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a b s t r a c t

In this article we propose a stochastic bed load transport formulation within the framework of the frictional

shallow-water equations in which the sediment transport rate results from the difference between the en-

trainment and deposition of particles. First we show that the Saint-Venant-Exner equations are linearly un-

stable in most cases for a uniform base flow down an inclined erodible bed for Shields numbers in excess

of the threshold for incipient sediment motion allowing us to compute noise-induced pattern formation for

Froude numbers below 2. The wavelength of the bed forms are selected naturally due to the absolute char-

acter of the bed instability and the existence of a maximum growth rate at a finite wavelength when the

particle diffusivity coefficient and the water eddy viscosity are present as for Turing-like instability. A nu-

merical method is subsequently developed to analyze the performance of the model and theoretical results

through three examples: the simulation of the fluctuations of the particle concentration using a stochas-

tic Langevin equation, the deterministic simulation of anti-dunes formation over an erodible slope in full

sediment-mobility conditions, and the computation of noise-induced pattern formation in hybrid stochastic-

deterministic flows down a periodic flume. The full non-linear numerical simulations are in excellent agree-

ment with the theoretical solutions. We conclude highlighting that the proposed depth-averaged formulation

explains the developments of upstream migrating anti-dunes in straight flumes since the seminar experi-

ments by Gilbert (1914).

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the earliest developments on bed load transport equa-

tions, the most common approach taken in computational river dy-

namics for routing sediment has involved the Exner equation and

bed load transport equations, i.e. algebraic expressions relating the

mean sediment flux q̄s to the water conditions (e.g., the dimension-

less Shields number Sh). In classical theories of sediment transport,

the water flow is mostly described as a nearly uniform flow un-

der equilibrium conditions [46,75,80]. The resulting governing equa-

tions are the one- or two-dimensional Saint-Venant equations or,

more recently, the three-dimensional Navier–Stokes equations [78].

In his recent paper reviewing the last decade of research on river

bed stability, Colombini [27] noted that one of the current chal-

lenges is to substitute the classic Exner equation with a probabilistic
∗ Corresponding author. Tel.: +34 953 211 872; fax: +34 953 212 870.

E-mail addresses: patricio.bohorquez@ujaen.es (P. Bohorquez),

christophe.ancey@epfl.ch (C. Ancey).

t

s

s

s

A

http://dx.doi.org/10.1016/j.advwatres.2015.05.016

0309-1708/© 2015 Elsevier Ltd. All rights reserved.
ersion. Stochastic partial differential equations are an emerging field

ot yet standard in sedimentation engineering but are becoming in-

reasingly utilized [69,73]. In this article, we supplement the one-

imensional Saint-Venant equations with the stochastic form of the

xner equation recently proposed by Ancey and Heyman [5], we

tudy for the first time the linear stability properties of the system

nd we verify the theoretical results by means of full non-linear nu-

erical simulations of noise-induced pattern formation using a finite

olume method for hybrid stochastic-deterministic flows.

A common practice in sedimentation engineering is to distinguish

etween flows with intense and moderate sediment transport rates

e.g. 54]. The partial mobility regime is encountered when Sh < 2 Shcr

42], with Shcr the critical Shields number for the onset of sediment

otion. It corresponds to situations in which part of the bed sedi-

ent is mobilized by the water stream and so, the resulting sediment

ransport rate is low to moderate. The full mobility regime describes

ituations in which all the bed surface takes an active part in the

ediment transport process, often under full bank conditions. Clas-

ical bed load transport equations such as the Meyer-Peter & Mueller,

shida & Michiue and Fernandez Luque & van Beek formulas have

http://dx.doi.org/10.1016/j.advwatres.2015.05.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2015.05.016&domain=pdf
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een applied to both regimes. Applying these deterministic equations

o the partial mobility regime leads to excessive errors and uncertain-

ies in the prediction of the transported sediment volume, especially

n long time scales (e.g., weeks or more) [68]. Applied to the full mo-

ility regime, these equations usually provide the correct trend, but

ven in this favorable case, they cannot predict the bed load flux with

n error lower than 200% [37]. We think that the improvement of

ed load transport models calls for a more refined framework rather

han a refinement of algebraic sediment transport equations (e.g., by

ncreasing the number of variables of the problem). A clear impedi-

ent to greater accuracy has so far been the occurrence of wide fluc-

uations of the sediment transport rate and the development of bed

orms. Both processes are intertwined and it is difficult to evaluate

ne without studying the other. In this paper, we use the stochas-

ic framework for bed load transport proposed by Ancey et al. [4].

ithin this framework, the sediment transport rate is defined as the

ifference between the entrainment and deposition rates and so, it

an vary locally significantly over time depending on the flow condi-

ions, bed slope, and transport of particles in the close neighborhood.

his framework is well suited to the partial mobility regime as it does

ot directly relate the water discharge and particle flux, but defines

he latter as a random variable. We will show that it is also consis-

ent with the existing bed load transport equations for the full mobile

egime: indeed, we have observed that the average sediment trans-

ort rate exhibits the same exponential dependence on the Shields

umber as classical formulas and other erosion-deposition models

or Sh � Shcr.

Even in the simplest case of the one-dimensional Saint-Venant

quations, substantial numerical difficulties arise when coupling the

lassical Exner equation with algebraic bed load discharge equa-

ions. For instance, two of the three system eigenvalues vanish [60],

hich requires a careful treatment of critical conditions and the ab-

ence of sediment motion. Schemes used for strongly coupled or

ecoupled numerical schemes are also the object of intense de-

ates [29,45,66,72]. Interestingly here, we will see that the erosion-

eposition formulation for bed load transport allows us to readily

xtend previous finite volume methods for frictional shallow wa-

er equations similar to what has been done for computing the sus-

ended load in dilute flows, see Bohorquez and Fernández-Feria [14].

simple strategy allows us to readily incorporate the stochastic equa-

ions for bed load transport into the numerical codes previously de-

eloped for frictional shallow-water flows on fixed beds [13,14].

The paper is organized as follows: the problem under investiga-

ion is summarized in Section 2. The linear stability properties of the

ean balance equations are explored in Section 3. Next, Section 4

s devoted to the description of the hybrid finite-differences/finite-

olume method and the numerical simulations. Accuracy and per-

ormance are evaluated by comparing numerical simulations with

vailable theoretical solutions [3,4,43]. We also study the evolution of

nfinitesimal disturbances on a uniform base flow down an inclined

lane, which leads to pattern formation and anti-dunes. Following

ohorquez [13], new analytical solutions are built and compared with

umerical simulations. Conclusions are finally presented in Section 5.

. Physical problem under investigation

.1. Saint-Venant Exner equations: entrainment-deposition model

For one-space variable problems, the simplest morphodynamic

odel comprises the shallow-water (Saint-Venant) equations for the

onservation of mass and momentum of the water phase and the

xner equation for the continuity equation of the bed [37]:

∂h

∂t
+ ∂hv̄

∂x
= 0, (1)
∂hv̄
∂t

+ ∂hv̄2

∂x
+ gh

∂h

∂x
= −gh

∂yb

∂x
− τb

ρ
+ ∂

∂x

(
νh

∂ v̄
∂x

)
, (2)

(1 − ζb)
∂yb

∂t
= D − E ∼= −∂ q̄s

∂x
, (3)

n which h(x, t) = ys − yb denotes the flow depth, yb(x, t) and ys(x, t)

re the positions of the bed and free surfaces, v̄ is the depth-averaged

elocity, x is the downstream position, t is time, ϱ is the water den-

ity, τ b is the bottom shear stress, ζ b is the bed porosity, q̄s is the av-

rage bed load transport rate (see (7) below), and D and E represent

he deposition and entrainment rates, respectively. The bed slope is

efined as tan θ = −∂xyb. In most models based on (1)–(3), the gov-

rning equations are closed by empirical relationships for the flow

esistance τ b and sediment transport rate q̄s, both being functions of

he flow variables v̄ and h, and additional parameters (e.g., bed rough-

ess and slope). Physically, this means that the sediment phase is the

lave of the water phase and this dependence is justified by the mo-

entum transfers from the water to the sediment phases [8,9]. The

xtra term ∂x(νh∂xv̄) in the momentum balance equation (2) repre-

ents a simple depth-averaged Reynolds stress [64].

