among the numerous processes that cause segregation, kinetic sieving and squeeze
expulsion are likely to be the most efficient in dense, dry, granular flows down sloping
beds (Gray 2010): Velocity shear and dilatancy act together as a random fluctuat-
ing sieve that allows the finer particles to percolate to the bottom under the action
of gravity, while squeezing larger particles upward. Figure 10.13 shows a typical
experiment of particle segregation in a granular flow down a chute: Small beads were
injected from above while large particles crept along the flume base. The small parti-
cles rapidly percolated to the bottom, whereas the large ones drifted to the top of the
flow.

Segregation in dense granular flows has been investigated theoretically using dif-
ferent approaches, including information entropy theory, statistical mechanics, and
binary-mixture theory (Gray 2010; Ottino and Khakhar 2000). For dense granular
flows involving binary mixtures, the last theoretical approach is interesting in that
it provides a relatively simple description of segregation-remixing in the form of a
nonlinear advection diffusion equation for the concentration (Gray 2010):

∂φ

∂t
+ div(φu)− ∂

∂z

(
qφ(1 −φ)

)
= ∂

∂z

(
D

∂φ

∂z

)
, (10.14)

Figure 10.13. Snapshots showing particles segregating down a flume. Initially, when
the particles enter the chute (image on the left), the mixture is normally graded, with
all the small particles (1-mm-diameter glass beads, colored) on top of the coarse grains
(2-mm-diameter glass beads in black). Segregation leads to a grading inversion, in
which the smallest particles percolate to the bottom of the flow, while the largest rise
toward the free surface (image in the middle). In the final state (in this experiment,
approximately 1 m downward of the flume entrance), the particles separate out, with
the large particles on top and small particles next to the bottom (image on the right).
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where φ is the small particle concentration (1 − φ is then the concentration in
large particles), u is the bulk velocity field, D is a coefficient of diffusion, and q

is the percolation rate (i.e., the rate at which small particles percolate to the base).
The first term on the left-hand side of (10.14) is the time rate of change of the small
particle concentration, and the second term is due to advection by the bulk velocity
field u. The third nonlinear term accounts for segregation, while the right-hand side
introduces the diffusive effects of remixing. Mathematically, this equation is a second-
order parabolic equation when D > 0. For D = 0, it reduces to a hyperbolic first-order
partial differential equation and in this case, equation (10.14) may form shocks (i.e.,
waves across which the small particle concentration experiences a jump). When D > 0,
diffusive remixing smears out the shock wave, replacing it by a smooth transition in the
small-particle concentration, and equation (10.14) is then able to model experiments
very realistically, but for practical purposes, neglecting the remixing (thus assuming
D = 0) simplifies a great deal equation (10.14), which is then more amenable to
analysis (Gray and Kokelaar 2010). This situation is reminiscent of water flows, in
which sharp gradients in flow depth are replaced by discontinuities called hydraulic
jumps (LeVeque 2002). Equation (10.14) does not depend on a particular form of
governing equations for the bulk, and it is therefore compatible with most existing
granular-flow models.

Particle migration refers to the diffusion of particles in sheared flows of particle
suspensions, which produces inhomogeneous particle concentrations through the sus-
pension (Stickel and Powell 2005). In a simple shear flow, the particles are driven
toward the regions that are characterized by low shear rates, whereas regions domi-
nated by high shear rates tend to become free of particles. For concentrated suspensions
of particles in a viscous fluid, this diffusion process markedly affects the flow dynam-
ics since the bulk viscosity µ depends on the particle concentration φ, a dependence
that is well captured by the empirical Krieger-Dougherty equation

µ = µ0

(
1 − φ

φm

)− 5
2 φm

,

where φm is the maximum packing fraction and µ0 is the viscosity of the interstitial
fluid (Chang and Powell 1994; Stickel and Powell 2005; Morris 2009). This change
in the local rheological properties has profound impact on the bulk properties by
giving rise to non-Newtonian properties such as normal-stress effects and apparent
yield stress (Zarraga et al. 2000; Ovarlez et al. 2006). For suspension flows down
sloping beds, particle migration causes the particles to rise to the free surface of the
flow (Singh et al. 2006; Timberlake and Morrison 2005). The upper layers next to the
free surface move faster and accumulate particles, which tend to be transported to the
flow front, forming pasty flow fronts. This situation is reminiscent of the observations
made by Parsons et al. (2001) (see Figure 10.4).
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The time variations in the particle concentration are described by an advection
diffusion equation

∂φ

∂t
+〈u〉 · ∇φ = −∇ · j. (10.15)

where j = φ(〈u〉p − 〈u〉) denotes the particle flux (relative to the bulk flow), 〈u〉 is
the average bulk velocity field, and 〈u〉p is the average particle velocity. As with
other diffusion processes, particle migration has been modeled by relating the particle
flux j to a driving force or potential. Since it was observed that particles migrate
from regions of high to low shear rate, the first phenomenological law proposed by
Leighton and Acrivos (1987) was to assume that j ∝ −γ̇ , with γ̇ the shear rate. A more
general formulation was then proposed by Morris and Boulay (1999), who showed
using microstructural arguments that

j ∝ ∇ · 〈�〉p,

where 〈�〉p denotes the average particle stress tensor. This law performs fairly well
for a number of flow configurations (Morris 2009).

10.4.4 Sliding-Block and Box Models

The simplest model for computing the propagation speed of a gravity current proceeds
by assuming that there is no downstream variation in flow properties (i.e., density,
friction) within the flowing bulk. Several classes of models have been developed.

• Sliding block model: The flow is assumed to behave as a rigid block experiencing a fric-
tional force. The early models date back to the beginning of the 20th century (Mougin
1922). Similar models have been developed for debris flows (Zimmermann et al. 1997). See
Section 10.5.1.

• Box model: The model relaxes the rigidity assumption of the sliding block model by consid-
ering that the current behaves as a deformable rectangular box of length  and height h (Hogg
et al. 2000; Ungarisch 2009). Mass conservation implies that the volume of this rectangle is
known. For inertia-dominated flows, the Froude number at the leading edge is usually given
by a boundary condition such as the von Kármán condition: Fr = uf /

√
g′h = constant

(with g′ the reduced gravity acceleration, see (10.1), and uf the front velocity). Since box
models have been developed for flows on horizontal surface, they are not well suited to
studying flows on steep slope.

• Cloud model: The current is assumed to behave as a deformable body whose shape keeps the
same aspect. The governing equations are given by the mass and momentum conservation
equations for a mass-varying body (Kulikovskiy and Svehnikova, 1977). See Section 10.6.1.

For almost 80 years, simple models have been developed to provide crude estima-
tions of avalanche features (velocity, pressure, runout distance). They are extensively
used in engineering throughout the world. Despite their simplicity and approximate
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character, they can provide valuable results (Bozhinskiy and Losev 1998; Salm 2004;
Ancey 2005).

10.4.5 Depth-Averaged Equations

The most common method for solving free-surface problems is to take the depth-
average of the local equations of motion. In the literature, this method is referred to
as the Saint-Venant approach since it was originally developed to compute floods in
rivers.

We consider flows without entrainment of the surrounding fluid and without vari-
ation in density (see Section 10.6.2 for flow with entrainment). Accordingly, the bulk
density may be merely replaced by its mean value. In this context, the equations of
motion may be inferred in a way similar to the usual procedure used in hydraulics to
derive the shallow water equations (or Saint–Venant equations). It involves integrat-
ing the momentum and mass balance equations over the depth. As such, a method
has been extensively used in hydraulics for water flow (Chow 1959) as well for non-
Newtonian fluids (Savage and Hutter 1991; Bouchut et al. 2003), we briefly recall the
principle and then directly provide the resulting equations of motion. Let us consider
the local mass balance: ∂�/∂t +∇ · (�u) = 0. Integrating this equation over the flow
depth leads to

h(x,t)∫
0

(
∂u

∂x
+ ∂v

∂y

)
dy = ∂

∂x

h∫
0

u(x,y, t)dy −u(h)
∂h

∂x
+ v(x,h, t)− v(x,0, t) ,

(10.16)

where u and v denote the x- and y-component of the local velocity. At the free sur-
face and at the bottom, the y-component of velocity satisfies the following boundary
conditions:

v(x,h, t) = dh

d t
= ∂h

∂t
+u(x,h, t)

∂h

∂x
, (10.17)

v(x,0, t) = 0 . (10.18)

We easily deduce

∂h

∂t
+ ∂hu

∂x
= 0 , (10.19)

where we have introduced depth-averaged values defined as

f̄ (x, t) = 1

h(x, t)

h(x,t)∫
0

f (x,y, t)dy . (10.20)
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The same procedure is applied to the momentum balance equation: �du/d t = �g+∇ ·
σ , where σ denotes the stress tensor. Without difficulty, we can deduce the averaged
momentum equation from the x-component of the momentum equation:

�

(
∂hu

∂t
+ ∂hu2

∂x

)
= �ghsin θ + ∂hσ̄xx

∂x
− τb , (10.21)

where we have introduced the bottom shear stress: τb = σxy(x,0, t). In the present
form, the motion equation system (10.19)–(10.21) is not closed since the number
of variables exceeds the number of equations. A common approximation involves
introducing a parameter (sometimes called the Boussinesq momentum coefficient),
which links the mean velocity to the mean square velocity.

u2 = 1

h

h∫
0

u2(y)dy = αū2 . (10.22)

Usually α is set to unity, but this may cause trouble when computing the head structure
(Hogg and Pritchard 2004; Ancey et al. 2006; 2007). A point often neglected is that
the shallow-flow approximation is in principle valid for flow regimes that are not
too far away from a steady uniform regime. In flow parts where there are significant
variations in the flow depth (e.g., at the leading edge and when the flow widens or
narrows substantially), corrections should be made to the first-order approximation
of stress. Recent studies, however, showed that errors made with the shallow-flow
approximation for the leading edge are not significant (Ancey et al. 2007; Ancey and
Cochard 2009; Ancey et al. 2009).

