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We experimentally studied the flow behavior of a fixed volume of granular suspen-
sion, initially contained in a reservoir and released down an inclined flume. Here
“granular suspension” refers to a suspension of non-Brownian particles in a vis-
cous fluid. Depending on the solids fraction, density mismatch, and particle size
distribution, a wealth of behaviors can be observed. Here we report and interpret
results obtained with granular suspensions, which consisted of neutrally buoyant
particles with a solids fraction (φ = 0.575–0.595) close to the maximum random
packing fraction (estimated at φm = 0.625). The particles had the same refractive
index as the fluid, which made it possible to measure the velocity profiles inside
the moving bulk and far from the sidewalls. Additional information such as the front
position and the flow depth was also recorded. Three regimes were observed. At early
times, the flow features were reminiscent of homogeneous Newtonian fluids (e.g.,
the same dependence of the front position on time). At later times, the free surface
became more and more bumpy as fractures developed within the bulk. This fracture
process ultimately gave rise to a stick-slip regime, in which the suspension moved
intermittently. In this paper, we focus on the first regime referred to as the macro-
viscous regime. Although the bulk flow properties looked like those of Newtonian
fluids, the internal dynamics were much richer. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4793719]

I. INTRODUCTION

Granular suspensions are defined as concentrated suspensions of noncolloidal particles within
viscous fluids.1, 2 We bear in mind here that in such a granular suspension, there are many contacts
between particles, specifically continuous physical interactions arising from lubricated or direct
solid/frictional contacts. This leads to percolating networks of particles, which form, evolve, and
break continuously throughout the suspension.2, 3 The presence of a particle network demonstrates
that granular suspensions exhibit long-range spatial ordering of their microstructure (i.e., the particle
arrangement), which creates a coupling between the local behavior and bulk motion. This gives rise
to a number of effects present in dry granular materials such as dilatancy,4, 5 shear banding,6 particle
jamming,7, 8 and frictional behavior.9, 10 At the same time, the grains are saturated with viscous
fluids and inherit some of the features of concentrated suspensions such as shear thickening, particle
migration, and normal stress effects.11, 12

Since granular suspensions exhibit properties typical of both granular materials and viscous
non-Newtonian fluids, it is natural to wonder whether these distinctive properties are present at
the same time or whether, on the contrary, they are mutually exclusive, i.e., they are intrinsic to
either viscous or frictional regimes. In the latter case, another related question is the delineation
of these regimes. While this issue has attracted growing attention over the last decade, no con-
clusive answer has been found. For instance, for non-buoyant particles, Ancey13 and Ancey and
Coussot10 used a Couette cell to investigate the rheometric behavior of concentrated suspensions
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composed of glass beads in various interstitial fluids. By varying the flow depth and using di-
mensional analysis, these authors provided evidence that at low shear velocities, the behavior was
clearly frictional (with a typical Coulomb response of shear stress), while at high shear velocities,
the behavior resembled that of a viscous Newtonian material (with a linear dependence of shear
stress on shear rate). Using an annular shear cell, Prasad and Kytömaa9 also observed a transi-
tion from a frictional to a viscous regime when shearing the sample at constant solids fraction.
In contrast with measurements taken with a Couette cell, the shear stress was a decreasing func-
tion of the shear rate in the frictional regime, which led to instabilities (wide fluctuations were
observed).

A few authors conducted dam-break or fully developed flow experiments to gain insight into
the rheological behavior of concentrated suspensions. Nsom14 ran dam-break experiments with
neutrally buoyant particle suspensions (acrylic plastic beads immersed in glucose solutions) with
solid concentration as high as 0.60. He found that for solid concentrations lower than 0.52, the
flow features (flow depth profile and position of the front with time) looked like those of a vis-
cous flow, but for higher concentrations (typically 0.60), he observed that the flow came to a halt,
a phenomenon typical of plastic behavior. Timberlake and Morris15 measured the velocity and
concentration profiles in thin films of concentrated suspensions flowing down an inclined plane
for various inclinations and concentrations. The data were compared with the predictions from
a particle-migration model. They observed that the free surface became more deformed with in-
creasing concentration or inclination. Bonnoit et al.16 used 40 μm polystyrene beads suspended
in silicone oils in the 0.35–0.61 solids fraction range. By using the steady-state equation that re-
lates the bulk viscosity to the surface velocity and flow depth, they were able to measure the
bulk viscosity, which was consistent with Zarraga’s empirical equation. Non-buoyant particle sus-
pensions were also used in flume experiments. Ward et al.17 carried out experiments with solids
fractions ranging from 0.35 to 0.55. Various input parameters (particle density and size, fluid vis-
cosity, initial volume, plane inclination) were varied. They showed that the scaling of the front
position with time was properly described using lubrication theory. Zhou et al.18 observed that
for moderately concentrated suspensions and gentle slopes, the suspension remained well mixed
and flowed like a viscous fluid, but for highly concentrated suspensions and steep slopes, par-
ticles moved faster than the interstitial fluid and accumulated in a ridge just behind the contact
line.

A particular difficulty in the rheological study of coarse particle suspensions is related to the
very nature of the data used for analyzing the rheological properties. In most cases, these data have
been obtained from macroscopic measurements (e.g., using rheometers), assuming that the bulk
behaves as a homogeneous fluid, however there is accumulating evidence that this procedure leads
to miscalculations of the bulk behavior.19, 20 The current trend is to infer rheological properties by
local measurements. Flow visualization has made it possible to derive the rheological properties
directly by measuring the local velocity and particle concentrations. For instance, using magnetic
resonance imaging, Ovarlez, Bertrand, and Rodts20 measured the velocity and concentration profiles
inside a wide-gap coaxial-cylinder rheometer. They found that, due to particle migration, the local
rheology was markedly different from the bulk rheological properties derived from viscometry
theory.

In this article, we report the macro-viscous behavior observed for perfectly density-matched
suspensions flowing down an inclined flume. We start with a description of the experimental proce-
dure (see Sec. II). A fundamental part of the experiments was the optimal control of the suspension
properties, especially the refractive index of solid and fluid phases, and their density difference, a
point that is crucial for the proper interpretation of the results.21, 22 In Sec. III, we present the results
by focusing not only on the bulk flow properties (flow-depth profile, front position with time) but also
on the velocity profiles inside the flow. We failed to measure the particle concentration to a sufficient
accuracy. Indeed, in time-dependent flows of highly concentrated suspensions, optical methods lead
to uncertainties that are not compatible with the precision desired. We end the paper with conclud-
ing remarks. To keep the body of this paper as coherent and concise as possible, we have moved
the theoretical material to the Appendix. This appendix aids understanding of the experimental
results.
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FIG. 1. Grain size distributions of PMMA particles used in our experiments. Histograms were obtained by measuring
particles’ diameters with a microscope (Olympus BX60). (Left) Raw grain size distribution (sample size: 1520 particles).
(Right) Grain size distribution after sieving (sample size: 3427 particles).