.2. Stochastic approach

Here we take a different approach to sediment transport. Follow-

ng Einstein [33], we consider that sediment transport results from

he imbalance between erosion and entrainment. Originally, Einstein

33] developed a Lagrangian viewpoint and expressed the erosion

nd deposition rates from statistical features of particle trajectories.

ore recently, Ancey et al. [4] used the framework of jump Markov

rocesses for describing the random time variation in the number

f moving particles n in a given volume of control. This Eulerian ap-

roach led them to express the entrainment and deposition rates as a

unction of the mean particle activity 〈γ 〉 (i.e., the volume of moving

articles n per unit bed area): E = λ + μ〈γ 〉 and D = σ 〈γ 〉. The angu-

ar brackets 〈γ 〉 refer to the ensemble average of the random variable

. The parameters λ, μ and σ were called the particle entrainment,

he collective entrainment, and the deposition coefficients. Note the

symmetry in the expressions of the entrainment and deposition

ates, which result from the differences in the physical processes in-

olved.

As n and γ are random variables, they are characterized by their

robability distribution function Pn(x, t) and Pγ (x, t). Ancey et al. [4]

sed the theory of birth-death Markov processes for deriving the gov-

rning equation of the number of moving particles n, more exactly its

robability distribution. To make the problem more tractable, Ancey

nd Heyman [5] worked not with the distribution Pn(x, t), but with

he Poisson representation

n(x, t) =
∫
R+

Pa(x, t)
e−aan

n!
da,

here a is called the Poisson rate and Pa is its probability distribution

unction. The Poisson representation can be thought of as a Laplace

ransform for probabilities distributions, which makes it possible to

ork with continuous random variables (here a) instead of discrete

andom variable (here n). Indeed, like in continuum mechanics, it is

asier to work with local continuous variables than with global and

iscrete variables. Ancey and Heyman [5] introduced the particle ac-

ivity as the limit of the volume occupied by the particles when the

ength �x of the control volume tends to 0

= lim
�x→0

nVp

B�x
,

here Vp = πd3/6 is the typical particle volume, B is the width of the

ontrol volume, d is the mean particle diameter. Similarly, they took
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the continuum limit of a and introduced the Poisson density b

b = lim
�x→0

a

�x
.

An interesting property of the Poisson representation is that the a-

and n moments are linked, and so are the moments of b and γ . In

particular, we have

〈γ 〉 = 〈b〉Vp

B
. (4)

Within the framework of continuous Markov processes, Ancey and

Heyman [5] found that the governing equation for b is a stochastic

advection diffusion equation with a source term and colored noised

∂b

∂t
+ ∂

∂x
(ūsb) − ∂2

∂x2
(Dub) = λ′ − κb +

√
2μbξb (5)

where ξ b is a Gaussian noise term such that 〈ξb(x, t)ξb(x′, t ′)〉 =
δ̂(x − x′)δ̂(t − t ′) (with δ̂ Kronecker’s symbol), ūs is the mean parti-

cle velocity, and Du is the particle diffusivity, which is linked to the

particles’ velocity fluctuations. Solving Eq. (5) for b allows us to fully

characterize the fluctuations of the particle activity, hence the instan-

taneous sediment transport rate qs = γ ūs.

We can also deduce the mean sediment transport rate and make

insightful links between the stochastic erosion-deposition formula-

tion (5) and the Exner equation (3). Taking the ensemble average of

(5) and using the Itô convention, we end up with the governing equa-

tion for 〈γ 〉
∂

∂t
〈γ 〉 + ∂

∂x
(ūs〈γ 〉) − ∂2

∂x2
(Du〈γ 〉) = λ − κ〈γ 〉 , (6)

where λ = λ′Vp/B (or λ′ = λB/Vp). A caveat is in order: the treat-

ment of the colored noise term
√

2μbξb in (5) can be achieved fol-

lowing two different approaches [38]: in the Itô interpretation, the

value of b is taken before the jump; an important consequence is that

〈√2μbξb〉 = 0. Another possibility is the Stratonovich interpretation,

which takes the mean of b before and after the jump (and in that case

〈√2μbξb〉 > 0). The latter interpretation is often seen as the most

natural choice physically [69], but unfortunately it leads to substan-

tial mathematical difficulties when trying to solve stochastic differ-

ential equations analytically. So, following the usage in the physics

of reaction-diffusion problems [38], we have adopted the Itô conven-

tion. Following Furbish et al. [36], we can define the bulk sediment

transport rate as q̄s = ūs〈γ 〉 − ∂x(Du〈γ 〉). It is then straightforward

to show that (6) is equivalent to

∂ q̄s

∂x
= E(x, t) − D(x, t) − ∂

∂t
〈γ 〉 . (7)

Note also that when setting Du = 0 in (6), we recover the equation for

the particle number n = 〈γ 〉/Vp [22,33,49]. Substituting (7) into (3)

and neglecting the time variation in the particle concentration ∂ t〈γ 〉,

we arrive at the standard version of Exner equation, (1 − ζb)∂t yb =
−∂xq̄s, which is valid provided that the ratio q̄s/hv̄ remains small [30].

Thus to leading order, the bed evolution ∂ tyb is controlled by the gra-

dient ∂xq̄s.

In the following, we will solve the Saint-Venant-Exner equa-

tions (1)–(3). In the Exner equation, the entrainment and deposi-

tion rates are expressed as functions of the mean particle activity:

E = λ + μ〈γ 〉 and D = σ 〈γ 〉, respectively. The mean particle activity

〈γ 〉 can be derived from the deterministic advection diffusion equa-

tion (6). When we are also interested in determining the strength of

the sediment transport rate fluctuations, we solve the stochastic par-

tial differential equation (5), which provides the Poisson density b.

There is no back Poisson transformation and so it is not possible to

infer the probability distribution Pγ directly from the Poisson density

b, but there are alternative ways of characterizing Pγ . For instance,

we can relate the γ and b averages using (4) [5]. Higher-order mo-

ments are more difficult to express explicitly [3]. The last step prior
o numerical solutions concerns the closure equations, which specify

he dependence of the parameters τ b, ν , ūs, λ and σ involved in the

aint-Venant-Exner equations.

.3. Closure equations

The hydraulic resistance τ b in the momentum balance equation

2) is evaluated using the Darcy–Weisbach friction factor f as

τb

ρ
= f

8
v̄|v̄| . (8)

etting the bed roughness to 4 d (d is the mean grain diameter) and

ssuming a channel width much larger than the flow depth with hy-

raulic diameter Dh = 4 h [46], we calculate f as a function of the rel-

tive roughness in fully developed turbulent flow and rough regime

s [25]

1√
f

= −2 log10

(
δ2

3.71

)
, δ2 = d

h
. (9)

The particle velocity ūs is computed using an expression dimen-

ionally consistent with Bagnold [9] law, ūs ∝ √
τb. Direct numerical

imulations using the discrete element method [32] and flume exper-

ments [56] have shown that the following nondimensional relation

ccurately fits the particle velocity data

ūs√
g d (s − 1)

= m0 + m1

(√
Sh

Shcr
− 1

)
, (10)

here Sh is the Shields number,

h = |τb|
ρ (s − 1) g d

, (11)

hcr denotes the critical Shields number for incipient motion and s =
p/ρ represents the sediment-to-liquid density ratio (typically s =
.65 for gravel in water). Substituting the Shields definition (11) into

10), using (8) and multiplying by the factor
√

d (s − 1)/h, we end up

ith

ūs√
g h

= (m0 − m1)
√

s − 1δ +
√

f m2
1

8 Shcr
Fr , (12)

n which Fr = v̄/
√

g h denotes the Froude number. Taking into ac-

ount that m0 ≈ 0.88 and m1 ≈ 1.44 for s ≈ 2 [32], we get (m0 −
1)

√
s − 1δ ≈ 0.77δ. When δ � 1, it yields

ūs√
g h

≈ β Fr with β ≡ min

(√
f m2

1

8 Shcr
, 1

)
. (13)

his empirical relationship is consistent with Chatanantavet et al.

23] who obtained 0.6 ≤ β ≤ 0.8 for bedrock channels. We have

sed the physical constraint β ≤ 1 in (13) to prevent the unrealis-

ic situation in which the liquid moves slower than the carried sedi-

ent. Assuming a constant value of f, we used the simplified equation

¯s = β v̄. The dependence of β on Shcr and f(δ) explains the disparity

f values encountered in the literature.