A considerable body of work has been published on this method for Newtonian and
non-Newtonian fluids, including viscoplastic (Coussot 1997; Huang and Garcìa 1998;
Siviglia and Cantelli 2005), power-law (Fernández-Nieto et al. 2010), and granular
materials (Savage and Hutter 1989; Gray et al. 1998; Pouliquen and Forterre 2002;
Iverson and Denlinger 2001; Bouchut et al. 2003; Chugunov et al. 2003; Pudasaini
and Hutter 2003; Kerswell 2005). In this chapter, we will provide two applications for
dense flows in Section 10.5.2: viscoplastic and friction Coulomb materials. Extension
to dilute flows is outlined in Section 10.6.2. In Section 10.7.2, we will also show how
the depth-averaged equations can be used to delineate the flow regimes and infer their
main features.

10.4.6 Asymptotic Expansions

On many occasions, flows are not in equilibrium, but deviate slightly from it. In this
context, it is often convenient to use asymptotic expansions for the velocity field
(Holmes 1995):

u(x,y, t) = u0(x,y, t)+ εu1(x,y, t)+ ε2u2(x,y, t)+·· · ,
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where ε is a small number (e.g., the aspect ratio ε = H∗/L∗ in equations (10.6)–
(10.7)) and ui(x,y, t) are functions to be determined; usually, u0 is the velocity field
when the flow is at equilibrium and ui represents perturbations to this equilibrium
state. Substituting u by this expansion into the local governing equations such as
equations (10.6)–(10.7) leads to a hierarchy of equations of increasing order. Most
of the time, only the zero-order solution and the first-order correction are computed.
Examples will be provided with the computation of an elongating viscoplastic flow
in Section 10.5.3.

10.5 Dense Flows

We address the issue of dense flows, for which the effect of the surrounding air is
neglected. We first illustrate the sliding block approach by outlining the Voellmy-Salm-
Gubler model, which is one of the most popular models worldwide for computing the
main features of extreme snow avalanches (Salm et al. 1990). In Section 10.5.2, we
see two applications of the flow-depth averaged equations (frictional and viscoplastic
fluids). We end this section with the use of asymptotic expansions to describe the
motion of viscoplastic flows (see Section 10.5.3).

10.5.1 Simple Models

The avalanche is assumed to behave as a rigid body that moves along an inclined
plane. The position of the center of mass is given by its abscissa x in the downward
direction. The momentum equation is

du

d t
= g sin θ − F

m
, (10.23)

with m the avalanche mass, u its velocity, θ the mean slope of the path, and F the fric-
tional force. In this model, the sliding block is subject to a frictional force combining
a solid-friction component and a square-velocity component:

F = mg
u2

ξh
+µmg cosθ, (10.24)

with h the mean flow depth of the avalanche, µ a friction coefficient related to the
snow fluidity, and ξ a coefficient of dynamic friction related to path roughness. If
these last two parameters cannot be measured directly, they can be adjusted from
several series of past events. It is generally accepted that the friction coefficient µ

depends only on the avalanche size and ranges from 0.4 (small avalanches) to 0.155
(very large avalanches) (Salm et al. 1990); in practice, lower values can be observed
for large-volume avalanches (Ancey et al. 2004). Likewise, the dynamic parameter
ξ reflects the influence of the path on avalanche motion. When an avalanche runs
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down a wide-open rough slope, ξ is close to 1,000 m s−2. Conversely, for avalanches
moving down confined straight gullies, ξ can be taken as being equal to 400 m s−2. In
a steady state, the velocity is directly inferred from the momentum balance equation

u =√
ξhcosθ (tan θ −µ) . (10.25)

According to this equation, two flow regimes can occur depending on path inclination.
For tan θ > µ, (10.25) has a real solution and a steady regime can occur. For tan θ < µ,
there is no real solution; the frictional force (10.24) outweighs the downward compo-
nent of the gravitational force. It is therefore considered that the flow slows. The point
of the path for which tan θ = µ is called the characteristic point (point P ). It plays an
important role in avalanche dynamics since it separates flowing and runout phases. In
the stopping area, we deduce from the momentum equation that the velocity decreases
as follows:

1

2

du2

dx
+u2 g

ξh
= g cosθ (tan θ −µ) . (10.26)

The runout distance is easily inferred from (10.26) by assuming that at a point x = 0,
the avalanche velocity is up. In practice the origin point is point P but attention must be
paid to the fact that, according to (10.25), the velocity at point P should be vanishing;
a specific procedure has been developed to avoid this shortcoming (Salm et al. 1990).
Neglecting the slope variations in the stopping zone, we find that the runout distance
xs (point of farthest reach) counted from point P is

xs = ξh

2g
ln

(
1 + u2

P

ξhcosθ (µ− tan θ)

)
. (10.27)

This model enables us to easily compute the runout distance, the maximum velocities
reached by the avalanche on various segments of the path, the flow depth (by assuming
that the mass flow rate is constant and given by the initial flow rate just after the release),
and the impact pressure.

10.5.2 Depth-Averaged Equations

The Saint-Venant equations consist of the following depth-averaged mass and
momentum balance equations

∂h

∂t
+ ∂hu

∂x
= 0, (10.28)

�

(
∂hu

∂t
+ ∂hu2

∂x

)
= �ghsin θ − ∂hp̄

∂x
+ ∂hσ̄xx

∂x
− τb, (10.29)
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where we have introduced the bottom shear stress τb = σxy(x,0, t) and we assume

u2 = ū2; the flow-depth averaged pressure is found to be lithostatic

p̄ = 1

2
�ghcosθ.

Within the framework of the long-wave approximation, we assume that longitudinal
motion outweighs vertical motion; for any quantity m related to motion, we have
∂m/∂y � ∂m/∂x. This allows us to consider that every vertical slice of flow can
be treated as if it were locally uniform. In such conditions, it is possible to infer
the bottom shear stress by extrapolating its steady-state value and expressing it as
a function of ū and h. For instance, for viscoplastic fluids, a common constitutive
equation is the Herschel-Bulkley law (10.8). By relating the bottom shear rate to the
flow-depth averaged velocity, Coussot (1997) showed that the bottom shear stress is
a solution to the implicit equation

ū

h
= n

2n+ 1

(τb

K

)1/n
(

1 − τc

τb

)1+1/n(
1 + n

n+ 1

τc

τb

)
,

for Herschel-Bulkley fluids, with n, K , and τc the constitutive parameters introduced
in equation (10.8). Note that this equation admits physical solutions provided that
τb > τc. For τb ≤ τc, the material comes to a halt. For n = 1/3, Coussot (1997)
provided the following approximation (accurate to within 5%),

τb = τc

(
1 + a

(τc

K

)−9/10
(

ū

h

)3/10
)

,

with a = 1.93 for an infinitely wide plane and a = 1.98 for a semi-cylindrical flume.
For Coulomb materials, the same procedure can be repeated. The only modification

concerns the momentum balance equation (10.29), which takes the form (Savage and
Hutter, 1989; Iverson and Denlinger, 2001):

�

(
∂hū

∂t
+ ∂hū2

∂x

)
= �gh

(
sin θ − k cosθ

∂h

∂x

)
− τb, (10.30)

with k a proportionality coefficient between the normal stresses σ̄xx and σ̄yy , which is
computed by assuming a limited Coulomb equilibrium in compression (∂xū < 0) or
extension (∂xū > 0); the coefficient is called the active/passive pressure coefficient.
In equation (10.30), the bottom shear stress can be computed by using the Coulomb
law τb = (σ̄yy |y=0 −pb) tanϕ, with σ̄yy |y=0 = �̄ghcosθ and pb the pore pressure at
the bed level.