II. EXPERIMENTAL FACILITY AND PROCEDURE

A. Suspension composition

All experiments were run with highly concentrated suspensions of poly(methyl methacrylate)
(PMMA) particles in a Newtonian fluid. We explored solids fractions in the 0.30–0.61 range,23 but
here we present only the data corresponding to the 0.575–0.595 range. Considerable attention was
paid to obtaining transparent density-matched suspensions as even slight density contrasts in highly
concentrated suspensions can lead to experimental artifacts.21 The density mismatch between the
fluid and solid phases was zero to within 5 × 10−4 g cm−3 at 20 ◦C, a remarkably low value. The
particles and fluids had the same refractive index to within 10−4.

Two size distributions were used: the first distribution, hereafter referred to as unsieved, consisted
of the raw material provided by Altuglass. The mean particle diameter was 110 μm (standard
deviation 65 μm). The second distribution was obtained by sieving the raw material using a sieving
machine (Retsch AS200 Control) with a 180 μm sealed sieving stack. The mean particle diameter
was 190 μm (standard deviation 60 μm). Figure 1 shows that for the unsieved distribution, the grain
size distribution was rather uniform, with most particles ranging from 15 μm to 200 μm, while the
second distribution was bell-shaped and much richer in coarse particles. Oedometric tests showed
that for loose samples, the permeability of the unsieved material was k = 4 × 10−12 m2 (a much
lower value than that given by the Kozeny-Carman equation for monosized particles). The random
close packing φRCP was measured by pouring a mass Mp of dry beads into a calibrated round-bottom
flask of volume Vc, and vibrating the cylinder until steady compaction occurred. We found φRCP

= 0.655 ± 0.02. We were not able to detect significant influence of the particle distribution on φRCP.
The carrier fluid was a mixture of fluids called trimix of viscosity 0.124 ± 0.003 Pa s at 20 ◦C,

composed of 50% Triton X100, 28% 1,6-Dibromohexane, and 22% UCON oil (75-H450 oil from
Dow Chemicals). The final bulk density was ρ = 1.184 ± 0.0005 g/cm3, the refractive index at 532
nm and 20 ◦C was 1.48850 ± 0.00025. The surface tension was measured using the pendant drop
method:24 we found γ = 33 ± 5 mN m−1.

B. Flume

Experiments were conducted in a PMMA-bottomed flume with aluminum sidewalls. Figure 2
shows a sketch of the facility. An optical glass pane, located 50 cm from the flume outlet, was
inserted to observe the flows from the side. The flume was 3.5 m long and 10 cm wide. It could
be inclined from 0◦ to 35◦, but all the experimental data reported here were obtained with a slope
θ = 25◦. Its position was accurately controlled using a digital inclinometer with a precision of 0.1◦.
The upper part of flume was equipped with a sluice gate mounted on a pneumatic jack and was used
as a reservoir. The jack was quickly raised by injecting air pressurized at 7 MPa, which made it
possible to lift the gate within 0.5 s.
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FIG. 2. Flume used for the experiments.

C. Measurement systems

We took the following measurements:

� Flow depth profiles in the downstream and cross-stream directions (normal to the sidewall).
� Velocity profiles in the direction normal to the flume bottom.
� Position of the front as a function of time.

Given how difficult it was to operate all the devices simultaneously, some of the measurements (e.g.,
pore fluid pressure and cross-stream depth profile) were taken only for some runs. We used two
types of laser:

� A dual-head, diode-pumped, Q-switched Nd:YLF Laser (Litron LDY 303). The laser had two
optical cavities emitting a 527 nm beam (green), with energy up to 20 mJ per pulse at 1 kHz.
We also used lenses and a splitter to split the main laser beam into two beams and focus it.

� Laser diodes emitting 670 nm beams (red) to measure the free-surface deformations.

Flow depths and velocities were measured using high-speed cameras and particle image velocimetry
(PIV) techniques. Figure 3 explains how we measured the velocity profiles from below using the
Scheimpflug principle (for the filmed plane to be completely in focus). It was also possible to
take images from the side for uniform flows, but it was much more constraining from the optical
standpoint for nonuniform flows (in particular, the shorter optical path length was obtained with the
camera placed below the flume bottom). For PIV measurements, we used a Basler 504 k camera
working at 200 Hz, mounted with a Nikkor 105 mm macro lens with an aperture of f/4. The images
were then processed using classic PIV techniques.25 Velocity fields were computed using the open
source software called MatPIV.26 See Ref. 22 for further information on the PIV techniques for
trimix-based suspensions.

Figure 4 shows how the flow depth profiles and front position were measured. Four small
cameras (Basler A311f) mounted with Fujinon 12.5 mm lenses (Fujinon 12.5 HA-1B), all with an
aperture of f/1.4 measured the flow depth profiles in the x- or z-direction. A laser pulse synchronizer
(model 610034 manufactured by Berkeley Nucleonics Corporation for TSI) synchronized the laser
and the cameras. Images for flow depth profiles were taken at the rate of 28.8 Hz.
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FIG. 3. Sketch of the measurement system for the velocity profiles within the moving suspension. Because of the suspen-
sion/air interface and the three-dimensional nature of the flows, we were forced to film the flow from below. The Scheimpflug
principle was used to correct perspective distortion caused by the inclination of the lens with respect to the plane viewed by
the camera.

FIG. 4. Schematics of camera and laser positions. The axes are also shown.
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D. Notation and scaling

For this flume, we define a three-dimensional Cartesian coordinate system in which the x-axis
points down the flume, the y-axis is in the direction of the upward pointing normal, and the z-axis
is in the cross-stream direction (see Fig. 2). The upper end of the flume is at x = 0, while the lower
end is at x = 350 cm. The bulk velocity u has components u, v, and w in each of these directions,
respectively. z = 0 refers to the right sidewall (when looking at the flume from the inlet), while
z = W = 10 cm refers to the left sidewall. The front position is denoted by xf and the flow depth
by h(x, z, t). The flume inclination is denoted by θ (θ = 25◦ for all runs presented here). The initial
volume per unit width is denoted by A.