For steady uniform flows, the erosion rate E balances the deposi-

ion flux D in (7). The equilibrium or saturated value of the particle

oncentration satisfies the relation

γ 〉ss = λ

κ
= λ

σ − μ
. (14)

n turbulent regime, Fernandez Luque and van Beek [34] showed

hat

〈γ 〉ss d2

Vp
∝ Sh − Shcr . (15)
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his equation is consistent with direct numerical simulations by

urán et al. [32] who obtained a constant of proportionality of 1.725

or Sh − Shcr ≤ 0.5 that lies really close to the value of 1.8 for Sh −
hcr ≤ 0.1 inferred by Fernandez Luque and van Beek [34]. Interest-

ngly this constant is independent of the density ratio s that ranges

rom 2 to 2000 in their simulations, see Fig. 1. In the present study,

e use closure equations for λ and κ consistent with (15). The key

roblem is that the available data do not allow us to fit all of the pa-

ameters. As a first approximation, we thus assume that the collective

ntrainment vanishes (μ = 0) and so κ = σ . In these conditions, the

eposition rate can be formulated in terms of dimensional analysis

s

= cd

√
(s − 1) g

d
(16)

n which the coefficient cd = 0.094 ± 0.006 was inferred from the

article flight time [22,56]. Similarly, the erosion rate is given by

= c∗
e Vp

ρp d3

τb − τcr√
(s − 1) g d

= ce Vp

ρ d3

τb − τcr√
(s − 1) g d

, (17)

here c∗
e = ce s and τ cr is the critical shear stress corresponding to

hcr. Substituting (16)–(17) into (14), we arrive at

〈γ 〉ss d2

Vp
= s

c∗
e

cd

(Sh − Shcr) = ce

cd

(Sh − Shcr) . (18)

e set ce = s c∗
e = 1.75 cd according to Fig. 1 and [34].

The eddy viscosity ν in (2) is usually neglected in ideal shallow

ater flows [31]. However, numerical simulations of free surface in-

tabilities in frictional flows down inclined planes have shown that a

on-negligible eddy viscosity ν is required to avoid the development

f unphysical short wavelength instabilities as well as to reproduce

he non-linear steady-state shape of roll waves [11,15,18,64]. In this

tudy the main role of the eddy viscosity is to prevent the develop-

ent of discontinuities in the free surface, which allows us to eval-

ate the free surface slope in the presence of jumps and steps of the

ed elevation. A rough estimation of the eddy viscosity is given by

≈ νt h
√

τb/ρ with the non-dimensional parameter νt in the range

f 4 ≤ νt ≤ 18 [18].

The particle diffusivity Du in (5)–(6) arises from the second mo-

ent of the probability density function of particle displacements

36] and has been recently quantified near incipient motion condi-

ions by Heyman et al. [43]. The parametric dependence on the flow

ariables remains unexplored to our knowledge and, because of this,

e treat Du as a degree of freedom in our study. We shall show its
elevance on pattern formation in Section 3.4 proposing plausible

alues.

. Linear stability analysis

We now consider a steady, uniform flow of depth H, velocity V and

ean particle activity 〈γ 〉ss = λ/κ down an erodible bed inclined at

constant angle θ with respect to the horizontal. Before describing

ome numerical results for this apparently simple problem, we

resent a spatio-temporal stability analysis of the steady uniform

ase flow [48], which is subsequently employed to verify the outputs

f the numerical simulations by comparing the theoretical and

umerical growth rates of infinitesimal perturbations. A similar

enchmark was proposed in Bohorquez and Rentschler [15] for the

ow of kinematic waves down fixed beds, which is associated with

he spontaneous formation of natural roll waves [13]. The linear

tability properties of the equations at hand have not been explored

eforehand. They shed new light on the reliability of the mean

quations when studying patterns formation.

.1. Dimensional groups

Using the characteristic values {V, H, θ , 〈γ 〉ss} to make variables

imensionless

← v̄
V

, η ← h

H
, z ← yb

H
, φ ← 〈γ 〉

〈γ 〉ss
, x̂ ← x tan θ

H
,

t̂ ← t V tan θ

H
, (19)

y taking into account the closure equations presented in Section 2.3

nd dropping the hat decoration, we rewrite (1)–(3) and (6) in the

imensionless following form:

∂η

∂t
+ ∂ηu

∂x
= 0 ,

Fr2

(
∂ηu

∂t
+ ∂ηu2

∂x

)
+ η

∂η

∂x
− ∂

∂x

(
Vη

∂u

∂x

)
= −η

∂z

∂x
− u2 ,

∂z

∂t
= ke

(
φ − u2 − u2

∗
1 − u2∗

)
,

∂φ

∂t
+ β

∂φu

∂x
− D ∂2φ

∂x2
= kd

(
u2 − u2

∗
1 − u2∗

− φ

)
. (20)

ur mean equations resemble the deterministic model by Vesipa

t al. [76] that catches correctly the anti-dune regime. Their model
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also comprises an erosion-deposition sediment transport equation

based on the areal concentration of the moving particles [65] to-

gether with Dressler [31] equations for the water phase. It embeds the

erosion-deposition equation developed by Charru [21] to study ripple

formation. A novelty of our mean sediment transport equation is the

inclusion of the particle diffusivity D that allows the onset of Turing-

like instability [69]. Furthermore, its mathematical structure is anal-

ogous to the suspended sediment transport equation proposed by

Balmforth and Vakil [11] to predict cyclic steps—the next bed form

transition after anti-dunes formation [20]. Taking into account the

supporting theoretical results and numerical simulations presented

in this article, we believe that one of the main advantages of this fam-

ily of sediment transport models is the capability to study pattern for-

mation with Fr < 2, a regime in which classical Saint-Venant-Exner

are stable. Furthermore, classical Saint-Venant-Exner equations are

recovered under equilibrium conditions with the sediment load given

by q̄s = ūs〈γ 〉ss [34].

The dimensionless groups in (19) that govern the flow dynamics

are

Fr = V√
gH

, ke = πce(1 − u2
∗ )

6 (1 − ζb) δ Fr
√

s − 1
, kd = cd(s − 1)

δ Fr tan θ
,

D = Du tan θ

H V
, u∗ =

√
τcr

τb

, (21)

and V = ν Fr2 tan θ/(H V ). In subcritical, critical and supercritical

flows the Froude number of the base flow is Fr < 1, Fr = 1 and Fr

> 1, respectively, and its value is fixed by the Darcy–Weisbach fric-

tion factor f and the bed slope: Fr =
√

8 tan θ/ f . It is found that, for

the same slope and Froude number, the grain size plays a key role in

the problem as the erosion ke and deposition kd parameters (21) are

much larger in sand rivers (for which we have δ � 1) than in gravel

bed rivers (for which δ ∼ O(10−1)). The parameter u∗ varies from 1 to

0 as the shear stress increases from incipient conditions (τ b ≈ τ cr) to

the full mobility regime (τ b � τ cr). Alternatively, the transport stage

parameter T = τb/τcr − 1 is zero at inception of sediment motion and

raises above zero when τ b > τ cr. The sediment-to-water density ra-

tio and bed porosity are set to s = 2.65 and ζb = 0.36 two values that

are typical of a random close packing of spherical quartz particles in

water. The values cd = 0.1 and ce = 1.75 cd are used in the following

(as explained in Section 2.3).

A further reduction of the parameter space is possible by taking

into account the following relations between the Shields number Sh,

the bed slope angle θ , Fr and δ2:

Sh = τb

ρ (s − 1) g d
= f Fr2

8 (s − 1) δ2
= tan θ

(s − 1) δ2
, tan θ = f Fr2

8
,

(22)

in which the friction factor f depends only on δ2 for high Reynolds

number flows, see Eq. (9). The transport stage parameter T, or equiva-

lently u∗ (21), can be expressed in terms of Shcr as u∗ = (1 + T )−1/2 =
(Shcr/Sh)1/2 ≤ 1, where the critical Shields number for the onset

of sediment motion Shcr(Re∗) is a function of the particle Reynolds

number Re∗ = δ2
√

f/8 Re or the flow Reynolds number. Without any

loose of generality we set Shcr = 0.03 from now on.