Analytical solutions can be obtained for the Saint-Venant equations. Most of them
were derived by seeking self-similarity solutions; see (Savage and Nohguchi 1988;
Savage and Hutter 1989; Chugunov et al. 2003) for the Coulomb model and (Hogg and
Pritchard, 2004) for viscoplastic and hydraulic models. Some solutions can also be
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obtained using the method of characteristics. We will present two applications based
on these methods.

In the first application, we use the fact that the Saint-Venant equations for Coulomb
materials are structurally similar to those used in hydraulics when the bottom drag
can be neglected. The only difference lies in the nonhydrostatic pressure term and
the source term (bottom shear stress). However, using a change in variable makes it
possible to retrieve the usual shallow-water equations and seek similarity solutions
to derive the Ritter solutions (Mangeney et al. 2000; Karelsky et al. 2000; Kerswell
2005). The Ritter solutions are the solutions to the so-called dam-break problem,
where an infinite volume of material at rest is suddenly released and spreads over a
dry bed (i.e., no material lying along the bed). Much attention has been paid to this
problem, notably in geophysics, because it is used as a paradigm for studying rapid
surge motion. We pose

x∗ = x − δ

2
t2, t∗ = t , u∗ = u− δt , and h∗ = h,

where we introduced the parameter δ = g cosθ(tan θ −µ). We deduce

∂h∗

∂t∗
+ ∂h∗u∗

∂x∗ = 0, (10.31)

∂u∗

∂t∗
+u∗ ∂u∗

∂x∗ +gk cosθ
∂h∗

∂x∗ = 0. (10.32)

For the dam-break problem, the initial and boundary conditions are

−∞ < x < ∞, u(x,0) = 0,

x < 0, h(x,0) = hi,

x > 0, h(x,0) = 0.

(10.33)

The analytical solutions to equations (10.31)–(10.32) are the well-known Ritter
solutions. We are looking for a similarity solution in the form (Gratton and Vigo
1994)

ū∗ = t∗β/αU(ζ ∗) and h∗ = t∗γ /αH(ζ ∗),
with ζ ∗=x∗/t∗α the similarity variable, and H and U two unknown functions. Sub-
stituting ū∗ and h∗ with their similarity forms into (10.31)–(10.32), we find: β +α = 1
and γ + 2α = 2. For this solution to satisfy the initial and boundary conditions, we
must pose β = γ = 0; hence, α = 1. We then infer(

H U − ζ ∗
U − ζ ∗ kg cosθ

)
·
(

U ′
H ′

)
= 0,

where the prime denotes the ζ ∗-derivative. For this system to admit a nonconstant
solution, its determinant must vanish, which leads to kgH cosθ = (U − ζ ∗)2. On
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substituting this relation into the preceding system, we deduce U ′=2ζ ∗/3, thus, U =
2(ζ ∗ + c)/3, where c is a constant of integration, H = 4(c − 1

2ζ ∗)2/(9kg cosθ). The
constant c is found using the boundary conditions and by assuming that the undisturbed
flow slides at constant velocity δt : c =√

kghi cosθ . Returning to the original variables,
we find

ū(x, t) = ū∗ + δt = 2

3

(x

t
+ δt + c

)
, (10.34)

h(x, t) = 1

9kg cosθ

(
−x

t
+ δ

2
t + 2c

)2

. (10.35)

The boundary conditions also imply that the solution is valid over the ζ -range
[−c − δt, 2c + δt/2]; the lower bound corresponds to the upstream condition ū = 0,
while the upper bound is given by the downstream condition h = 0. It is worth noting
that the front velocity uf = 2c + δt/2 is constantly increasing or decreasing depend-
ing on the sign of δ. When δ < 0 (friction in excess of slope angle), the front velocity
vanishes at t = 4c/|δ|. Figure 10.14 shows that the shape of the tip region is parabolic
at short times (δt � c), in agreement with experimental data (Balmforth and Kerswell
2005; Siavoshi and Kudrolli 2005). Solutions corresponding to finite released volumes
were also obtained by Ancey et al. (2008), Hogg (2006), and Savage and Nohguchi
(1988); and Savage and Hutter (1989).

In the second application, we use the method of characteristics to find a solution to
the governing equations for Bingham flows that are stretched thin layers when they are
nearly steady uniform. In a steady uniform regime, the velocity field can be obtained
by using the Bingham law (10.8) and equating it to the shear stress distribution:

τ = �g(h− y)sin θ = τc +K
du

dy
.
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Figure 10.14. Flow-depth profile generated just after the wall retaining a granular
material is removed. Computations made with c = 1 m/s. The similarity variable ζ is
ζ = x/t .



Chassignet: “Chap10” — 2011/10/10 — 19:56 — PAGE 402 — #31

402 Gravity flow on steep slope

On integrating twice, we obtain the depth-averaged velocity

ūs = up

(
1 − h0

3h

)
, (10.36)

where up is the plug velocity

up = �gh2
0 sin θ

2K
,

with h the flow depth and h0 =h−τc/(�g sin θ) the yield-surface elevation; h0 must be
positive, or no steady flow occurs. For mild slopes, when the aspect ratio ε is very low,
the inertial and pressure contributions can be neglected (see dimensional analysis in
Section 10.4.1). This means that the depth-averaged velocity is very close to the mean
velocity (10.36) reached for steady uniform flows. We then use the kinematic-wave
approximation introduced by Lighthill and Whitham (1955) to study floods on long
rivers; this approximation has been then extensively used in hydraulic applications
(Hunt 1994; Huang and Garcìa 1997, 1998). It involves substituting the steady-state
value ūs for the mean velocity into the mass balance equation (10.28)

∂h

∂t
+ ∂

∂x
up

(
h− h0

3

)
= 0. (10.37)

Introducing the plug thickness hp = h−h0 = τc/(�g sin θ), we obtain an expression
that is a function of h and its time and space derivative

∂h

∂t
+G

(
h2 −hhp

) ∂h

∂x
= 0,

with G = �g sin θ/K . The governing equation takes the form of a nonlinear advection
equation, which can be solved using the method of characteristics (LeVeque 2002).

Using the chain rule for interpreting this partial differential equation (10.37), we
can show that it is equivalent to the following ordinary equation

dh

d t
= 0, (10.38)

along the characteristic curve

dx

d t
= λ(h), (10.39)

in the (x, t) plane, with λ(h) = Gh
(
h−hp

)
. Equation (10.38) shows that the flow

depth is constant along the characteristic curve; hence, the characteristic curves are
straight lines, the slope of which are given by the right-hand side term λ(h) in
equation (10.39). These characteristic curves can be used to solve an initial value
problem, where the initial value of h is known over a given interval: h = hi(xi) (at
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t = 0). The value of h along each characteristic curve is the value of h at the initial
point x(0) = xi . We can thus write

h(x, t) = hi(xi) = hi(x −λ(hi(xi))t).

It is worth noting that because of the nonlinearity of equation (10.37), a smooth initial
condition can generate a discontinuous solution (shock) if the characteristic curves
intersect, since at the point of intersection h takes (at least) two values (LeVeque
2002).

10.5.3 Elongating Viscoplastic Flows

Slow motion of a viscoplastic material has been investigated by Liu and Mei (1990a;
1990b), Mei et al. (2001), Coussot et al. (1996), Balmforth and Craster (1999); Balm-
forth et al. (2002), Matson and Hogg (2007), Ancey and Cochard (2009), and Hogg
and Matson (2009).

Here we consider that the shear stress is given by (10.8) with n = 1. Taking the two
dominant contributions in equations (10.6)–(10.7), integrating, and returning to the
physical variables, we deduce

τ = σxy = �g cosθ(h− y)

(
tan θ − ∂h

∂x

)
, (10.40)

p = �g(h− y)cosθ. (10.41)

The bottom shear stress is then found to be τb = σxy |y=0. For bottom shear stresses in
excess of the yield stress τc, flow is possible. When this condition is satisfied, there is
a yield surface at depth y = h0 within the bulk, along which the shear stress matches
the yield stress

τ |y=h0 = �g cosθ(h−h0)

(
tan θ − ∂h

∂x

)
= τc. (10.42)

The yield surface separates the flow into two layers (Liu and Mei 1990a; Balmforth
and Craster 1999): the bottom layer, which is sheared, and the upper layer or plug layer,
where the shear rate is nearly zero. Indeed, using an asymptotic analysis, Balmforth
and Craster (1999) demonstrated that in the so-called plug layer, the shear rate is
close to zero, but nonzero. This result may seem anecdotal, but it is in fact of great
importance since it resolves a number of paradoxes raised about viscoplastic solutions
(these paradoxes refer to the existence or nonexistence of true unyielded plug regions
as described, for instance, by Piau (1996)).