In what follows, we work mostly with non-dimensional flow variables, using hats to distinguish
dimensional variables. It is convenient to introduce such non-dimensional variables using scalings
that reflect the shallowness of the flow:

x̂ = L∗x, ŷ = H∗y, (û, v̂) = U∗(u, εv), t̂ = T∗t, (1)

where H∗ denotes the flow-depth scale, T∗ = L∗/U∗ is the characteristic time, with U∗
= ρgH 2

∗ sin θ/μ and L∗ as the velocity and length scales, respectively, g the gravitational ac-
celeration and μ the bulk viscosity, and finally ε = H∗/L∗ as the aspect ratio. Due to the possibility
that the viscosity may be a flow variable, we keep in mind that in this scaling, μ refers to the
bulk viscosity of a homogeneous suspension. If we use a relation such as the Krieger-Dougherty
equation (A3), we should define μ as μ = μ(φ̄), where φ̄ denotes the mean solids fraction. To be
consistent with volume conservation, we select the length and depth scales L∗ and H∗ such that
L∗H∗ = A, L∗ = 255 cm being the distance from the flume entrance (or upper end of the reservoir)
to the observation window. As emphasis is given to shallow gravity-driven flows of highly viscous
fluids on slopes, flows are assumed to be in the limit of high capillary number and low Reynolds and
aspect-ratio numbers: Ca = μU∗/γ � 1, Re = ρU∗H∗/μ � 1, and ε � 1.

III. EXPERIMENTAL RESULTS

We conducted several experimental campaigns to investigate how the flow dynamics of a fixed
volume of suspension was influenced by the flume inclination, initial volume, particle concentration,
and density mismatch between the interstitial fluid and particles.23 The observed behavior was quite
complex and is probably best explained by first describing the typical flow pattern, then by examining
each regime of this overall pattern and indicating their distinctive features. This wealth of behaviors,
which was observed for minute changes in the flow conditions or material properties, explains why
the earlier investigations came to contradictory conclusions regarding the behavior of avalanches
of granular suspensions (see Sec. I). For the sake of simplicity, we report the experimental results
obtained for a single value of the flume inclination: θ = 25◦. Table I summarizes the different runs
presented in this paper. All runs were repeated several times and for some of them, we also slightly
changed the boundary conditions (e.g., by wetting the flume bottom with Dibromohexane (DBH)
to see if the contact line influenced the front dynamics). A striking point was that all features were
reproducible, some of them (such as front position) to within 1%, others (e.g., the time to observe
the stick-slip regime) to within 10%–20%.

A. Regime partitioning

The key parameter that controlled flow behavior was the solids fraction φ̄. For φ̄ ≤ 0.57, the
suspension flowed like a viscous fluid.27 In particular, the front position varied with time as t1/3,
consistent with the theory of thin elongating Newtonian flows down a sloping bed28 (see also
Subsection 2 of the Appendix). For φ̄ ≥ 0.61, the flow rapidly came to rest. We tried to determine
whether a critical value of the solid concentration φc (e.g., corresponding to a percolation threshold)
controlled the transition from Newtonian to non-Newtonian behavior, but we failed to find a narrow
range for φc. There were several explanations for this. First, the solid concentration was not the sole
parameter that controlled the flow dynamics. Second, we used slightly polydisperse particles for
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TABLE I. Features of the different runs: mean solids fraction φ̄, initial mass m, particle size distribution, the estimate of the
bulk viscosity using the Krieger-Dougherty relation (with β = 2 and φm = 0.625), the characteristic flow depth, the velocity
and time scales, and the flow Reynolds number. For all runs, the particle density, fluid density, fluid viscosity, and flume
inclination were kept constant: ρf = ρp = 1.184 g/cm3, μf = 0.124 Pa s, and θ = 25◦. The length scale is L∗ = 2.55 m.

Run φ̄ (%) m (g) Distribution μ (Pa s) H∗ (m) U∗ (m) T∗ (s) Re

A 57.5 6000 Sieved 19.4 0.020 0.100 25 0.122
B 58.0 6000 Sieved 23.9 0.020 0.081 31 0.080
C 58.5 6000 Sieved 30.3 0.020 0.064 40 0.050
D 59.5 6000 Sieved 54 0.020 0.036 71 0.016
E 59.5 2000 Raw 54 0.007 0.004 637 0.001
F 59.5 3000 Raw 54 0.010 0.009 283 0.002
G 59.5 4000 Raw 54 0.013 0.016 159 0.005
H 59.5 6000 Raw 54 0.020 0.036 71 0.016
I 59.5 7940 Raw 54 0.026 0.063 40 0.036

which the definition of critical concentrations (such as the maximum random packing concentration)
was more difficult.29–31

When the solids fraction was in the 0.575–0.605 range, we observed three distinct regimes:

� Macro-viscous regime: At early times, the suspension moved downstream like a viscous
avalanche in agreement with the observations made, for instance, by Bonnoit et al.16 Typ-
ically, the front position varies with time as xf ∝ t1/3 and the flow depth profile is closely
approximated by the Newtonian profile h(x, t) = √

x/t . The velocity profiles along the y-axis
the depth take a parabolic shape, but deviations from this form are possible as a result of particle
migration (blunting of the velocity profile) or the free-surface gradient. See Subsection 2 of
the Appendix.

� Fracture regime: Before the front reached the end of the flume, the free surface developed
undulations as fractures developed along the free surface. These fractures marked the transition
to a plastic regime in which the suspension flowed downstream slowly. The flow depth was
fairly uniform along the flume. The velocity profiles across the stream showed that all of the
shearing was concentrated within a thin layer along the flume bottom.

� Plastic regime: At long times, this regime became unstable and degenerated into a stick-slip
regime in which the suspension moved intermittently during episodes of slipping and remained
in an arrested state for short periods of time.

In the following, we describe the macro-viscous regime at length. The fracture and plastic regimes
are described in Paper II.46

B. Macro-viscous regime: Outline

Among the macroscopic flow features, the front position is of paramount importance not only
because it is easy to track, but also because the dependence of xf on t yields insight into the rheological
behavior. Figure 5 shows the front position as a function of time in a dimensionless log-log form
for all runs. In addition to the experimental data, we have also plotted the similarity solution
xf = (9t/4)1/3 (see Subsection 2 of the Appendix for further information). On the whole, the xf

∝ t1/3 scaling offers a proper description of the front evolution, which justifies our reference to
these flows as macro-viscous flows. Some departures from the power-law scaling are, however,
conspicuous. We observed that for the sieved suspensions at the highest concentrations (Runs B,
C, and D), the experimental curves diverged from the similarity solution at long times and this
departure was even more marked when increasing the particle concentration to 58% or 59%. For
Run D, the flow seemed to come to a halt, but in fact it entered a stick-slip regime, in which the front
moved forward intermittently (see Paper II46 about the plastic regime). For the unsieved suspensions,
the experimental curves lie slightly above the similarity solution, which may be an indication of
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FIG. 5. Position of the front as a function of time for all runs. We also report the similarity solution xf = (9t/4)1/3 (see the
Appendix).

particle migration. Indeed, as particles migrate from high to low shear regions, the basal particle
concentration decreases and the local viscosity decreases, leading to higher velocities.