As a consequence the parameter space of the dimensional groups

(21) can be substantially reduced to δ, Fr and D. The rest of the coef-

ficients {s, cd, ce, Shcr} and {u∗, tan θ , β} are taken constants or func-

tions of them. We keep D as a relevant input parameter in the ab-

sence of closure equation for the particle diffusivity coefficient. In

doing so, we can parametrize the neutral curves of roll waves and

erosion-deposition instabilities in the temporal stability analysis as

Frrw(δ,D) and Fr (δ,D), as shown below and in Fig. 2.
ed
.2. Dispersion relation

Substituting the expansion (z, φ, η, u) = (−x, 1, 1, 1) +
(z′, φ′, η′, u′) into (20), retaining only the terms of the order

(ε) and dropping the prime decoration, we end up with the linear

erturbation equations:

∂η

∂t
+ ∂η

∂x
+ ∂u

∂x
= 0,

Fr2

(
∂u

∂t
+ ∂u

∂x

)
+ ∂η

∂x
− V ∂2u

∂x2
= −∂z

∂x
+ η − 2 u ,

∂z

∂t
= ke

(
φ − 2 u

1 − u2∗

)
,

∂φ

∂t
+ β

(
∂u

∂x
+ ∂φ

∂x

)
− D ∂2φ

∂x2
= kd

(
2 u

1 − u2∗
− φ

)
. (23)

inearizing the non-dimensional eddy viscosity in (23), it reads V =
t Fr (tan θ )3/2.

The linear system of partial differential equations (23) ad-

its solutions in the form (z, φ, η, u) = T̄ exp[ia(x − c t)] where the

igenvector is denoted by T̄ ≡ (ζ ,�,�,U)T , the real downstream

avenumber by a and the complex wave speed by c = cr + i ci [48].

he base flow is unstable (stable) when the growth rate is positive ci

0 (negative ci < 0). The sign of cr determines whether the pertur-

ation moves downstream (cr > 0) or upstream (cr < 0) and whether

t moves faster than the base flow (cr > 1). This leads to the following

igenvalue problem:⎡
⎢⎣−i a c

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 Fr2

⎞
⎟⎠ + i a

⎛
⎜⎝

0 0 0 0
0 β 0 β
0 0 1 1

1 0 1 Fr2

⎞
⎟⎠

− a2

⎛
⎜⎝

0 0 0 0
0 −D 0 0
0 0 0 0
0 0 0 −V

⎞
⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0 −ke 0
2 ke

1 − u2∗
0 kd 0 − 2 kd

1 − u2∗
0 0 0 0
0 0 −1 2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎣

ζ
�
�
U

⎤
⎥⎦ = 0 . (24)

he first row of (24) establishes a relation between the eigenvector

omponents ζ , � and U, allowing for the reduction of the eigenprob-

em (24) by means of

= i ke

a c
� − i 2 ke

a c (1 − u2∗ )
U . (25)

ote that the perturbation of the bed elevation ζ can be provoked not

nly by a fluctuation of the particle concentration � but also by the

ater velocity U. Substituting (25) into the last row of (24), we get⎡
⎢⎣−i a c

(
1 0 0
0 1 0

0 0 Fr2

)
+ i a

⎛
⎜⎝

β 0 β
0 1 1
i ke

a c
1 Fr2 − i 2 ke

a c (1 − u2∗ )

⎞
⎟⎠

−a2

(−D 0 0
0 0 0
0 0 −V

)
+

⎛
⎜⎝kd 0 − 2 kd

1 − u2∗
0 0 0
0 −1 2

⎞
⎟⎠

⎤
⎥⎦

·
[

�
�
V

]
= 0 . (26)
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Fig. 2. Neutral curve of (a) the roll wave mode and (b) the erosion-deposition instability in the {Fr, a}-plane as a function of δ and D. The neutral curve is obtained by setting ci = 0

in the dispersion relation (27). (c) Sensitivity of the neutral curve for δ2 = D = 0.1 with 0 ≤ νt ≤ 10. Note that when νt > 0 there is a cutoff wavenumber in the roll wave spectrum.

(d) Growth rate of the erosion-deposition mode as a function of the wavenumber for the same range of parameter values as in (c) with Fr = 1.2 showing a maximum when ν t > 0

that corresponds with the most unstable wavelength.
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he dispersion relation is obtained by setting the determinant of (26)

o zero. For instance, in the zero eddy viscosity case, i.e. V = 0, it

eads

(a, c) ≡ c

[
i + a

c − 1
− 2 i − a Fr2 (c − 1)

]

− i ke

u2∗ − 1

[
2 kd + i a (u2

∗ − 1) β

a2 D + kd + i a (β − c)
− 2

]
= 0 . (27)

he dispersion relation (27) can be employed to evaluate the tem-

oral growth rate of spatial disturbance of known wavelength (or

avenumber).

.3. Neutral curves

Also, the dispersion relation (27) serves to obtain the neutral

urve, which determines the conditions for the growth of linear in-

tabilities. Using (21)–(22), we fixed the parameters δ2 and D and

olved (27) for the growth rate c by varying the Froude number Fr

nd the wavenumber a. Fig. 2 shows the existence of two neutral

urves associated with the onset of morphodynamic and hydrody-

amic instabilities. The hydrodynamic one has a neutral curve start-

ng at a = 0 and Fr ≈ 2. It is the most intuitive mode and leads to the

ormation of roll waves as for non-erodible beds [11,15,64]. As a grows,

he Froude number required for the onset of roll waves is slightly

arger. This effect is particularly evident in Fig. 2(a) with the curve re-

ated to δ2 = 10−3 because the critical Froude number raises approx-

mately from 2 to 3.5 when a increases. The second mode is associ-
ted with the instability of the bed and will be referred to as erosion-

eposition mode. It covers the subcritical regime (Fr < 1) as shown by

ig. 2(b). Similar to the hydrodynamic instability, it depends at lead-

ng order on the grain-size to flow-depth ratio δ2. At large values of
2 ∼ O(10−1), i.e. for gravel bed streams, the critical Froude number

ertaining to the onset of erosion-deposition waves is defined by the

symptote occurring at Fred ≈ 0.7 − 0.75. The nondimensional par-

icle diffusivity D does not affect Fred significantly, but its influence

n the bypass wavenumber is marked. Interestingly, a larger parti-

le diffusivity D makes the system more unstable by decreasing the

ypass frequency, which is a desirable effect as Du is related to the

econd moment of velocity fluctuations [5]. Diffusion may amplify

nstabilities instead of dampening them under a slight noise-induced

erturbation. The erosion-deposition neutral curves are truncated at

ow Fr in most cases because of the condition u∗ ≤ 1 (i.e. Sh ≥ Shcr)

mposed in our developments. This makes it possible to define the

ritical Froude number

r2
ed = 8 (s − 1)

δ2

f (δ)
Shcr . (28)

nterestingly, we found out that the flow down an inclined plane is

nconditionally unstable for the proposed model. In most cases, in-

tabilities can develop as soon as the Shields number Sh is above the

hreshold of sediment motion Shcr.

.4. Absolute instability: particle diffusivity as cause of river anti-dunes

In this section we show that particle diffusion is a necessary phys-

cal process in the developments of anti-dunes with critical Froude
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Fig. 3. Summary of available experiments on anti-dunes in the plane {δ2, Fr}, see [39,51] and references in [19,20,62,67]. UMA and DMA denote two-dimensional upstream

and three-dimensional downstream migrating anti-dunes, respectively, and TRAN corresponds with transition bed forms (mostly standing waves). The thick solid line is the

approximate bound defining the region of existence of anti-dunes. The red dotted-dashed line represents the curve with constant Shields number Shcr = 0.03. The thin and thick

dashed lines are the neutral curve for the onset of convective and absolute instability obtained by Vesipa et al. [77]. The dotted curves represent isolines with constant bottom

angles as shown in their labels (in degrees). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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numbers between 0.5 and 1.8 depending on the relative roughness

or grain-size to flow-depth ratio δ2 = d/H, see Fig. 3. A proper se-

lection of the particle diffusivity coefficient D in the mean model

equations (19) allows us to predict the anti-dune transition (solid line

in Fig. 3) in the wide range of relative roughness 10−3 ≤ δ2 ≤ 0.5 in

agreement with numerous experiments, see [19,20,39,51,67] and ref-

erences there in. The linear stability analysis by Vesipa et al. [76] orig-

inally reproduced the anti-dune convective-absolute transition with

Fr ≥ 1 and δ2 ≤ 3.5 × 10−3. Later they used a more sophisticated two-

dimensional rotational model, i.e. Colombini’s approach [26], setting

δ2 ≤ 10−3. Fig. 3 shows that the critical curve for the onset of the ab-

solute instability considered in our study (thick solid line) is in quali-

tative agreement with Vesipa et al. [77], see the thick dashed line.

The neutral curve of the convective-absolute transition for the on-

set of upstream migrating anti-dunes is derived herein using a spatio-

temporal linear stability analysis in which the absolute nature of the

instability is imposed algebraically through the zero group velocity

condition [44,71]. The existence of saddle points has been corrobo-

rated geometrically by means of Briggs’ or the cusp map method [48]

though we do not report the details of this result for the sake of the

brevity.