On integrating the shear-stress distribution, we can derive a governing equation for
the flow depth h(x, t). For this purpose, we must specify the constitutive equation.
For the sake of simplicity, we consider a Bingham fluid in one-dimensional flows as
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Liu and Mei (1990a) did; the extension to Herschel-Bulkley and/or two-dimensional
flows can be found in (Balmforth and Craster, 1999; Balmforth et al., 2002; Mei and
Yuhi, 2001; Ancey and Cochard, 2009). In the sheared zone, the velocity profile is
parabolic

u(y) = �g cosθ

K

(
tan θ − ∂h

∂x

)(
h0y − 1

2
y2
)

for y ≤ h0,

while the velocity is constant to leading order within the plug

u(y) = u0 = �gh2
0 cosθ

K

(
tan θ − ∂h

∂x

)
for y ≥ h0,

The flow rate is then

q =
∫ h

0
u(y)dy = �gh2

0(3h−h0)cosθ

6K

(
tan θ − ∂h

∂x

)
. (10.43)

Integrating the mass balance equation over the flow depth provides

∂h

∂t
+ ∂q

∂x
= 0. (10.44)

Substituting q with its expression (10.43) and the yield surface elevation h0 with
equation (10.42) into equation (10.44), we obtain a governing equation for h, which
takes the form of a nonlinear advection diffusion equation

∂h

∂t
= ∂

∂x

[
F(h, h0)

(
∂h

∂x
− tan θ

)]
, (10.45)

with F = �gh2
0(3h−h0)cosθ/(6K).

A typical application of this analysis is the derivation of the shape of a viscoplastic
deposit. Contrary to a Newtonian fluid, the flow depth of a viscoplastic fluid cannot
decrease indefinitely when the fluid spreads out along an infinite plane. Because of the
finite yield stress, when it comes to rest, the fluid exhibits a nonuniform flow-depth
profile, where the pressure gradient is exactly balanced by the yield stress. On an
infinite horizontal plane, the bottom shear stress must equal the yield stress. Using
equation (10.40) with θ = 0 and y = 0, we eventually obtain (Liu and Mei 1990a)

σxy |y=0 = τc = −�gh
∂h

∂x
, (10.46)

which, on integrating, provides

h(x)−hi =
√

2τc

�g
(xi − x), (10.47)

where h = hi at x = xi is a boundary condition. This equation shows that the deposit-
thickness profile depends on the square root of the distance. This is good agreement
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Figure 10.15. Lobes of a debris-flow deposit near the Rif Paulin stream (Hautes-
Alpes, France).

with field observations (Coussot et al. 1996); Figure 10.15 shows the lobe of a debris-
flow deposit whose profile can be closely approximated by (10.47).

When the slope is nonzero, an implicit solution for h(x) to equation (10.40) is found
(Liu and Mei, 1990a)

tan θ(h(x)−hi)+ τc

�g cosθ
log

[
τc −�ghsin θ

τc −�ghi sin θ

]
= tan2 θ(x − xi). (10.48)

The shape of a static two-dimensional pile of viscoplastic fluid was investigated
by Coussot et al. (1996), Mei and Yuhi (2001), Osmond and Griffiths (2001), and
Balmforth et al. (2002). Balmforth et al. (2002) derived an exact solution, whereas
Coussot et al. (1996) used numerical methods or ad hoc approximations to
solve the two-dimensional equivalent to equation (10.40). Similarity solutions to
equation (10.45) have also been provided by Balmforth et al. (2002) in the case of a vis-
coplastic flow down a gently inclined, unconfined surface with a time-varying source
at the inlet. Ancey and Cochard (2009) used matched-asymptotic expansions to build
approximate analytical solutions for the movement of a finite volume of Herschel-
Bulkley fluid down a flume. Matson and Hogg (2007) and Hogg and Matson (2009)
investigated the slumping motion of a fixed volume on a plane and down an inclined
slope.
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10.6 Dilute Inertia-Dominated Flows

10.6.1 Sliding Block Model

The first-generation models of airborne avalanches used the analogy of density currents
along inclined surfaces. Extending a model proposed by Ellison and Turner (1959) on
the motion of an inclined plume, Hopfinger and Tochon-Danguy (1977) inferred the
mean velocity of a steady current, assumed to represent the avalanche body behind the
head. They found that the front velocity of the current was fairly independent of the
bed slope. The second generation of models has considered the avalanche as a finite-
volume, turbulent flow of a snow suspension. Kulikovskiy and Svehnikova (1977)
set forth a fairly simple theoretical model (the KS model) in which the cloud was
assimilated to a semi-elliptic body whose volume varied with time. The kinematics
were entirely described by the mass center position and two geometric parameters of
the cloud (the two semiaxes of the ellipsis). The cloud density can vary depending
on air and snow entrainments. Kulikovskiy and Sveshnikova obtained a set of four
equations describing the mass, volume, momentum, and Lagrangian kinetic energy
balances. The idea was subsequently redeveloped by many authors, including Beghin
et al. (1981), Beghin and Brugnot (1983), Fukushima and Parker (1990), Beghin and
Olagne (1991), Fukushima et al. (2000), Ancey (2004), and Turnbull et al. (2007).

Here we outline the KSB model as presented and extended by Ancey (2004). We
will consider the two-dimensional motion of a cloud along a plane inclined at an angle
tan θ with respect to the horizontal. Figure 10.16 depicts a typical cloud entraining
particles from the bed. In the following, H denotes the cloud height, L its length,
m its mass, and V its volume. The cloud velocity is U = dx/d t , but since the body
is deformable, the velocity varies inside the body. The front position is given by the
abscissa xf and its velocity is Uf = dxf /d t . The volume solid concentration is φ; it
is assumed that the cloud is a homogeneous suspension of particles of density �p (no
density stratification) in the ambient fluid of density �a and viscosity µa . The bulk
cloud density is then �̄ = φ�p + (1 −φ)�a . Ahead of the front, there is a particle bed
made up of the same particles as the cloud and whose thickness is denoted by hn.
The apparent density of the layer is �s = φm�p + (1 −φm)�a , where φm denotes the
maximum random volume concentration of particles.

The surface area (per unit width) exposed to the surrounding fluid is denoted by S

and can be related to H and L as follows: S = ks

√
HL, where ks is a shape factor.

Here we assume that the cloud keeps a semielliptic form whose aspect ratio k = H/L

remains constant during the cloud run when the slope is constant. We then obtain

ks = E(1 − 4k2)/
√

k, (10.49)

where E denotes the elliptic integral function. Similarly, we can express the volume
V (per unit width) as V = kvHL, where kv is another shape factor for a half ellipsis.



Chassignet: “Chap10” — 2011/10/10 — 19:56 — PAGE 407 — #36

10.6 Dilute inertia-dominated flows 407

z

H

x hn

θ
Uf δ t

xf
y

L /2

Figure 10.16. Sketch of the physical system studied here: The powder-snow
avalanche is assumed to be a half ellipse whose volume grows with time. The major
axis is the length L(t), the semiminor axis is the flow depth H(t). Since the body is
deformable, the velocity varies with position: U(t) refers to the velocity of the center
of mass, while Uf (t) is the velocity at the front x = xf (t). In the course of motion,
the avalanche entrains snow from the snow cover; the thickness of the entrained snow
layer is hn.

Here we have

kv = π/4. (10.50)

In the following, we will also need to use the volume, height, and length growth rates

αv = 1√
V

dV

dx
, αh = dH

dx
, αl = dL

dx
. (10.51)

Experimentally, it is easier to measure the growth rates by deriving the quantity at
hand by the front abscissa instead of by the mass center abscissa; we will refer to
these rates as

α̃v = 1√
V

dV

dxf

, α̃h = dH

dxf

, α̃l = dL

dxf

. (10.52)

Note that all these quantities are interrelated. For instance, using x = xf −L/2, we
find: α̃h=(dH/dx)(dx/dxf )=αh(1−α̃l/2). Similarly, using the definition of k and
kv, we obtain

αh = αv

2

√
k

kv
and αl = αv

2
√

kkv

. (10.53)

The KSB model outlined here includes three equations: volume, mass, and momen-
tum balances. The volume variations mainly result from the entrainment of the
ambient, less-dense fluid. To express the volume balance equation, the most common
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assumption is to state that the volume variations come from the entrainment of the
ambient fluid into the cloud and that the inflow rate is proportional to the exposed
surface area and a characteristic velocity ue. This leads to the equation

dV

d t
= EvSue, (10.54)

whereEv is the bulk entrainment coefficient and is a function of the Richardson number
(10.1). According to the flow conditions, different expressions of Ev have been drawn
from experiments. Interestingly enough, the value of Ev has been expressed very
differently depending on whether the current is steady or unsteady. There is, however,
no clear physical reason that justifies this partitioning. Indeed, for most experiments,
the currents were gradually accelerating, and mixing still occurred as a result of the
development of Kelvin-Helmholtz billows, thus very similarly to the steady case. This
observation prompted Ancey (2004) to propose a new expression of the entrainment
coefficient for clouds, which holds for both steady and slightly unsteady conditions:
Ancey (2004) related Ev (or αv) as a function of Ri (instead of θ as done by previous
authors): for Ri ≤ 1, αv = e−1.6Ri2