As shown by Fig. 5, all xf(t) curves were first characterized by a power-law behavior xf(t) = λtp

(showed as a “linear” behavior in the log-log representation) at short and intermediate times, then
for t > tc (with tc a critical time) they flattened out or became convex. Note that this transition was
abrupt and was reflected by a kink in the xf(t) curves at t ≈ tc. Table II reports the values of the
parameters λ and p adjusted on the data together with an estimate of the critical time tc. Deviations
from the Newtonian law xf = (9t/4)1/3 may result from particle migration. A crude way of accounting
for particle migration in the constitutive equation is to assume that the bulk rheological behavior can
be captured by a power-law model (even though the behavior is locally linear):

	xy = μ f ns(φ)γ̇ = κγ̇ n, (2)

where 	xy denotes the shear stress, n an index (n ≤ 1 in most cases), and κ the dimensionless
consistency (see Subsection 3 of the Appendix). Adopting this rheological equation in place of
the Newtonian law and assuming that n is constant, we can derive a new expression for the front
position with time, which is given by Eq. (A13). Making use of this relation and adjusting it on the
xf data, we can deduce the value of n. As shown by Table II, most runs were characterized by n <

1, signifying a shear-thinning behavior, but for Runs H and I, we found n > 1, which would mean

TABLE II. Values of the parameters λ and p. Using Eq. (A13), we inferred the value of n. tc was estimated as the time until
which the front position varied with time like xf(t) = λtp.

Run λ p n tc

A 1.12 0.33 0.98 1.05
B 1.05 0.29 0.71 0.94
C 1.00 0.28 0.65 0.64
D 1.05 0.27 0.58 0.15
E 1.35 0.23 0.42 0.03
F 1.54 0.28 0.62 0.06
G 1.76 0.32 0.86 0.20
H 1.82 0.37 1.47 . . .
I 1.59 0.38 1.59 . . .
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that the suspension behaved like a shear-thickening fluid. Flow visualization showed, nevertheless,
that this was not the case (see below, e.g., Fig. 7). This implies that (2) is just an empirical way of
describing the departure from the Newtonian law (due to the blunting of the velocity profile), but
cannot be used as a constitutive equation for the suspension (as n varies within the flow).

The initial mass of the suspension had a strong influence on the subsequent motion of the gran-
ular suspension. For the avalanche releasing the largest mass of suspension (m = 7.94 kg, Run I),
the front position quickly tended to the asymptotic curve xf ∝ t1/3, but at long times, the front accel-
erated slightly relative to the Newtonian case. For both sieved and unsieved suspensions with mass
m = 6 kg (Runs A–D, H), the front behavior was very similar at early times (t < 0.01), but at later times
(0.01 < t < 0.02), the data pertaining to the sieved suspensions collapsed on a single curve, while
the unsieved suspension (Run H) moved faster than the Newtonian case. For the smallest avalanche
(m = 3 kg, Run F), the time variations in the front position showed that at the shortest times
(t ≤ 2 × 10−3), the front position scaled as xf ∝ t0.4 (slumping of the mass after the lockgate
removal). At intermediate times (0.002 < t < 0.06), the front position varied like xf ∝ t0.28 rather
than xf ∝ t1/3, but the front velocity was 50% higher than that of a homogeneous Newtonian fluid. At
longer times, the curve for the front position flattened out, implying that the mass suddenly slowed
down. To summarize, we observed that the larger the initial mass, the closer the front position to
the Newtonian law. This behavior was qualitatively consistent with the theoretical analysis of the
characteristic times of particle migration32 (e.g., the typical time to reach steady state for suspen-
sions experiencing particle migration). As summarized in the Appendix, the characteristic time of
particle migration is proportional to the typical flow depth H 3

∗ , hence to the volume A3 (since the
characteristic length L∗ was kept constant). If we interpret the kink observed in the xf(t) curve as the
hallmark of the steady regime (see Subsection 3 of the Appendix), we then find that multiplying the
mass by a factor of 2 (Runs E–G) should lead to an eight-fold increase in the steady-state time. Yet,
experimentally, the change in behavior occurred at tc ∼ 0.03 for Run E compared with tc ∼ 0.2 for
Run G, that is, a factor of 7 faster, which is close to the theoretical ratio. Between Runs E and H,
the mass was tripled, leading to a time ratio of 27, which may explain why we did not observe any
change in the xf(t) curves for the largest masses (Runs H and I).

From the observing window located at x = 1, we measured the evolution of the depth profile and
by taking images from below, we recorded the velocity profiles at different times. To illustrate the
influence of the particle size distribution on the velocity profiles, we examined the experimental data
corresponding to Runs A and H simultaneously, as they had the same flume inclination (θ = 25◦) and
the same initial mass (6 kg). We did not compare Run H with Run D (which would have seemed more
natural as they had the same solids fraction) since for the latter, the suspension moved downwards
as a rigid block, with all the shear localized within a very thin layer (3 particle diameters) along the
flume bottom (all velocity profiles were then uniform).

The respective upper panels of Figs. 6 and 7 show the experimental flow-depth evolution at
x = 1 and the theoretical h profile (zeroth-order solution provided by lubrication theory, see (A9) in
the Appendix). The experimental and theoretical flow-depth curves h(1, t) did not start at the same
time due to the differences in the front position evolution between theory and observation. Therefore,
we shifted all of the h curves slightly so that they had the same time origin. In all of these plots, �t
= t − t0 is the time elapsed since the front passed x = 1, where t0 refers to the arrival of the front at
x = 1 (t0 = 4/9 for lubrication theory, see Subsection 2 of the Appendix). In the lower panels, we
plotted the experimental velocity profiles (dots) and the theoretical Newtonian velocity profile (A5)
in dimensionless form. To plot these profiles, we used the bulk viscosity value noted in Table I. We
neglected the influence of the free-surface gradient, which may alter the amplitude of the velocity
in high-curvature regions (the leading edge). One reason for this was that it was not always easy
to estimate the free-surface gradient owing to the numerous bumps that distorted the free surface.
Note also that for all velocity profiles, we used a scaled coordinate y/h to facilitate the comparison
of results. We noticed that a power-law velocity profile captured the data well, so we also obtained
the velocity profiles using a power-law rheological model, (2), of the form

u(x, y, t) = nκ1/n

n + 1
(h1+1/n − (h − y)1+1/n). (3)
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FIG. 6. Flow depth evolution h(x, t) at x = 1 and velocity profiles taken at different times �t after the front passed, for Run
A (φ̄ = 0.575, sieved). In the upper panel, we plotted the experimental data (black line) and the theoretical solution h(x, t)
given by lubrication theory (A9) (blue line). In the lower panels, we have plotted the velocity profiles: the dots represent the
experimental data, the solid (red) line is the power-law function (3), the dashed line shows the Newtonian profile (A5) when
the Krieger-Dougherty equation (A3) is used for the bulk viscosity, and the dotted line shows the Newtonian profile (A5)
when Eq. (A4) proposed by Zarraga, Hill, and Leighton34 is used for the bulk viscosity. The fitted values of n and κ are the
following ones: (a) n = 0.327 and κ = 53.4, (b) n = 0.073 and κ = 104.4, (c) n = 0.160 and κ = 64.7, (d) n = 0.049 and κ

= 93.8, (e) n = 0.044 and κ = 82.9, and (f) n = 0.042 and κ = 83.6.