The dispersion relation of the temporal stability analysis given

in Section 3.2 can be readily reused in the spatio-temporal stability

study with the simple change of variables k = a and ω = a c, where

the spatial wavenumber k and the temporal frequency ω are now

both complex numbers. The phase velocity cr = ωr/kr of the erosion-

deposition mode is negative, see the inset in Fig. 2(b), and conse-

quently the bed perturbation moves upstream. Hence the base flow

can be absolutely unstable if there is a saddle point k0 ≡ k(ω0) with

zero group velocity, i.e. cg = ∂ω/∂k = 0, resulting from a pinch point

between two spatial branches k(ω) with k0, i < 0 (i.e. spatially grow-

ing solution) and ω0, i > 0 (i.e. temporal growing solution). Similarly

ω0 ≡ ω(k0) defines a branch point in the complex ω plane. Branch

points and pinch points satisfy the necessary condition

D(k0,ω0) = 0 ,
∂D

∂k
(k0,ω0) = 0 ,

∂2
D

∂k2
(k0,ω0) �= 0 , (29)

ensuring cg = ∂ω/∂k = (∂D/∂k)/(∂D/∂ω) = 0. The two first equa-

tions in (29) were solved with the help of Mathematica.
We varied as control parameters Fr and δ2 in the range of val-

es shown in Fig. 3 with νt = 0 and find out the minimum value of

he particle diffusivity D required for the existence of solutions to

29) that are saddle points, see the result in Fig. 4(a). It is readily ob-

erved that the particle diffusivity D plays a fundamental role in the

onvective-absolute transition as it should be larger than zero at all

alues of Fr and δ2. At a given grain-size to flow-depth ratio δ2, the

inimum value of Dabs is achieved at the lowest Fr, i.e. along the tran-

ition curve for the onset of anti-dunes (solid line in Figs. 3 and 4(a)).

his critical value is depicted in Fig. 4(b) showing that the particle

iffusivity grows with δ2. Then we proceeded ensuring the Briggs–

ers criterion by eye (geometric approach), as suggested by Juniper

47], by plotting contours of ωi in the k-space. Saddle points were

inched between branches k+ and k− originated in distinct halves of

he k-plane. Therefore our solution satisfies the Briggs–Bers criterion

r Fainberg–Kurilko–Shapiro (Soviet literature) condition.

It is worth recalling that the wavelength of the most unstable

ode can be adjusted by increasing the value of the non-dimensional

ddy viscosity νt as for the case already described in Fig. 2(d). In do-

ng so one can ensure that the absolute wavelength lies in the range of

xperimental values 0.3 ≤ krtan θ ≤ 2 [e.g., [19,67]]. The wavelength

election mechanism observed in the full non-linear numerical

imulation in Section 4.4 and the agreement between the anti-

unes wavelength obtained therein and experimentally by Mettra

62] serves to illustrate the absolute nature of the instability and the

eal capabilities of our modeling technique.

. Simulations

We present three numerical experiments in order to benchmark

he numerical results against theoretical solutions. A brief descrip-

ion of the numerical scheme used in our simulations is given in

ection 4.1. In the first set of simulations (Section 4.2) we consider a

rescribed steady uniform flow and solve (5) for the continuous Pois-

on density b(x, t). The numerical solutions are compared with the

heoretical solutions built by Ancey et al. [3,4] and Heyman et al. [43]

nd with additional numerical simulations using simpler numerical

chemes. Then, in Section 4.3, we focus attention on the determinis-

ic part of the model equations. We start applying the linear stability
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Fig. 4. (a) Minimum particle diffusivity Dabs required for the existence of saddle-points or an absolute instability and (b) plot of Dabs along the threshold condition depicted by the

solid line in panel (a) and Fig. 3.
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a

esults of the mean balance equations (1)–(3) and (6) for a uniform

ow down an erodible bed that allows us to evaluate the growth rate

f infinitesimal disturbance from the linear dispersion relation. This

esult is subsequently used to verify the numerical growth rate of

he full non-linear solution. Recall that we have found out that the

odel equations exhibit a richer collection of unstable modes than

he classical Saint-Venant-Exner equations based on algebraic dis-

harge equations. We conclude this section with additional simula-

ions in Section 4.4 where we analyze the same scenario as in Section

.3 and use the hybrid stochastic-deterministic equations on this

ccasion.

The main motivation to present the current set of numerical sim-

lations is to illustrate the capabilities of our model for predicting

oise-induced pattern formation, a problem that has always drawn

he attention of the science community [69]. We have always found

ut the developments of anti-dunes, recall Fig. 3, and the existence

f stochastic fluctuations in well-controlled laboratory experiments,

s reported in [2,4,5,43]. Anti-dunes modify the bed slope and conse-

uently affect the water flow conditions that, at the same time, alter

he local bed load with respect to the equilibrium value under uni-

orm flow conditions. Consequently, both anti-dunes and stochastic

uctuations provoke oscillations in the instantaneous bed load that

s no longer steady, as observed in flume experiments. This article

herefore contributes to improve the predictive capabilities of our

odel with respect to our previous theoretical works in which we did

ot consider the coupling with Saint-Venant equations. Furthermore,

t represents an original contribution in the computation of noise-

nduced pattern formation.

.1. Numerical scheme

The non-linear set of balance laws (1)–(5) was recast in strong

onservation form

∂U

∂t
+ ∂F

∂x
(U) + ∂G

∂x
(U) = S(x, U), (30)

= (h, h v̄, b, yb)
T , (31)

F =
[

h v̄,
(h v̄)2

h
+ g h2

2
, β v̄ b, 0

]T

,

=
(

0, −ν h
∂ v̄
∂x

, −Du
∂b

∂x
, 0

)T

, (32)

=
[

0, g yb

∂ys

∂x
+ g

∂

∂x

(
y2

b

2
− ys yb

)
− f

8
v̄ |v̄|,
λ′ − κ b + ξb

√
2μb,

κVpB−1 〈b〉 − λ

1 − ζb

]T

, (33)

nd solved numerically in the computational domain 0 ≤ x ≤ L made

f mx cells Ci = [x
i− 1

2
, x

i+ 1
2

] with uniform size �x = x
i+ 1

2
− x

i+ 1
2

=
/mx (i = 1 . . . mx). We used the divergence form for bed slope source

erm in (33) to improve the numerical treatment of discontinuous

ed profiles yb with continuous free surface elevation ys = yb + h

16,74] which requires the evaluation of the streamwise gradient of

he free surface instead of the bed elevation. The computational vari-

bles are Un
i
, which approximate the average value over the ith inter-

al at time t:

i(t) ≈ 1

�x

∫
Ci

U(x, t)dx , (34)

eing located at the cell centroid xi = (x
i− 1

2
+ x

i+ 1
2
)/2. The influ-

nce of prescribed boundary conditions on the numerical results

as avoided by setting a cyclic spatial domain with x1 = xmx. The

rid is consequently made only of interior cells. The high-order fi-

ite volume library SharpClaw [52,53] was employed as develop-

ent environment. A fractional-step method was applied to split

he advection-diffusion equations (30) into a hyperbolic subproblem

ith source terms and a parabolic subproblem [57]. The numerical

trategy for the homogeneous hyperbolic system of equations is sim-

lar to the classical q-wave propagation algorithm that was adopted

ith success to compute roll wave developments for transient, non-

niform kinematic waves in previous contributions [13,15]. The inno-

ative parts of the algorithm are introduced below, in particular the

ave decomposition of the Riemann problem, the source term dis-

retization and the summary of the full semidiscrete algorithm used

n each time step, appropriate both for deterministic and stochastic

artial differential equations [55]. The code was implemented in For-

ran 2003, compiled with Intel® Fortran Composer XE for Linux and

un in Fujitsu Celsius R920 with Intel® Xeon® CPU E5-2630 proces-

ors.