, while for Ri > 1, αv = 0.2/Ri.
The cloud mass can vary as a result of the entrainment of the surrounding fluid and/or

the entrainment of particles from the bed. The former process is easily accounted for.
During a short time increment δt , the cloud volume V is increased by a quantity δV

mainly as a result of the air entrainment, thus the corresponding increase in the cloud
mass is �aδV . The latter process is less well known. Using an analogy with sediment
erosion in rivers and turbidity currents, Fukushima and Parker (1990) assumed that
particles are continuously entrained from the bed when the drag force exerted by the
cloud on the bed exceeds a critical value. This implies that the particle entrainment
rate is controlled by the surface of the bed in contact with the cloud and the mismatch
between the drag force and the threshold of motion. Here, since in extreme conditions
the upper layers of the snowcover made up of new snow of weak cohesion can be easily
entrained, all the recent layer ahead of the cloud may be incorporated into the cloud.
When the front has traveled a distance Uf δt , where Uf is the front velocity, the top
layer of depth hn and density �s is entirely entrained into the cloud (see Figure 10.16).
The resulting mass variation (per unit width) is written: �sUf hnδt . At the same time,
particles settle with a velocity vs . During the time step δt , all the particles contained
in the volume Lvsδt deposit. Finally, by taking the limit δt → 0, we can express the
mass balance equation as follows:

dm

d t
= �a

dV

d t
+�sUf hn −φ�sLvs,

where m = �̄V is the cloud mass. Usually the settling velocity vs is very low compared
to the mean forward velocity of the front so that it is possible to ignore the third term on
the right-hand side of the preceding equation. We then obtain the following simplified
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equation:

d��̄V

d t
= �sUf hn. (10.55)

The cloud undergoes the driving action of gravity and the resisting forces due to
the ambient fluid and the bottom drag. The driving force per unit volume is �̄g sin θ .
Most of the time, the bottom drag effect plays a minor role in the accelerating and
steady-flow phases but becomes significant in the decelerating phase (Hogg and Woods
2001). Since we have set aside a number of additional effects (particle sedimentation,
turbulent kinetic energy), it seems reasonable to also discard this frictional force. The
action of the ambient fluid can be broken into two terms: a term analogous to a static
pressure (Archimedes’ theorem), equal to �aVg, and a dynamic pressure. As a first
approximation, the latter term can be evaluated by considering the ambient fluid as an
inviscid fluid in an irrotational flow. On the basis of this approximation, it can be shown
that the force exerted by the surrounding fluid on the half cylinder is �aV χdU/d t ,
where

χ = k (10.56)

is called the added mass coefficient. Since at the same time volume V varies and the
relative motion of the half cylinder is parallel to its axis of symmetry, we finally take
�aχd(UV )/d t . Note that this parameter could be ignored for light interstitial fluids
(e.g., air), whereas it has a significant influence for heavy interstitial fluids (basically,
water). Thus, the momentum balance equation can be written as

d(�̄ +χ�a)V U

d t
= ��̄gV sin θ. (10.57)

Analytical solutions can be found in the case of a Boussinesq flow (�̄/�a → 1); for
the other cases, numerical methods must be used. In the Boussinesq limit, since the
final analytical solution is complicated, we provide only an asymptotic expression at
early and late times. To simplify the analytical expressions without loss of generality,
we take: U0 = 0 and x0 = 0 and assume that the erodible snowcover thickness hn and
density �s are constant. The other initial conditions are at t = 0 and x = 0, H = H0,
L = L0, V0 = kvH0L0, and �̄ = �̄0. At short times, the velocity is independent of the
entrainment parameters and the initial conditions (�̄0 and V0):

U ∝
√

2gx sin θ
��0

��0 + (1 +χ)�a

≈√
2gx sin θ, (10.58)

where we used �a � ��̄0. This implies that the cloud accelerates vigorously in the
first instants (dU/dx→∞ at x=0), and then its velocity grows more slowly. At long
times for an infinite plane, the velocity reaches a constant asymptotic velocity that
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depends mainly on the entrainment conditions for flows in the air

U∞ ∝
√

2ghn(1 + αl

2 )sin θ�s

α2
v(1 +χ)�a

. (10.59)

Because of the slow growth of the velocity, this asymptotic velocity is reached only
at very long times. Without particle entrainment, the velocity reaches a maximum at
approximately x2

m = (2�0/3�a)α
−2
v V0/(1 +χ):

U2
m ≈ 4√

3

√
�0

�a

g
√

V0 sin θ

αv
√

1 +χ
,

then it decreases asymptotically as

U ∝
√

8��0

3�a

gV0 sin θ

x

1

α2
v(1 +χ)

. (10.60)

In this case, the front position varies with time as

xf ∝ (g′
0V0 sin θ)1/3t2/3 (10.61)

These simple calculations show the substantial influence of the particle entrainment
on cloud dynamics. In the absence of particle entrainment from the bed, the fluid
entrainment has a key role since it directly affects the value of the maximum velocity
that a cloud can reach.

Here, we examine only the avalanche of 25 February 1999, for which the front
velocity was recorded. In Figure 10.17, we have reported the variation in the mean
front velocity Uf as a function of the horizontal downstream distance yf . The dots
correspond to the measured data, and the curves represent the solution obtained by
integrating equations (10.54)–(10.57) numerically and by assuming that the growth
rate coefficient depends on the overall Richardson number (solid line). For the initial
conditions, we assume that u0 = 0, h0 = 2.1 m ł0 = 20 m, and �0 = �s = 150 kg/m3.
Because of the steep slope between the origin and the elevation z = 1,800 m (y =
1,250 m) we have considered that, on average, the released snow layer hn is 0.7 m
thick and is entirely entrained into the avalanche. Using αv ∝ Ri−1 for Ri � 1, we
apply the following relationship: for Ri ≤ 1, αv = e−1.6Ri2

, whereas for Ri > 1, we
take αv = 0.2/Ri.

As shown in Figure 10.17, the avalanche accelerated vigorously after the release and
reached velocities as high as 80 m/s. The velocity variation in the release phase is fairly
well described by the KSB model. The model predicts a bell-shaped velocity variation,
whereas field data provide a flatter velocity variation. The computed flow depth at z =
1,640 m is approximately 60 m, which is consistent with the value estimated from the
videotapes. To evaluate the sensitivity of the simulation results, we examined different
values of the erodible mass. In Figure 10.17, we have reported the comparison between
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Figure 10.17. Dependence of the front velocity on the erodible mass. Solid
line, �shn = 105 kg/m2; dashed line, �shn = 50 kg/m2; long-dashed line, �shn =
150 kg/m2. After Ancey (2004).

field data and computations made with three different assumptions: �shn = 50, 105, or
150 kg/m2. It can be seen that there is no significant variation in the computed velocities
in the accelerating phase, but both the maximum velocity and the position at which the
maximum velocity is reached depend on the �shn value. By increasing the erodible
mass per unit surface from 50 to 150 kg/m2, the maximum velocity is increased
from 69 m/s to 105 m/s (i.e., by a factor of 1.5). Note that the dependence of the
maximum velocity on the snowcover thickness is consistent with field measurements.
For instance, the avalanche of 10 February 1999 was approximately half as large in
terms of deposited volume as the avalanche of 25 February 1999, and its maximum
velocity was 25% lower than the maximum velocity recorded on 25 February 1999.
This result is of great importance in engineering applications since it means that the
maximum velocity and therefore the destructive power of a powder-snow avalanche
primarily result from its ability to entrain snow from the snowcover when it descends.

10.6.2 Depth-Averaged Equations

An airborne avalanche is a very turbulent flow of a dilute ice–particle suspension in air.
It can be considered as a one-phase flow as a first approximation. Indeed, the Stokes
number, defined as the ratio of a characteristic time of the fluid to the relaxation time of
the particles, is low, implying that particles adjust quickly to changes in the air motion.
At the particle scale, fluid turbulence is high enough to strongly shake the mixture
since the particle size is quite small. To take into account particle sedimentation,
authors generally consider airborne avalanches as turbulent, stratified flows. Thus,
contrary to flowing avalanches, bulk rheological behavior is well identified in the
case of airborne avalanches. The main differences between the various models result
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from the different boundary conditions, use of the Boussinesq approximation, and the
closure equations for turbulence. Parker et al. (1986) developed a complete depth-
averaged model for turbidity currents. The equations of motion proposed by these
authors are more complicated than the corresponding set for dense flows presented in
Section 10.5.2, since they include additional equations arising from the mass balance
for the dispersed phase, the mean and turbulent kinetic energy balances, and the
boundary conditions related to the entrainment of sediment and surrounding fluid.