No slipping at the bottom was detected, and therefore, the streamwise velocity satisfied the no-slip
condition, usual for Newtonian fluids, but not generally exhibited by concentrated suspensions.33

Essentially, Eq. (3) was used to obtain a measure of the deviation from the Newtonian case,
which gave information on the degree of blunting of the velocity field due to migration (see
Subsection 3 of the Appendix, where the effects of particle migration are quantified using n).

For the sieved suspension at the lowest concentration (Run A, φ = 57.5%), the flow depth profile
was crudely captured by the theoretical profile (A9), as shown by the upper panel of Figure 6, but
the free surface exhibited bumps and irregularities, which were not seen at lower solids fractions.
Except for subplot (a), showing data taken from just behind the front, the velocity profiles in Figure 6
were not parabolic and did not match the theoretical profiles (A5) corresponding to the flow of
a homogeneous Newtonian fluid. Interestingly, the theoretical profile matched the experimental
velocity profile in the basal layer (y/h < 0.1) when the Krieger-Dougherty equation (A3) was used.
Other equations such as (A4) provided poor agreement. For all times, we successfully fitted the
parameters n and κ to the velocity data using the method of least squares. Their respective values are
reported in the caption. There was a sudden drop from an intermediate value, n ∼ 0.5, at the leading
edge to a low value, n ∼ 0.04, in the body. Note that n seemed to depend on the free-surface gradient
instead of time (as expected from particle migration theory): for subplots (a) and (c), this gradient
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FIG. 7. Flow depth evolution h(x, t) at x = 1 and velocity profiles taken at different times �t after the front passed, for Run
H (φ̄ = 0.595, unsieved). In the upper panel, we plotted the experimental data (black line) and the theoretical solution h(x,
t) given by lubrication theory (A9) (blue line). In the lower panels, we have plotted the velocity profiles: the dots represent
the experimental data, the solid (red) line is the power-law function (3), the dashed line shows the Newtonian profile (A5),
and the dotted (blue) line shows the Newtonian profile (A5) when Eq. (A4) proposed by Zarraga, Hill, and Leighton34 is
used for the bulk viscosity. The fitted values of n and κ are the following ones: (a) n = 0.515 and κ = 41.9, (b) n = 0.069
and κ = 82.2, (c) n = 0.102 and κ = 58.3, (d) n = 0.021 and κ = 43.9, (e) n = 0.026 and κ = 53.7, and (f) n = 0.025 and
κ = 46.5.

dependence was much more pronounced than for other subplots and the n value (respectively, 0.32
and 0.16) differed from the value found for the body (n ∼ 0.04).

Figure 7 shows the same information for Run H (unsieved suspension). On the whole, the flow
pattern looked very similar, but there were three striking points that deserve further attention. First,
the measured flow depth was significantly smaller than the theoretical profile and exhibited bumps
in the region between the front and the body, whose amplitude was in some cases as high as the
body flow depth(the body free-surface was much smoother). Second, even with solids fractions
as large as 0.595, part of the flow was sheared, whereas for the sieved suspensions at the same
concentration, the flows did not exhibit any basal shear and flowed like sliding blocks. Third, the
Newtonian approximation underestimated the velocities up to a factor of 4 close to the leading edge.
Away from the front (typically for t > 0.5), the order of magnitude predicted by Newtonian theory
was correct, but the shape of the velocity profile was not properly captured.

C. Further analysis: Run I

Here we present additional results for Run I, which corresponds to the largest mass tested
(nearly 8 kg). As the flow depth was larger than for other runs and the flow duration longer, it was
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FIG. 8. Velocity field at t = 0.26 within the body (a) and close-up view of the velocity profiles within the leading edge
(b) for Run I (φ̄ = 0.595, unsieved). The dots represent the velocities measured within the flowing suspension at the middle
of the flume (5 cm from the sidewall), while the dashed (black) line represents the Newtonian model with μ = 54 Pa s (value
given by the Krieger-Dougherty relation (A3) with β = 2 and φm = 0.625). The solid (red) line is the power-law function (3)
adjusted on the data.

easier to make measurements for this mass. Figures 8(a) and 8(b) show the velocity field (streamwise
component) within the body and the leading edge, respectively, taken at t = 0.26. In addition
to the experimental velocities, we plotted the theoretical profiles corresponding to steady-state
Newtonian flows, given by Eq. (3) with μ = 54 Pa s, the value given by the Krieger-Dougherty
relation (A3) (with β = 2 and φm = 0.625). We also compared the empirical velocity profiles
obtained by adjusting the power-law function (3) to the data. We retrieved similar observations as
beforehand (for Run H): the experimental velocity profiles departed significantly from the parabolic
Newtonian profile, but were well captured by the power-law model (3). Note that the velocity
profiles were more blunt in the body than in the tip region. The general impression was that
the blunting decreased with increasing free-surface gradient. This contrasted with the theoretical
description of particle migration as a time-dependent diffusive process, in which the particles migrate
from high- to low-shear regions over time. One possible explanation for this discrepancy between
theory and observation is, as in segregating granular flows,35 that there was a recirculation cell
located within the head, which caused the particles to mix, making the suspension more locally
homogeneous.

Figure 9 shows the flow-depth profiles at different times together with the theoretical profiles.
At least qualitatively, the theoretical profiles looked like the measured profiles, which confirms once
again that the Newtonian model roughly captured the bulk behavior. Taking a closer look at the
differences between computed and observed profiles reveals two interesting features. First, at long
times (here for t ≥ 0.2), the profiles were increasingly bumpy, the free surface exhibiting a series
of “waves.” Second, while the flow depth profile within the body varied as the square root of the
distance, as expected from Eq. (A9), the front was blunter than the theory predicted. As explained in
Paper II,46 the development of waves on a free surface was the consequence of fractures that grew
in size in the course of motion, but the exact mechanism remains unknown.