The resolution of the hyperbolic subproblem (non-diffusive part

f the equations) was done in the first step of the algorithm given the

umerical solution Un
i

at the present instant of time tn. Using a for-

ard Euler scheme, the classical q-wave propagation algorithm reads

53,57]

U∗
i
− Un

i

�t
= − 1

�x

(
A−�ui+ 1

2
+ A+�ui− 1

2
+ A�ui

)
+ Si . (35)

ere U∗
i

represents the predicted value of the numerical unknowns

t the new time step tn+1 in the absence of diffusion. The fluctuations
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and the total fluctuation are evaluated at tn as

A±�ui− 1
2

=
4∑

p=1

(
sp

(
uL

i− 1
2

, uR
i− 1

2

))p

W p
(

uL
i− 1

2

, uR
i− 1

2

)
, (36)

A±�ui =
4∑

p=1

(
sp

(
uR

i− 1
2

, uL
i+ 1

2

))p

W p
(

uR
i− 1

2

, uL
i+ 1

2

)
, (37)

which make use of the eigenvalues and eigenvectors associated with

the Jacobian matrix of (30) described in Appendix A.

At this point it is worth highlighting that the inclusion of the bed

load transport model tested in this paper does not alter the wave de-

composition of the hydraulic subproblem. The eigenvalues, the eigen-

vectors and the Roe averages of the water phase unknowns (p = 1, 2)

coincide with the approximate Riemann solution of the Saint-Venant

equations [40]. The two additional waves (p = 3, 4) do not contribute

to the fluctuations of the water depth nor the water discharge. The

transition from subcritical to supercritical flow can be successfully

reproduced using the same entropy fix method as for the shallow

water equations. No modification is required by our model equations

in contrast with coupled numerical methods based on the classical

Exner equation (5) that run into difficulties in the presence of critical

conditions [60]. Also the current Riemann solver can be employed to

solve (5) for the mean particle concentration instead of equation (6)

for the stochastic Poisson density, simply replacing b by 〈γ 〉 in (A.1)–

(A.5).

The cell integral of the source terms Si in (33) is evalu-

ated explicitly from the known solution at time tn. The nu-

merical integration of the momentum balance source terms was

degraded to second order accuracy to be consistent with the dis-

cretization of the diffusive term described below. This implies

that we evaluated the free-surface slope source term gyb∂xys

as described in LeVeque [58]. We computed the friction source

term discretization by following Liang and Marche [59]. Fur-

thermore the stochastic source terms were evaluated using the

Euler–Maruyama scheme as in previous numerical studies using the

finite difference method [1,3] and the finite volume method [7].

The ensuing method for the continuous Langevin equation corre-

sponds to the Euler–Maruyama scheme and attains the strong order

of convergence 0.5. Further details on the evaluation of the source

terms are given in Appendix B.

Finally, the solution U∗
i

of the hyperbolic system of equations

(35) was employed as guess value in the second step of the algo-

rithm where we solve the parabolic subproblem. The eddy and par-

ticle diffusivity terms were integrated with the one-step implicit

Crank–Nicholson scheme, which is second-order accurate in space

and time,

Un+1 − U∗

�t
= 1

2

(
�(U∗) + �(Un+1)

)
, (38)

with

�(U)

= 1

�x2

⎛
⎜⎜⎝

0

hi− 1
2
νi− 1

2
v̄i−1 − (hi− 1

2
νi− 1

2
+ hi+ 1

2
νi+ 1

2
)v̄i + hi+ 1

2
νi+ 1

2
v̄i+1

Dubi−1 − 2 Dubi + Dubi+1

0

⎞
⎟⎟⎠ .

(39)

This linear system of equations could be solved efficiently at each

time step using Thomas algorithm for periodic tridiagonal systems

without increasing substantially the computational cost nor decreas-

ing the time step size [50]. The cell interface values in (39) were com-

puted as the arithmetic average of the neighbor cells, e.g. hi−1/2 =
(hi + hi−1)/2. The implicit Crank–Nicholson scheme does not intro-

duce any additional constraint on the time step �t. In the field of

θ-methods for stochastic partial differential equations, one prefers
his scheme over explicit schemes such as the forward Euler method

which requires �t � O(�x2/Du)) [41].

.2. The stochastic advection-diffusion Langevin equation

In this section, we compute the Poisson density b from (5) and

enchmark the WENO scheme when the rest of variables v̄, h, and

b remain constant. Detailed analytical solutions of the mean value,

tandard deviation, autocorrelation function and probability density

unction were presented by Ancey et al. [3]. Recall that for steady

tate problems, a random process is completely characterized by its

utocorrelation and probability density functions. Other quantities

uch as moments, autocorrelation time, and energy spectrum can be

nferred from these two functions.

Apart from the WENO schemes, standard finite difference meth-

ds are employed for the sake of comparison. In particular we used

n implicit first-order upwind and pure second-order central scheme

or the convective term together with Euler–Maruyama for the source

erm, as well as an explicit unlimited fifth order accurate central dif-

erence scheme together with the strong 1.5-order Taylor scheme

55], denoted by IUEM, ICEM and EXWP, respectively. The major in-

erest of this benchmark is to check whether the WENO method re-

roduces the non-local effect induced by the convective operator in

he presence of stochastic forcing, which is equivalent to increas-

ng the particle diffusivity as outlined below. Recent numerical stud-

es on this topic focused on finite differences, adaptive Discontinu-

us Galerkin method and Total Variation Diminishing finite volume

ethods for the stochastic Burgers equation equation [7,24,41] but

ittle is known about the performance of the WENO scheme for the

ontinuous version of the stochastic Langevin equation with advec-

ion. Before we start with the numerical simulations, two caveats are

n order.

First, the numerical analysis of stochastic partial differential equa-

ions is an emerging field of research, which offers unexpected sur-

rises. For instance numerical solutions to the stochastic Burgers

quation (a nonlinear variant of the advection diffusion equation (5)

tudied here) highlight the influence of the mesh size on the solution

o which the numerical schemes converge, a situation that contrasts

ith the deterministic case [41]. In the present context, Ancey et al.

3] showed that the advection diffusion equation (5) is derived by

onsidering mass balance in finite volumes of control, then by tak-

ng the continuum limit. Yet, the process is random and furthermore

t develops nonzero spatial cross correlations even under stationary

omogeneous conditions. These spatial correlations give rise to scale-

ependent diffusion-like effects. This means that even for particles

oving at the same velocity (Du = 0), there is a dispersal induced by

article entrainment and deposition, which looks like particle diffu-

ion (with a diffusivity ūs�x/2) on the bulk scale. Thus the stochastic

ature of the problem under investigation introduces effects that do

ot arise when studying deterministic advection diffusion equations.

Second, the statistical properties of the process studied depends

n the spatial scale, so on the mesh size when we analyze them nu-

erically. For this reason, we will distinguish between the sample

ariance of b (which is the variance of b(x, t) over a mesh of length �x)

nd the local theoretical variance inferred from (5). Ancey et al. [3]

ound that for a pure-advection problem, under steady state condi-

ions, the mean Poisson density 〈b〉ss and the sample variance varss b

re:

b〉ss = λ′

κ
, varss b

≈ μλ′ �x−1

(κ + ūs �x−1)2

×
[

1 + ūs �x−1

κ + ūs �x−1
+ 1

2

(
3 − λ′

μ

)
ū2

s �x−2

(κ + ūs �x−1)2

]
. (40)
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cell size on the numerical results. To this end we varied �x between
ere we just provide the second-order Taylor expansion of the vari-

nce. There is no closed form for the variance except for mx = 1 [4],

ut it can be calculated iteratively. Guidelines to compute higher or-

er corrections to varss b can be found in [3]. The local variance de-

ived from (5) is

arss b = λ′μ
κ

, (41)

nd is thus independent of the particle velocity ūs. One may be sur-

rised that the local variance is not affected by advection whereas the

ample variance depends a great deal on it, but this odd behavior can

e explained by the development of spatial cross correlations [3]. At

eading order, the autocorrelation function is

(t) = exp(−(κ + ūs �x−1) t) (42)

nd the probability density function is the gamma distribution

a(α̃, β̃ ) with parameters α̃ = 〈b〉2
ss/varss b and β̃ = varss b/〈b〉ss.

As the dispersal induced by entrainment and deposition looks like

iffusion, it is interesting to determine the response system when the

rocess is purely diffusive (ūs = 0 and Du > 0). In that case, Heyman

t al. [43] and Ancey et al. [3] showed that the sample variance varss b

or a cell of length �x is given by

arss b = varss b
2 l2

c

�x2

(
�x

lc
+ exp

(
−�x

lc

)
− 1

)
,

arss b = 1

2

μ 〈b〉ss

κ

1

lc
, lc =

√
Du

κ
, (43)

hich approaches the steady-state value varss b in the limit �x → 0.

c is the correlation length of diffusion.