∂h

∂t
+ ∂hu

∂x
= Eau , (10.62)

∂(Ch)

∂t
+ ∂(hUC)

∂x
= vsEs − vscb , (10.63)

∂hu

∂t
+ ∂hu2

∂x
= RCghsin θ − 1

2
Rg

∂Ch2

∂x
−u2∗ , (10.64)

∂hK

∂t
+ ∂huK

∂x
= 1

2
Eau

3 +u2∗u− ε0h− 1

2
EauRCgh (10.65)

−1

2
Rghvs (2C +Es − cb) ,

where u is the mean velocity, h the flow depth, K the mean turbulent kinetic energy,
C the mean volume concentration (ratio of particle volume to total volume), Ea a
coefficient of entrainment of surrounding fluid into the current, vs the settlement
velocity, Es a coefficient of entrainment of particles from the bed into the current,
cb the near-bed particle concentration, R the specific submerged gravity of particles
(ratio of buoyant density to ambient fluid density), u2∗ the bed shear velocity, and ε0

the depth-averaged mean rate of dissipation of turbulent energy due to viscosity. The
main physical assumption in Parker et al.’s model is that the flow is considered as
a one-phase flow in terms of momentum balance, but treated as a two-phase flow
concerning the mass balance. Equation (10.62) states that the total volume variation
results from entrainment of surrounding fluid. In (10.63), the variation in the mean
solid concentration is due to the difference between the rate of particles entrained
from the bed and the sedimentation rate. Equation (10.64) is the momentum balance
equation The momentum variation results from the driving action of gravity and the
resisting action of bottom shear stress; depending on the flow depth profile, the pressure
gradient can contribute to either accelerating or decelerating the flow. Equation (10.65)
takes into account the turbulence expenditure for the particles to stay in suspension.
Turbulent energy is supplied by the boundary layers (at the flow interfaces with the
surrounding fluid and the bottom). Turbulent energy is lost by viscous dissipation
(ε0h in (10.65)), mixing the flow (fourth and fifth terms in (10.65)), and maintaining
the suspension against sedimentation flow mixing (last term on the right-hand side of
(10.65)).
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Although originally devoted to submarine turbidity currents, this model has been
applied to airborne avalanches with only small modifications in the entrainment func-
tions (Fukushima and Parker, 1990). A new generation of powder-snow avalanche
models has recently appeared (Hutter, 1996). Some rely on the numerical resolu-
tion of local equations of motion, including a two-phase mixture approximation and
closure equations, usually a k − ε model for turbulence (Hutter 1996). A number of
researchers believe that a powder-snow avalanche is tightly related to a denser part
that supplies the airborne part with snow; these researchers have thus tried to establish
the relation existing between a dense core and an airborne avalanche (Eglit 1983;
Nazarov 1991; Issler 1998). Though these recent developments are undoubtedly a
promising approach to modeling powder-snow avalanches, their level of sophistica-
tion contrasts with the crudeness of their basic assumptions as regards the momentum
exchanges between phases, turbulence modification due to the dispersed phase, and
so on. At this level of our knowledge of physical and natural processes, it is still inter-
esting to continue using simple models and fully exploring what they can describe and
explain.

10.7 Comparison with Data

In this chapter, emphasis has been given to presenting the physical features of gravity
flows on steep slope and outlining various fluid-mechanics approaches to computing
their flow behavior. Since the ultimate goals are to predict how materials are mobilized
on a steep slope, how the resulting gravity flow behaves, and how this flow eventually
comes to a halt, it is of paramount importance to address the predictive capability of
the mathematical models outlined from Section 10.4 to Section 10.6. The question of
prediction, a central topic in physical and natural sciences has attracted considerable
attention not only from scientists but also from philosophers and sociologists. In the
field of geomorphic and geophysical models, contemporary modeling faces special
challenges, some of them controversial, such as the relevance of model calibration,
the problem of scale between laboratory models and natural events, the uncertainty
on the initial and boundary conditions, the random nature versus deterministic behav-
ior of processes, and the making of models (what science philosophers refer to as
reductionism and constructionism) and their testing (Wilcock and Iverson 2003).

10.7.1 Comparison with Laboratory Data

In any fluid-mechanics approach, a major impediment to natural flows is the limited
availability of relevant data to test models. Ideally, since gravity flows on steep slope
involve physical processes that are accessible to direct measurement and observation,
we may think of monitoring natural sites and collecting field data to test the models. In
some instances (e.g., for snow avalanches), it is even possible to trigger flows, which
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opens up the way to quantitative tests that are similar to those of classical physics.
Yet, in practice, this road is paved with difficulties of many kinds, some resulting from
taking measurements in natural conditions, others stemming from the very nature of
the test, for which experimental control is barely possible. Iverson (2003b) best sum-
marized this situation: “The traditional view in geosciences is that the best test of a
model is provided by data collected in the field, where processes operate at full com-
plexity, unfettered by artificial constraints. [...] If geomorphology is to make similarly
rapid advances, a new paradigm may be required: mechanistic models of geomorphic
processes should be tested principally with data collected during controlled, manipu-
lative experiments, not with field data collected under uncontrolled conditions.” In this
respect, laboratory experiments have the overwhelming advantage of testing models
in a well-controlled environment and for various flow conditions. The disadvantages
are related to the scale and similarity issues (Iverson 1997). When working on small
scales, it is difficult to guarantee that the experiments are in full similarity with the
natural phenomena. (In similitude theory, this implies that all dimensionless numbers
that characterize the composition of the materials and the flow dynamics take similar
values.) Moreover, in laboratory experiments, natural materials are replaced by simple
materials such as glass beads or sand, which may appear as an absurd simplification
of natural materials.

As a typical example, we shall focus on the motion of an avalanche of “mud” on a
sloping bed. In Section 10.4.2, we have seen that mudflows involve clay-rich materials
whose rheological behavior can be considered viscoplastic as a first approximation.
To reproduce these flows on the laboratory scale, we first have to find a good candidate
that mimics the rheological behavior of clayey materials. For a long time, pure clays
such as kaolin and bentonite were used as a substitute for natural clays, but their
rheological behavior departs from an ideal viscoplastic fluid described by the Herschel-
Bulkley model (10.8), in particular because they exhibit thixotropic behavior. Today
polymeric gels such as Carbopol Ultrez 10 are routinely used as Herschel-Bulkley
fluids. We conducted experiments with this material in which we released a fixed
volume of material (initially at rest in a reservoir) down an inclined flume and tracked
the flowing mass using cameras.An ingenious system combining a high-speed camera,
and a pattern projector made it possible to reconstruct the free surface of the flow and
determine the position of the front as a function of time (Cochard and Ancey 2008).
Figure 10.18 shows an example of surface reconstruction in our flume.

Carbopol is a polymer that forms a viscoplastic gel when mixed with water. A
volume concentration as low as 0.4% can produce viscoplastic fluids with a yield
stress in excess of 100 Pa (i.e., a consistency close to that of cosmetic products like
hair gels). To gain insight into the flow dynamics of viscoplastic fluids, we carried
out the experiments with different geometries (inclined plane/flume), inclinations
(from 0deg to 24deg), and initial volumes. Here, we provide only the time varia-
tions in the front position for two flume inclinations and two Carbopol concentrations
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Figure 10.18. Reconstruction of the free surface using image processing. The pho-
tograph on the left shows the setup when patterns (here regularly spaced strips) are
projected. The picture on the right shows the reconstructed free surface. Data from
Cochard and Ancey (2008).
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Figure 10.19. Position of the front xf (t) (in meters) as a function of time t (in
seconds) for a flume inclination θ = 6deg and for two Carbopol concentrations: (a)
the concentration is 0.25%; (b) the concentration is 0.3%. The solid line with dots
represents the experimental curve, and the dashed line is the analytical solution. Data
from Ancey and Cochard (2009).

(0.25 and 0.3%): 6deg (Figure 10.19) to 24deg (Figure 10.20); seeAncey and Cochard
(2009) and Cochard and Ancey (2009) for additonal data. The initial mass was
23 kg. The rheological properties were investigated using a coaxial-cylinder rheome-
ter.AHerschel-Bulkley equation (10.8) was found to properly represent the rheological
behavior, and the constitutive parameters were estimated from the rheometrical data.
For a Carbopol concentration of 0.25%, τc = 78 Pa, n = 0.39, and K = 32.1 Pa s−n,
while for a concentration of 0.3%, τc = 89 Pa, n = 0.42, and K = 47.7 Pa s−n.