An interesting feature of free-surface flows down chutes is that the cross-stream flow depth
profile provides information on the existence of non-zero normal stress differences.36, 37 For instance,
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FIG. 9. Longitudinal flow depth profiles at times t = 0.015, 0.085, 0.171, and 0.257 for Run I (φ̄ = 0.595, unsieved). The
solid lines represent the raw data, while the dashed lines show the analytical solution for a homogeneous Newtonian fluid
(with an estimated bulk viscosity of μ = 54 Pa s). The experimental flow depth profiles were not filtered. Note that these
profiles were obtained by stitching images from different cameras, which explains why the point density was not uniform
along the flume; stitching gave rise to profiles that were locally smoother than in reality whenever the overlap region was not
sufficiently long. For the theoretical flow depth, we used the composite solution given by Ancey, Cochard, and Andreini28

(Eq. (A9) is merely the outer solution).

Tanner36 showed that in the absence of a normal stress difference, i.e., N2 = 	yy − 	zz = 0 (which
is the case for Newtonian fluids), the free surface is flat. When N2 is non-zero, the free surface is
curved; to leading order, the cross-stream profile is

ρgh(x, z) cos θ = c + N2(γ̇z), (4)

with γ̇z = du(z, h)/dz the shear rate in the z-direction and c a constant of integration. Symmetry
implies that this shear rate and the second normal stress difference N2 must vanish at the centerline
(z = W/2). When N2 < 0, the free surface should bulge upward and when N2 > 0, the depth profile
reaches its minimum at the centerline.

Figure 10 shows the flow-depth profiles in the z-direction at different times (nearly the same as
for Fig. 9). At early times, the profile was convex, which provided evidence that the material exhibited
non-zero normal stress differences or, more specifically, the second normal stress difference N2 was
negative as observed in other flow configurations.34, 37 At later times, the free surface flattened out,
which may be interpreted as a significant decrease in the second normal stress difference. Even when
the free surface became uneven (for t ≥ 0.25) with wave amplitude exceeding 50% of the mean flow
depth, the cross-stream profile remained fairly flat.
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FIG. 10. Cross-stream flow depth profiles at times t = 0.015, 0.085, 0.171, and 0.257 for Run I (φ̄ = 0.595, unsieved). The
profiles were measured across the flume at x = 0.26 (x̂ = 66 cm, solid line), x = 0.5 (x̂ = 127 cm, red dashed line), and x
= 0.8 (x̂ = 205 cm, blue dotted line). Same experimental conditions as for Fig. 9.

IV. CONCLUDING REMARKS

As far as we are aware, this paper is the first to describe the internal dynamics of highly
concentrated particle suspensions under time-dependent flow conditions (the so-called dam-break
problem) by investigating both macroscopic properties (front position over time, flow depth profile)
and microscopic features (velocity fields within the flowing suspension). We failed to measure local
particle concentrations with sufficient accuracy.

The overriding result was that the bulk behavior was much more complicated than previously
reported. At short times (t < 0.2–0.5), the flow behavior looked like that of a homogeneous Newtonian
fluid. More specifically, the front moved as xf ∝ t1/3 and the flow depth profile matched the Newtonian
profile fairly well. Close to the front, the velocity profiles were parabolic. There was also clear
evidence of non-Newtonian behavior: bulging of the free surface, which was the hallmark of normal
stress effects (with N2 < 0), and blunting of the velocity profiles near the free surface, which was
likely to have arisen from particle migration away from the bottom. We referred to this regime as
the macro-viscous regime. At longer times, the free surface became more and more bumpy as the
bulk fractured (see Paper II46). Eventually, the granular suspension moved intermittently: episodes
of slipping were followed by short periods of rest.

The most recent experimental investigations into the rheological behavior of granular sus-
pensions comprising neutrally buoyant particles16, 17, 21, 38, 39 have led to the hypothesis that the
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continuous fluid phase imparts most of its properties to the bulk, that is, the stresses are linearly
dependent on the shear rate and the disperse solid phase does not play a significant role in the
rheological response except to generate normal stress differences and enhance energy dissipation. In
the limit of high concentrations, the suspension approaches a jammed solid state, which is charac-
terized by the formation of load-bearing force chains throughout large clusters or particle networks.
From this perspective, non-Newtonian behavior results from the increase in the correlation length
of mutually interacting particles.

In many respects, our measurements confirmed that highly concentrated suspensions exhib-
ited macro-viscous behavior: the front position, depth profile, and velocity profiles within the
head were in overall agreement with those observed with Newtonian fluids and the departures
from this behavior (bulging of the free surface and blunting of the velocity profile) were rea-
sonably well explained by microstructural theories of particle suspensions. Unsurprisingly, we
saw the same behavior as that observed by Ward et al.17 and Bonnoit et al.16, 39 for suspensions
with concentrations of φ ≤ 0.56. Yet, at higher concentrations, typically here for φ > 0.57, the
flow pattern observed in our flume was markedly different from the observations reported by
these authors. More specifically, Bonnoit et al.16 stated that the suspension behaved like a ho-
mogeneous Newtonian fluid, with little evidence of particle migration. Bonnoit et al.39 demon-
strated that there was a critical depth, ξ ≈ 0.2(μ2(φ)/(ρ2g))1/3, below which the bulk viscosity
increased and became scale-dependent, and above which it matched the Krieger-Dougherty vis-
cosity. Our results provided evidence that particle migration occurred, but its effects were miti-
gated within the leading edge, probably because of a recirculation cell in the tip region, which
acted to homogenize the suspension. All of the xf(t) curves deviated from the Newtonian curve
x(t) = (9t/4)1/3 to a varying degree and at a critical time there was a rapid transition to another
regime. The depth at which this transition occurred was systematically larger than the critical
depth found by Bonnoit et al.,39 but their respective values were close to each other: it oc-
curred for h between 2 and 3 cm, with ξ ranging from 0.6 to 1.2 cm when the solids fraction
was increased from 0.575 to 0.595. Importantly, we observed the transition to more compli-
cated flow regimes (the fracture and plastic regimes), which was not observed by others (see
Paper II46).