Numerical simulations were performed with mx = 100 cells of

ength �x = 1 m and the time step �t = 0.001 s during 5 × 105 it-

rations. We explored the effect of varying the particle velocity ūs

rom 10−3 to 102 m s−1 setting Du = 0, λ′ = 10 m−1 s−1, κ = 1 s−1 and

= 4 s−1.

Fig. 5 (a) shows a comparison between the steady-state sample

ariance of the numerical solutions obtained from the WENO imple-

entation vs. the first-order upwind (IUEM), the unlimited second-

rder (ICEM) and fifth-order (EXWP) central methods. Recall that

UEM and ICEM treat the convective and diffusive operators implicitly

hile WENO and EXWP are explicit in time. The analytical approx-

mation (40) of the sample variance is represented by the dashed-

otted line while the solid line shows the higher-order approxi-

ation. We observe that the upwind scheme is in agreement with
he higher-order analytical solution. The second-order approxima-

ion (40) holds for moderate values of ūs, here when ūs ≤ 1 m s−1 for

he tested parameter values.

When increasing the sediment velocity ūs, both the steady-state

ample variance (40) and the numerical results go away from the the-

retical local variance (41). As commented above, this deviation is

xplained by the development of positive spatial cross correlations,

hich significantly affects the sample variance. As the dispersal of

articles takes the appearance of diffusion, it is very tempting to see

hether a purely diffusive model is able to capture the trend shown

y the numerical data. The dashed line in Fig. 5(a) shows the sam-

le variance of a purely diffusive process for which the diffusivity

s set to Du ← ūs�x/2. This curve provides a reasonably good ap-

roximation of the sample variance calculated theoretically (solid

ine) or computed using the upwind method (circles), which con-

rms the diffusion-like nature of the advection-induced dispersal.

n contrast, the unlimited second-order and fifth-order central dis-

retizations perform poorly because they are much less diffusive than

he upwind and WENO solutions. This effect is readily observed in

ig. 5(a) for ūs ≥ 1 m s−1 and is more evident in the EXWP method.

Fig. 5 (a) shows the steady-state mean 〈b〉ss for completeness. Both

he implicit upwind IUEM and the explicit WENO methods repro-

uce the constant analytical solution (40). It comes as no surprise

hat the WENO result lies close to the upwind one because the con-

ergence rate is not greater than first order in the presence of dis-

ontinuous solutions [61]. The implicit second-order central scheme

CEM slightly overestimates the mean value for large velocities and

he explicit unlimited high-order discretization EXWP diverges as we

pproach the Courant–Friedrich–Levy (CFL) stability condition. Note

he large discrepancy between the mean value in EXWP and the ex-

ct solution at ūs = 100 m s−1, i.e. CFL = ūs�t/�x = 0.1. The error is

riggered by the stochastic fluctuations and the unlimited high-order

xplicit treatment of the convective term. The explicit WENO scheme

elps avoid such a drawback without requiring the implicit treatment

f the convective term.

Fig. 6 shows the autocorrelation and probability density functions

f the WENO data. The numerical data are closely matched by the

nalytical solution (42) and the gamma distribution Ga(α̃, β̃ ) with

arameters α̃ = 〈b〉2
ss/varss b and β̃ = varss b/〈b〉ss. These findings are

imilar to those previously reported with the explicit version of the

pwind scheme [3].

An additional test was conducted to check the influence of the
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10−2 and 103 m. The rest of parameter values were kept fixed relative

to the previous simulation (λ′ = 10 m−1 s−1, κ = 1 s−1, μ = 4 s−1,

ūs = 1 m s−1). In doing so, we expect to reach the mean Poisson den-

sity 〈b〉ss = λ′/κ independently of the cell size �x used in the sim-

ulation. For the sake of comparison with the theoretical results, the

sample variance is plotted and compared with the sample variance

calculated for one-cell systems (mx = 1). Ancey et al. [4] showed

that for mx = 1 and steady-state conditions, the theoretical mean and

sample variance are

〈b〉ss = λ′

κ
= 10 m−1, varss b = μλ′

κ

1

�x
= 40

�x
m−2 . (44)

Fig. 7 shows the numerical mean and sample variance obtained with

the explicit WENO, implicit upwind and implicit central schemes. The

three numerical methods reproduce well the theoretical values of the

one-cell system when the emigration rate is ūs/�x < 1 s−1. In con-

trast, the numerical values deviate from the theoretical results when

ūs/�x > 1 s−1. The agreement between the theory and simulations is

similar for both the mean [see Fig. 7(b)] and the sample variance [see

Fig. 7(a)]. The central scheme significantly overestimates the steady-
tate average 〈b〉ss. The error associated with the WENO and upwind

chemes are similar and much lower than with the central method.

e can guarantee that the deviation between the numerical and

heoretical solutions results from neither the time step �t nor the

orresponding CFL number because of the implicit treatment of the

onvective term in the IUEM scheme, which improves the stability

ompared to schemes. As a matter of fact we performed additional

imulations with a time step one hundred times smaller and obtained

he same result. The cause of this phenomenon is therefore related to

he cell size �x because the particle velocity ūs was kept fixed in the

imulations. We observe that there is a minimum cell size required to

btain realistic results in the simulations. The simple procedure used

erein can be applied in general to establish the minimum grid length

equired in the numerical simulations for prescribed flow conditions.

Finally, a similar analysis of the influence of the window size �x

as used for a purely diffusive process with theoretical solution given

y (43). The simulation parameters were the same as in the previous

ase except for the particle velocity, which was set to ūs = 0, and the

article diffusivity, which is Du = 0.2 m2 s−1. Fig. 8 shows the steady-

tate sample variance and the mean value as a function of the cell
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ize �x. The dashed and solid lines in Fig. 8(a) correspond to the lo-

al variance varssb and the sample variance varss b for a window of

ize �x, both given by (43). The three solutions are nearly identi-

al for small enough cell sizes �x � 1 m. However, the local vari-

nce deviates from the sample variance as �x increases. The numer-

cal solution matches the sample variance at all �x, which highlights

he performance of the numerical scheme. As shown by Fig. 8(b),

greement between theory and numerics for 〈b〉ss is excellent for

x > 0.1 m.

The fluctuations described in the above set of numerical simula-

ions are obviously due to the stochastic forcing
√

2μbξb in the b-

quation (5). We have verified that if the collective entrainment coef-

cient vanishes, i.e. μ = 0, then the numerical solution preserves the

quilibrium state b = 〈b〉ss and does not exhibit spurious oscillations.

.3. The mean morphodynamic equations: pattern formation

n the flow down an erodible slope

We have performed additional simulations with the coupled

rosion-deposition model to verify the accuracy of the numerical

cheme proposed in Section 4.1. First, we consider a steady uni-

orm flow in the full mobility regime. This implies that the Shields

umbers are much larger than the critical Shields number (in

ractice Sh > 2Shcr) and the stochastic fluctuations are much lower

han the mean value, i.e. (varssb)1/2 � 〈b〉ss. We thus neglect the

nfluence of the noise term ξ b(x, t) in the b-equation (5). Classical

eterministic bed load transport formulas q̄s(Sh) such as the ones

roposed by Meyer-Peter & Mueller, Ashida & Michiue and Fer-

andez Luque & van Beek lead to the scaling q̄s ∝ Sh3/2 under full

ediment-mobility conditions [37]. As outlined in Section 2.2, an

lternative approach to computing the sediment transport rate is to

efine it as q̄s = ūs〈γ 〉 − ∂x(Du〈γ 〉) [36] and then compute it using

he mean equations (1)–(3) and (6). In Section 2.3, we showed how

he entrainment and deposition rates could be determined from

he experimental data provided by Fernandez Luque and van Beek

34]. We obtained expressions that are consistent with the erosion-

eposition model by Charru [22] together with the numerical data

btained from direct simulations for Shields numbers as large as Sh

4.3 Shcr [32,56]. It can be shown that by considering the closure

quations (13) and (15) together with the Darcy–Weisbach frictional

aw (8), we retrieve the power-law scaling q̄s ∝ τb
3/2 because τ b ∼

h. This provides clear evidence that the erosion-deposition model is

lso well-suited to describing the full mobility regime.
The linear stability results presented in Section 3 are now em-

loyed to verify the accuracy of the numerical scheme described in

ection 4.1. We simulate the flow down an erodible slope inclined

nitially at an angle θ = 2.75o to the horizontal. The sediment size

s d = 5.6 mm. The water base flow, which is initially uniform and

teady with the constant depth H = 1.4 cm and the depth-averaged

elocity V = 0.45 m/s, is allowed to recirculate and carry sediment in

flume of length � = 0.2 m. The initial condition at t = 0 is the uni-

orm equilibrium state h = H, v̄ = V and 〈γ 〉 = 〈γ 〉ss, except for the

ed elevation in which we introduce an infinitesimal sinusoidal dis-

urbance of amplitude ε = 10−7 m in the form yb(x, 0) = −x tan θ +
sin(2πx/�). The numerical computations were done with mx =
00 cells and the friction factor was kept constant, f = f (d/H) (9),

uring the numerical simulations so that we can compare the results

ith those predicted by linear theory. In the absence of detailed stud-

es and calibration of the streamwise particle diffusivity, we set it to

he arbitrary value Du = 0.1 m2 s−1. The critical Shields number Shcr

as been corrected locally during the numerical simulation with re-

pect to the flat bed value Shcr, 0 as a function of the local bed slope

sing Chesher’s method [e.g. 70]

hcr = Shcr,0 max

(
cos θ − sin θ

tan θ0

, 0

)
(45)

n which the tangent of the static angle of response is tan θ0 = 0.63.