Surprisingly enough, the numerical resolution to the full three-dimensional prob-
lem (10.2)–(10.3) is prohibitively complex and requires high-performance computing
systems (Rentschler 2010). Time dependence, peculiarities due to rheological prop-
erties, along with the existence of a free surface and a contact line, are some of the
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Figure 10.20. Position of the front xf (t) (in meters) as a function of time t (in
seconds) for a flume inclination θ = 24deg and for two Carbopol concentrations: (a)
the concentration is 0.25%; (b) the concentration is 0.3%. The solid line with dots
represents the experimental curve, and the dashed line is the analytical solution. Data
from Ancey and Cochard (2009).

many complications that arise in the analysis. In spite of this complexity, it is possible
to obtain approximate analytical solutions by simplifying the governing equations. In
Section 10.5.3, we showed how the assumption of slow and shallow flows made it
possible to simplify the governing equations and derive a nonlinear advection diffu-
sion equation for the flow depth (10.45). In this form, this equation is not yet tractable,
but using matched asymptotic expansions, we can obtain approximate solutions. For
instance, at sufficiently steep slopes, the flow-depth gradient ∂h/∂x is small compared
to the slope tan θ in the body region (this approximation no longer holds within the tip
region because h drops to zero). As a first approximation (which will form the 0-order
term in the asymptotic expansion), we can simplify (10.45) into a nonlinear advection
equation:

∂h

∂t
+ tan θ

∂

∂x

[
F(h, h0)

∂h

∂x

]
= 0, (10.66)

with F = �gh2
0(3h − h0)cosθ/(6K). This equation can be solved analytically, for

instance, using the methods of characteristics as shown in Ancey and Cochard (2009).
Similar techniques can be used to derive approximations that hold for shallow slopes.
In Figures 10.19 and 10.20, we report the theoretical curves together with the experi-
mental data. Recall that the constitutive parameters have been obtained independently;
thus, there is no curve adjustment in these plots. Whereas excellent agreement is found
at steep slopes (see Figure 10.20), poor agreement is obtained at shallow slopes (see
Figure 10.19). Experimental curves systematically exhibited convex shapes at suffi-
ciently long times, whereas the theoretical curves were concave and tended toward an
asymptotic value (corresponding to the arrested state). An explanation for this flow
acceleration at shallow slope may lie in the formation of lateral levees. At the very
beginning, after the material started flowing down the plane, the core of the flow was
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strongly sheared, whereas the fluid near the lateral rims was weakly sheared. Once the
flow width reached a nearly constant value, the rims “froze” almost instantaneously
and formed thick levees. At the same time, a pulse originating from the flow rear
overtook the front and gave new impetus to the head. This produced the kink that can
be seen in all xf (t) curves. Indeed, the flow rate remaining nearly constant over some
period of time, flow narrowing caused by lateral levees led to swiftly increasing the
mean velocity. If this scenario is correct, our two-dimensional analysis is too crude
to capture the flow properties, notably the change in the front velocity induced by the
levee formation. This explanation, however, remains speculative and calls for more
work to elucidate this point.

These experiments illustrate the strengths and weaknesses of many theoretical
approaches. Although theory can perform very well for some flow conditions, its
predictive capability can be spoiled for other flow conditions unless clear reasons can
be found. Many trials are usually needed to evaluate how well a theoretical model
performs. Note also that seemingly simple problems such as the motion of a flow-
ing mass of fluid may offer great resistance to analysis and that even today, with
high-performance computers, these problems are difficult to solve numerically.

10.7.2 Comparison with Field Data

When testing flow-dynamics models against field data, we face additional challenges.
Most of the time, there is no way to measure the constitutive parameters independently
(as we did earlier for the Carbopol avalanches), and these must be adjusted from field
data, which may bias comparison. Moreover, many input parameters such as the
initial volume, the composition of the material, and the volume of entrained/deposited
materials are poorly known; some parameters (e.g., the snow density in avalanches)
are known to vary a great deal in the course of the flow and setting them to a fixed value
(as requested in most models) may make no sense. Finally, taking measurements in
natural flows such as avalanches and debris flows, in particular measurements inside
the flow, remains a difficult challenge and, as a consequence, we do not have many
events fully documented.

Yet, in spite of these numerous impediments, it is possible to obtain relatively
accurate descriptions of flow dynamics using simple models as long as one adjusts
the model parameters to field data. We illustrate this with two examples. We use field
measurements obtained by Gubler et al. (1986) on two snow avalanches in the Aulta
and Fogas paths (near Davos, Switzerland). These avalanches exhibited two different
behaviors, both of which deserve special mention. We first give the major features of
these avalanches, then comment on their flow behavior.

The Aulta avalanche was a large, high-speed, dry-snow avalanche that involved
50,000 m3 of snow. Part of the path is confined within a gully, and the initial flow
thickness was in the range 0.7–1 m. The Fogas avalanche was a small, dry-snow
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Figure 10.21. Path profile (solid line) of the Aulta site and front velocities (dots)
for the 8 February 1984 avalanche. The long dashed curve on the left represents the
velocity in a purely inertial regime, computed using equation (10.68), the dashed line
illustrates the velocity variation when the Coulomb model is selected (with µ = 0.4
adjusted on the runout distance). Data from Gubler et al. (1986) and Ancey and
Meunier (2004).
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Figure 10.22. Path profile (solid line) of the Fogas site and front velocities (dots)
for the 7 March 1985 avalanche. The long dashed curve on the left represents the
velocity in a purely inertial regime, computed using equation (10.68), the dashed line
on the right illustrates the velocity variation when the Coulomb model is selected
(with µ = 0.8 adjusted on the runout distance). Data from Gubler et al. (1986) and
Ancey and Meunier (2004).

avalanche that involved 500 m3 of snow. The path is an unconfined slope, with a
fairly regular inclination close to 34deg. The initial flow thickness was 30 cm. Gubler
et al. (1986) measured the front velocity using a Doppler radar but did not provide the
flow-depth variation. Figures 10.21 and 10.22 show the path profiles together with the
variation in the front velocity for the Aulta and Fogas avalanches, respectively.

To model these avalanches, we use the flow-depth averaged equations (10.30) with
a simplified Coulomb model as constitutive equation: τb = µρghcosθ and k = 1
(Ancey and Meunier 2004; Platzer et al. 2007). We then obtain

∂ū

∂t
+ ū

∂ū

∂x
= g sin θ − τb

�h
+g cosθ

∂h

∂x
, (10.67)

with θ the local path slope, t time, and x the curvilinear abscissa along the path. Note
that for curvilinear paths, additional terms should have been added to the equation
(Savage and Hutter 1989), but when the topography changes are slow, these terms are
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negligible. Just after the release, a large amount of material is suddenly entrained and
accelerates vigorously. In the momentum balance equation (10.67), inertia and the
pressure gradient must be of the same magnitude, whereas the bottom shear stress has
negligible effects. In that case, equation (10.67) is formally identical to the momentum
equation of the inviscid shallow-water equations and thus, the dam-break solution (for
sloping beds) provides a fairly good approximation of the flow behavior at short times.
We expect, most notably, a front-velocity variation in the form

uf ∼ gt sin θ +u0 ≈ u0 +√2g(x − x0)sin θ, (10.68)

with h0 the initial flow depth, u0 = 2
√

gh0 cosθ the initial velocity (dam-break approx-
imation), x0 the initial position of the front. This regime is usually referred to as the
inertial phase. Indeed, it can be shown that once motion of the head begins, the bound-
ary propagates downslope with an acceleration identical to that of a frictionless point
mass moving along the slope (Ancey et al. 2008; Mangeney et al. 2010). This finding
implies that the boundary speed is uninfluenced by the presence of adjacent fluid after
motion commences.

At the end of its course, the flow experiences a runout phase, where all its energy
is dissipated by friction. The flow behavior is then governed by a balance between
the pressure gradient and shear stress (on shallow slopes), which leads to a significant
drop in velocity over a fairly short distance. It is straightforward to show that the front
velocity uf decelerates as

uf ∼√
2g(xs − x)cosθ(tan θ −µ), (10.69)

where xs denotes the runout distance (the point of farthest reach).
In Figures 10.21 and 10.22, we have reported the curves corresponding to the inertial

and runout phases given by equations (10.68) and (10.69). For the Aulta avalanche,
equation (10.68) provides a fairly good approximation of the inertial phase over the
first 200 m of the avalanche course. For the Coulomb model, we adjusted the bulk
friction coefficient µ for the computed runout distance to match the recorded value.
As seen in Figure 10.21, there is relatively good agreement between computed and
measured velocities for the runout phase and the agreement is still correct for the
earlier flow phases. Note that the flow geometry has been significantly simplified in
the computation: In particular, changes in the flow section between the starting area and
the flow zone were not taken into account, which may explain why differences between
the recorded and measured velocities for x in the range 500–1500 m can be observed.
Snow entrainment, which was likely to occur and affect the front velocity, was not
considered here. Despite these substantial simplifications, a one-parameter model as
simple as the Coulomb model is able to reproduce the front-velocity variations for
the Aulta avalanche. The avalanche may have reached a nearly steady regime, but
the general trend is an initial acceleration followed by a deceleration after reaching a
maximum velocity.
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For the Fogas avalanche, the transition from the inertial to nearly steady regimes
is quite abrupt and the same holds for the transition between the steady and runout
regimes. The inertial and Coulomb approximations hold for a very narrow range of
x-values (i.e., in the starting and deposition areas). The important point is that between
the inertial and runout phases, equilibrium seems to have been reached over a 400-m
length (i.e., half the distance traveled by the avalanche) since velocity was nearly
constant and path slope was quite regular.