Our velocity profiles were reminiscent of the plug flows observed with plastic flows. We can
therefore ask whether this reflects a Coulomb behavior at the bulk scale, which would result from
frictional contacts at the particle scale. Given the very high precision reached in the density con-
trol of the fluid and particles (relative error lower than 0.05%), we found it questionable that
sedimentation occurred in our experiments and resulted in Coulomb behavior (which, admittedly,
would offer a short practical explanation for the shape of the velocity profiles and the arrested
state seen with some of our runs). Authors such as Fall et al.21 and Brown and Jaeger40 have
provided evidence that solid-like properties (e.g., existence of a yield stress) arise from the finite
density difference between the particles and fluid, but they also pinpointed the role of surface
tension in the appearance of an artificial yield stress. According to these authors, for suspensions
composed of 100 μm particles, an apparent yield stress of τ c ∼ 100 Pa arises when their solids
fraction comes close to the maximum concentration. If we interpret the blunt velocity profiles
as typical of a plug flow, we find a yield stress τ c ∼ 65 Pa for Run I, a value reasonably close
to the previous estimate. Yet, such blunt profiles were also observed for solids fractions as low
as 52% and were thus not a distinctive feature of highly concentrated suspensions. Another pos-
sibility lies in the development of weak adhesion forces, as has been reported by Snabre and
Pouligny41 with PMMA particles. The fracture and plastic regimes would have resulted from the
appearance of cohesive forces within the bulk as particles migrated and became more densely
packed. We carried out additional tests (Couette cell, slump tests) that did not reveal any plastic
behavior induced by cohesive forces. We also changed the fluid composition by using only UCON
oils (the suspension was no longer transparent) and repeated the dam-break experiments without
observing significant changes in the overall flow pattern (specifically the transition to a plastic
regime).

Another explanation for this apparent plastic behavior lies in the existence of a critical shear rate
γ̇c(φ̄) and the occurrence of a viscosity bifurcation.42 Ovarlez, Bertrand, and Rodts20 have proposed
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FIG. 11. Shear rate profiles for Run A (φ̄ = 0.575, sieved). The solid line shows the shear rate γ̇ obtained by differentiating
the power-law function (3) fitted on the experimental data. The dashed (black) line represents the theoretical shear rate
γ̇ = 	xy/μ(φ̄) with μ(φ̄) the Krieger viscosity function (A3). The dotted (blue) line represents the shear rate γ̇ = 	xy/μ(φ̄)
with μ(φ̄) the Zarraga viscosity function (A4). The critical shear rate is also reported.

the following very simple model to describe the flow behavior of a granular suspension:

γ̇ > γ̇c(φ̄) ⇒ 	xy = μ(φ)γ̇ , (5)

and when γ̇ ≤ γ̇c(φ̄), the material stops flowing and the solids fraction is in excess of φm (as an
effect of particle migration). To test this model, we computed the experimental and theoretical shear-
rate profiles. The theoretical profile was obtained by assuming that the concentration profile was
uniform (φ(y) = φ̄) and γ̇ = 	xy/μ(φ̄), with 	xy given by (A10) and μ(φ̄) an empirical viscosity
function such as (A3) or (A4). Figures 11 and 12 show the corresponding profiles for Runs A
and H, respectively. First note that for both runs, the theoretical and experimental profiles were
radically different, which means that the assumption of a uniform concentration profile is incorrect
(independently of the viscosity function chosen). As the experimental shear rate was computed by
differentiating the power-law function (3) that was fitted on the data, it tended continuously to zero
away from the bottom and therefore, from this perspective, there was no critical shear rate. However,
the velocity data have a fair amount of scatter around an apparently constant value (the free-surface
velocity), which prevents a conclusive interpretation. Indeed, even though the upper layers seemed
to be slightly sheared (to the naked eye and statistically), the resulting shear rate was often lower
than the standard error made in its computation, which means that the assumption of zero shear rate
in the upper layers was admissible. Thus, we defined a critical shear rate γc(φ̄) by first determining
the depth at which the experimental velocity profile (see Figs. 11 and 12) became uniform, then
evaluating the shear rate at this point by differentiating (3). For Run A, we found γ̇c = 0.08 ± 0.03
(̂̇γ c = 0.40 ± 0.15 s−1 in a dimensional form), while for Run H, the estimate was less accurate
γ̇c = 0.18 ± 0.14 (̂̇γ c = 0.36 ± 0.25 s−1). Interestingly, the former estimate was close to the value
found by Huang et al.42 with a solids fraction φ̄ = 0.58. Note also that for Run A, the relative success
of the Krieger-Dougherty equation in capturing the velocities in the basal layer (see Fig. 6) is due to
its having provided the correct magnitude of the shear rate.
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FIG. 12. Shear rate profiles for Run H (φ̄ = 0.595, unsieved). The solid line shows the shear rate γ̇ obtained by differentiating
the power-law function (3) fit on the experimental data. The dashed (black) line represents the theoretical shear rate
γ̇ = 	xy/μ(φ̄) with μ(φ̄) the Krieger viscosity function (A3). The dotted (blue) line represents the shear rate γ̇ = 	xy/μ(φ̄)
with μ(φ̄) the Zarraga viscosity function (A4).
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APPENDIX: THEORY

1. Scope and notation

The goal of the Appendix is not to present a new theory and compare it with experimental
data, but to see what we can learn about the rheology of granular suspensions from inclined-
flume experiments and we can also see how predictions from existing theories compare with our
experiments. Although an inclined flume is seldom categorized in the family of rheometers, it can
provide interesting insights as the stress field is reasonably well-known. The flow depth profile and
surface velocity as well as the front position over time are other sources of information, which have
previously been used to investigate the rheological behavior of granular flows and concentrated
suspensions.

In contrast with the procedure used this far in this paper, we will use physical variables instead
of nondimensional variables.
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FIG. 13. Schematic defining the flow configuration.

Here we focus on slightly non-uniform time-dependent flows down a plane tilted at the angle
θ to the horizontal (see Figure 13). The width is assumed to be infinitely large so that the sidewall
effects are negligible. These flows are created by releasing a finite volume of material contained
in a reservoir: initially a volume A of suspension is contained in a reservoir and at time t = 0, the
material is released down a flume. The flow depth is denoted by h(x, t). The front is the point at
which the flow depth drops to zero. After the material has travelled a sufficiently long distance, it
takes the form of a shallow elongated flow with a slow variation in the depth profile from front to
tail. If, in addition, the flow is sufficient slow, then inertia can be neglected in the momentum balance
equation. Under these assumptions, the momentum balance equations lead to a stress field of the
form

	xy = ρg(h − y) sin θ, (A1)

	yy = −ρg(h − y) cos θ, (A2)

where the normal stress is denoted by 	yy and the shear stress by 	xy. In these equations, we have
used a two-dimensional Cartesian coordinate system in which the x-axis points down the flume,
the y-axis is in the direction of the upward-pointing normal, and the z-axis is in the cross-stream
direction. The upper end of the reservoir is chosen to be the origin of the x-axis. The local velocity
u has components u and v in each of these directions; motion in the z-direction is not considered.
Except where otherwise specified, γ̇ = du/dy is the shear rate.