The relatively good agreement achieved with the Coulomb model is not an isolated
occurrence. In a recent survey in which 15 documented avalanches were analyzed
(Ancey and Meunier 2004), it was found that for ten events, the Coulomb model
was a suitable approximation of the bulk behavior, whereas for five events, there was
clearly a velocity dependence on the bulk friction coefficient. For a few events, the
bulk frictional force exhibits a dependence on the mean velocity, but no clear trend
in the τb(u) dependence was found (Ancey and Meunier 2004). An interesting prop-
erty of this simple Coulomb block model is that knowing the runout distance (point
of furthest reach) of an avalanche makes it possible to infer the µ value. Because
avalanche events have been recorded over a long time period at different sites in dif-
ferent alpine regions, we can deduce the statistical properties of the f distribution
at different places. If the bulk friction coefficient µ were a true physical parameter,
its statistical properties should not vary with space. Ancey thus conducted a sta-
tistical analysis on µ values by selecting data from 173 avalanches collected from
seven sites in France. These sites are known to produce large avalanches, and their
activity has been followed since the beginning of the 20th century. Figure 10.23
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Figure 10.23. Empirical probability distribution functions (pdf) of the 173 µ values
collected from seven paths. The thick line represents the distribution function of the
total sample, whereas the thin lines are related to individual paths. Each curve has
been split into three parts: the central part (solid line) corresponds to the range of
computed µ values, and the end parts have been extrapolated. After Ancey (2005).
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shows the probability distribution of µ for each site together with the entire sample.
Although the curves are close and similar, they are not statistically identical. This
means that the probability distribution function of µ is not uniquely determined and
depends on other parameters such as snow properties and site configuration. Within
this approach, the Coulomb model successfully captures the flow features, but its
friction parameter is not a true physical parameter. This, however, should not negate
interest of the Coulomb model because, given the number of approximations under-
pinning the sliding block model, the statistical deviance may originate from crude
assumptions.

10.8 Concluding Remarks and Perspectives

Since the pioneering work of Coaz (1881), who initiated the first avalanche survey in
the SwissAlps, and Mougin (1922), who proposed the first avalanche-dynamics model,
a huge amount of work has been done to collect field data, develop mathematical
models to predict flow behavior, and conduct experiments on various scales (from
laboratory to field scales). The subject has become sufficiently mature for conclusions
and prospects to be drawn.

The phenomenological knowledge and the modeling of gravity flows such as snow
avalanches and debris flows have essentially been motivated by land management
issues and engineering applications. Indeed, predicting the runout distance, the impact
forces, and the occurrence frequency of rare events are of paramount importance to
risk mapping and protection against natural hazards. Even though other tools such
as statistical techniques (data correlation, extreme value theory, Bayesian simulation)
also have been used to predict extreme events (McClung and Lied 1987; Rickenmann
1999; Meunier andAncey 2004; Keylock 2005; Eckert et al. 2008), the fluid-mechanics
approach has emerged as the most fruitful way of computing the salient characteris-
tics of gravity flows. Since the early 1920s, different generations of models, with
increasing levels of sophistication, have been developed. For instance, the earliest
dynamic models of avalanche considered snow avalanches as a rigid block (10.23)
that experiences a frictional force that accounts for the resistance from the ambient air,
the energy dissipation, and possibly momentum transfers (Mougin, 1922; Voellmy,
1955; Bozhinskiy and Losev, 1998).Although the first developments dated back to the
1920s, these very simple models were in use until the 1990s. The second generation
of models used the analogy with water floods, which led to governing equations in the
form of the flow-depth averaged equations referred to as the Saint-Venant equations
(10.28)–(10.29). Although the earliest developments dated back to the 1960s with
the work of Salm (1966) and Soviet researchers Grigorian and Eglit (see Bozhinskiy
and Losev 1998 for a historical account), it was not until the 1980s that computers
and numerical techniques were sufficiently powerful to solve hyperbolic differential
equations such as the Saint-Venant equations (Brugnot and Pochat 1981; Vila 1986).
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In the early 2000s, the first commercial products based on these equations were made
available to engineers (Christen et al., 2002). Models for debris flows followed an
evolution similar to that of avalanche-dynamics models, but with a lag time of 10–20
years.

Strikingly, while substantial progress has been achieved over the last 30 years in
terms of physical modeling, the gain in accuracy for land management and engi-
neering applications appears much more limited (Salm, 2004). Indeed, a number
of problems (e.g., model calibration and values of input parameters) that already
existed in the first generation of models have not been fixed and persist, often hid-
den by the level of complexity of current models, but sometimes exacerbated by
the growing differences between variants of the same original model. In the sliding-
block models, the frictional parameters could not be measured and were thus fit on
field data (Buser and Frutiger 1980; Salm et al. 1990). There is clear evidence that
these parameters are more conceptual than physical in that they do not represent a
physical process but combine many different physical processes into a single, simple
mathematical expression (Meunier et al. 2004). The comparison with field data in
Section 10.7.2 provides an example. There is still an avid debate about the rheological
law to be used in the depth-averaged equations. A number of models used a Coulomb
or a Voellmy empirical law to model bed resistance and internal energy dissipation
(Savage and Hutter 1989; Pudasaini and Hutter 2006), which amounts to positing
that the rheological behavior can be described using a simple, single-valued expres-
sion of the bottom shear stress as a function of the depth-averaged velocity and flow
depth. Iverson (2003a) provided evidence that for debris mixtures, the rheological
properties cannot be captured using simple constitutive equations (e.g., Newtonian
or Herschel-Bulkley laws) since they depend on additional parameters such as the
pore pressure or the particle concentration, which may vary significantly within the
bulk. The direct consequence is that the depth-averaged equations (10.28)–(10.29)
must be supplemented by additional equations that describe the evolution of inner
variables such as pore pressure or solids concentration (Iverson and Denlinger 2001;
Iverson et al. 2010). Outdoor experiments and field surveys confirmed the substan-
tial time variations in the basal pore pressure in debris flows– variations that reflect
changes in the bulk dynamics (McArdell et al. 2006; Iverson et al. 2010). This
search of more versatile and robust constitutive equations of natural materials has
also entailed the development of models that introduced a large number of parame-
ters. For coarsely parameterized models, some parameters have no physical meaning,
and since they cannot be measured independently, their value must be adjusted for
the model to match the observations. If this exercise is feasible when the number of
parameters is low, it becomes increasingly difficult when this number exceeds three
or four parameters. Parsimony and physical meaning of the model parameters are thus
two stringent constraints that have made the development of reliable models difficult
(Iverson 2003b).
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In short, the first generation of models (e.g., the Voellmy model for flowing
avalanches, the KS model for powder-snow avalanches) forms a simple but con-
sistent framework that has been extensively used by scientists and engineers. The
second generation of models (based on depth-averaged equations) opens many new
directions for more realistic predictions, but there are still many points that deserve
clarification and further work.

• The constitutive equation of saturated and unsaturated granular mixtures remains a difficult
topic. Although there are empirical relations that provide fairly good descriptions of labora-
tory experiments (Delannay et al. 2007; Forterre and Pouliquen 2008), their generalization
and applicability to natural flows are still open questions.

• In most cases, there is mass exchange between the flow and sloping bed. The processes
involved in entrainment and deposition have been investigated, in particular through labora-
tory experiments and numerical simulations (Issler 1998; Princevac et al. 2005; Sovilla and
Bartelt 2006; Mangeney et al. 2007, 2010), but many points (e.g., the role of pore pressure
fluctuations) are still unclear.

• As highlighted earlier, additional equations that describe the evolution of the material com-
position are required. Making allowance for particle segregation, variation in the solids
concentration, and evolution of the pore pressure are some of the challenges to be addressed.

• There is clear evidence that natural flows can develop complex internal structures (e.g., levees
that channelize the flow, bouldery front that may retain the flow behind it, digitate lobate
terminations, fingering instabilities, density stratification). (Iverson 1997; Félix and Thomas
2004; Deboeuf et al. 2006; Gray 2010). In the framework of depth-averaged equations, is
it possible to account for these inner structures despite the averaging process, or does this
mean that a next generation of models is in order?

• Combining stochastic tools and deterministic flow-dynamics models has been attempted to
answer a number of questions such as those related to model calibration and the influence
of the uncertainties on the input variables and model parameters of stochastic modeling.
(Harbitz et al. 2001; Barbolini and Keylock 2002; Meunier and Ancey 2004; Ancey 2005;
Dalbey et al. 2008; Gauer et al. 2009). There is crucial need for integrated models, in
particular for land use planning and risk mapping, that are able to provide not only the flow
features but also the uncertainties on these predictions.
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