In terms of dimensionless numbers, it can be easily shown that Eqs. (A1) and (A2) hold when
the aspect ratio and Froude number satisfy ε � 1 and Fr2ε � sin θ . Note that Eqs. (A1) and (A2)
hold true irrespective of the constitutive equation of the flowing material. These equations have been
derived for quasi-steady uniform flows, i.e., ∂xh � 1. This assumption is clearly violated within the
tip region as the gradient of the free surface implies a significant increase in the shear stress. In the
absence of inertia and normal-stress effects, it is possible to determine the effect of the free-surface
gradient on the shear stress profile using lubrication theory.27 As we may meet the situation in which
the normal stresses play a role, we will not go deeper into the analysis.

For this configuration, we study the spread of a finite volume of particle suspension down an
inclined flume. The suspension is composed of non-colloidal particles within a Newtonian carrier
fluid of viscosity μf and surface tension γ . Both solid and fluid phases have the same density
ρ f = ρp = ρ. The particle concentration is denoted by φ and its average throughout the bulk is called
the (mean) solids fraction φ̄. The particles are assumed to be spheres of radius a.

We start with the simplest constitutive equation: we assume that the suspension is well-mixed
and behaves like a homogeneous Newtonian fluid (see Subsection 2 of this Appendix). We then
address the more realistic case of a heterogeneous suspension, in which the bulk viscosity μ is a
function of the particle concentration φ (see Subsection 3 of this Appendix).
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2. Macroviscous homogeneous fluid

Let us assume that the bulk behaves like a homogeneous Newtonian fluid with viscosity μ,
which is given by an empirical equation such as the Krieger-Dougherty relation43

ηs(φ) = μ(φ)

μ f
=

(
1 − φ

φm

)−β

, (A3)

with φm the maximum particle concentration and β a constant exponent (β = 5
2φm or β = 2 are

common values). Other expressions have been proposed for the viscosity function, in particular,
to better describe the viscosity behaviour in a wide range of flow conditions.34, 44, 45 For instance,
Zarraga, Hill, and Leighton34 proposed a single-parameter viscosity function

ηs(φ) = μ(φ)

μ f
= exp(−2.34φ)

(
1 − φ

φm

)−3

. (A4)

Integrating the constitutive equation 	xy = μγ̇ and making use of the continuity equation leads to
the velocity profiles:

u(x, z, t) = 1

2

ρg sin θ

μ
y(2h − y), (A5)

v(x, z, t) = 1

2

ρg sin θ

μ

∂h

∂x
y2. (A6)

A further integration leads to the depth-averaged velocity: ū = ρgh2 sin θ/(3μ). As the bulk mass
balance equation is

∂h

∂t
+ ∂hū

∂x
= 0, (A7)

we end up with a nonlinear advection equation for the evolution of h. This equation can be solved
using the method of characteristics or by similarity solutions. It can be shown that the front position
varies with time as28

x f =
(

9

4

ρg sin θ A2

μ
t

)1/3

, (A8)

while the flow depth profile is given by

h(x, t) =
√

μ

ρg sin θ

√
x

t
. (A9)

The equations do not hold in the close vicinity of the front as the flow depth drops to zero and the
surface gradient is no longer negligible. As the thickness of the tip region is small relative to the
body length, we will not go into more detail about the front behavior; see Refs. 27 and 28 for further
information.

3. Macroviscous inhomogeneous fluid

Because of the shear in the cross-stream direction y, a concentration stratification occurs across
the stream: particles migrate from the high- to low-shear regions, that is, from the basal layer
to the free surface. This leads to a local change in the viscosity and thus velocity profile. Two
additional equations are then needed to close the governing equations: the relationship between the
bulk viscosity μ and particle concentration φ, and the governing equation for φ(x, z, t). Simple
empirical equations such as the Krieger-Dougherty relation (A3) are used to relate μ and φ, while
a more involved equation is needed to compute the φ(x, z, t) variations under the effect of a shear
gradient. Several approaches have been proposed.11, 12 Regardless of the underlying model of particle
migration, the resulting governing equations are not tractable and must be solved numerically. Such
numerical simulations allow us to infer some information that sheds light on the effect of particle
migration in an “avalanching” suspension.

In simple-shear flows, particle migration leads to the gradual blunting of the velocity profile
over time. Numerical solutions of particle migration models (paper under submission47) have shown
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that the deviation from the initial parabolic Newtonian profile can be described regarding the bulk
as a power-law fluid with a time-dependent index n and consistency κ , such that

	xy = μ(φ(y, t))γ̇ = κγ̇ n(t). (A10)

Recall that, as stated in the body of this paper, this equation does not mean that suspensions
are genuinely shear-thinning fluids, but that the constitutive equation 	xy(γ̇ , φ) can locally be
approximated using a power-law model, whose index gives an idea of the importance of solids
fraction inhomogeneities. It is also useful when there is no information about local φ variations.

Experiments and theory show that at long times, the index n reaches an asymptotic value that
depends solely on the mean solids fraction. The time to reach steady state is approximatively

tss ∼ H 3
∗

a2U∗
. (A11)

Our earlier experiments showed that for t < tss, n decreased as n ∝ t−1/3 when the mean solids
fraction was lower than 56%, but more rapidly for φ̄ > 0.56. While theory predicts steady-state
values of n in the 0.2–0.7 range for φ̄ in the 0.4–0.6 range, experiments have demonstrated that at the
highest solids fraction, the steady-state value is significantly lower than the theoretical prediction
and typically ranges from 0.01 to 0.1.

As previously (Subsection 2 of this Appendix), we can derive the governing equation for the
flow depth using the kinematic wave approximation

∂h

∂t
+ ∂hū

∂x
= 0 with ū = n

1 + 2n

(
ρg sin θ

κ

)1/n

h1+1/n, (A12)

which leads to the following evolution equation for the front position

x f =
(

1 + 2n

1 + n

)(1+n)/(1+2n) (
ρg sin θ

κ
Antn

)1/(1+2n)

, (A13)

while the flow depth profile is given by

h(x, t) = n+1

√
μ

ρg sin θ

xn

tn
. (A14)

When n is sufficiently close to unity (say, for n > 0.5, which corresponds to solids fractions
φ̄ < 0.55), there are few differences compared to the homogeneous case (Subsection 2 of this
Appendix). Typically, for n = 1/2, we get xf ∝ t1/4 instead of xf ∝ t1/3 for the homogeneous case. We
expect that at the highest solids fractions (φ̄ > 0.57), therefore n value reaches 0.2 or lower, then
xf(t) should provide an indication of the strength of particle migration.
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