The conditions of our virtual scenario mimic the experimental

onditions used by Mettra [62] in his well-controlled laboratory ex-

eriments. He used a small-scale flume, in which only the water re-

irculated. A conveyor belt fed the flume with sediment at the de-

ired rate. The flume length (2.5 m) was much larger than the com-

utational domain (0.2 m) and allowed for the formation of nearly

eriodic anti-dunes. In Mettra’s experiments, the wavelengths and

mplitudes of the largest anti-dunes were about 0.1–0.3 m and 0.01–

.02 m, respectively, and inspired our selection of the computational

ength and similar flow conditions.

We have performed two simulations by varying the non-

imensional eddy viscosity from νt = 0 to νt = 10. The first one al-

ows us to compare the numerical growth rate of an infinitesimal

isturbance with the prediction by the linear theory given by the

ispersion relation (27). The non-dimensional wavenumber corre-

ponding to the cyclic flume length is a = 2 π H/(� tan θ ) = 9.3641.

he second scenario is more realistic because the model equations

nclude a simplified version of the eddy viscosity, which has been
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proven necessary to simulate hydrodynamic instabilities such as roll

waves [18] and cyclic steps [11]. The non-dimensional parameters

required as input data by the stability analysis are δ2 = 0.4, Fr =
1.20, T = 1.43, β = 1, D = 0.74, f = 0.27, ke = 8.64 × 10−2, kd =
4.52 and V = 0.125. Note that the transport stage number is quite

high T > 1, which indicates that experiments were conducted un-

der full mobility conditions (Sh > 2 Shcr). The ideal and viscous

linear growth rates obtained from the linear stability theory are

a ci = 0.32248 and 0.045328, respectively. Interestingly we found

out that the linear theory predicts the development of the erosion-

deposition instability in both situations. There is only one unstable

eigenvalue that indicates that roll waves are not plausible. Indeed,

the Froude number Fr = 1.2 lies below the critical value of ∼ 2. The

dimensional growth rates of the erosion-deposition instability are

obtained by scaling the previous result with the factor Vtan θ /H lead-

ing to 0.48686 and 0.06843 s−1. As expected the eddy viscosity sta-

bilizes the perturbations by decreasing the growth rates of unstable

perturbations.

Fig. 9 shows details of the early linear stage of the growing pertur-

bation with νt = 0. The temporal evolution of the amplitude of the

bed elevation perturbation is shown in panel (a) in which the linear

regression gives a numerical growth rate of 0.4919 s−1 that lies really

close to the exact solution 0.4869 s−1. The relative error 1% is indeed

small. Fig. 9(b) illustrates the pattern formation (with the water flow-

ing from left to right) as time progresses. The initial sinusoidal pertur-

bation grows upstream as observed in the displacement of the stoss

side. The inclusion of the non-dimensional eddy diffusivity νt = 10 in

the model did not change the unstable behavior in the early stage, as

shown in Fig. 10. The agreement between the linear theory and the

numerics is once again good. The growing wavelength in the simu-

lations shown in Figs. 9 and 10 corresponds in both cases with the

wavelength of the sinusoidal disturbance introduced as initial condi-

tion. During the growth of the physical disturbance we did not ob-

serve shorter wavelengths nor spurious oscillations. The numerical

growth rate 0.06785 s−1 [see Fig. 10(a)] agrees well with the theoreti-

cal solution 0.06843 s−1. The relative error is only 0.85%, which shows

the accuracy of the numerical scheme. The contours of constant z in

Fig. 10(b), where z denotes the bed elevation perturbation obtained in

the numerical simulation, readily show that the characteristic curves
ravel in the upstream direction as the water flows towards x > 0

downstream direction). Therefore the bed form corresponds to an

nti-dune. The bed perturbation elevation reaches a saturated state

t late time (t ≈ 160 s) when the anti-dune amplitude is 0.025 m—

his is same order of magnitude as found out in the experiments run

y Mettra [62]. A snapshot of the solution is plotted in Fig. 10(c) and

d) where the bed elevation yb, the free-surface elevation ys and the

roude number are shown at t = 0 (dashed lines) and t = 160 s (solid

ines). The bed development of the anti-dune has substantially mod-

fied the uniform flow condition used as base flow at the initial in-

tant of time. The flow is no longer uniform. The bed morphology

nd flow dynamics resemble that observed with bed forms under su-

ercritical flow conditions (anti-dunes, steep-pools and cyclic-steps),

otably characterized by substantial time variations of the Froude

umber [20]. Indeed the Froude number value that was initially 1.2

aries progressively at later times from 0.91 to 2.22 as the water flows

n the anti-dune. Note that the critical flow conditions Fr = 1 (with

ransitions from subcritical to supercritical flow and viceversa) are

esolved without further difficulty compared to the inviscid shallow

ater equations.

So far we found out that the mean equations (1)–(3) and (6) are

nstable because of the development of an erosion-deposition insta-

ility even at subcritical Froude numbers, see Fig. 2. The linear sta-

ility theory correctly predicts the growth rate values that are not

ffected by non-linear effects during the growth of unstable per-

urbations, see Figs. 9 and 10. When based on algebraic sedi-

ent discharge equations q̄s(Sh), the Saint-Venant-Exner equa-

ions (1)–(2) and (5) are stable for Fr < 2 [10]. In contrast,

he current model exhibits a richer collection of unstable modes

articularly for Fred < Fr < 2, similar to other one-dimensional

ormulations recently proposed [11,76]. More sophisticated rota-

ional two-dimensional flow models have been suggested in the

ontext of longitudinal bed forms for subcritical and supercrit-

cal regimes [e.g. [35,28,17]]. The one-dimensional deposition-

ntrainment shallow water formulations proposed here might be

valuable alternative to conduct further studies on pattern for-

ation, particularly because of its simplicity and because it makes

t possible to update previous numerical codes for Saint-Venant

quations.
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Fig. 10. Numerical results obtained with the mean flow equations for the same base flow conditions as used in Fig. 9 after increasing the eddy diffusivity coefficient up to νt = 10:

(a) temporal evolution of the amplitude of the bed elevation perturbation z, (b) contour plot of the bed elevation perturbation z(x, t), (c) streamwise profiles of the bed elevation (in

black) and free surface (in blue) at the initial time and at t = 160 s, and (d) Froude number at the same times. The characteristic curves in panel (b) travel upstream, which shows

that the bedforms corresponds to anti-dunes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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t < 180 s.
.4. The hybrid stochastic-deterministic model

In this section we present numerical results obtained with the hy-

rid stochastic-deterministic model (1)–(5) for the same flow con-

itions and values of the physical parameters as in the determinis-

ic simulations presented in Section 4.3. The only differences were

he flume length, flume width, cell size and time step, which were of

.5 m, �x = 0.01 m, B = 0.08 m, and �t = 2.2 × 10−4 s (CFL = 0.01),

espectively. The individual entrainment rate λ′
i
in (5) is evaluated us-

ng (B.3), which yields λ′
i
= 969.84 m−1 s−1. In the absence of detailed

tudies on individual and collective entrainment of particles, the dif-

erential rate between deposition and collective entrainment rates is

et to the constant value κ = 5.31 s−1 given by (16) while the collec-

ive entrainment is fixed to μ = 24.53 s−1. By assuming that the par-

icle diffusivity controls the stochastic fluctuations of b (43), the fluc-

uation amplitude is about ±(var b)1/2/〈b〉ss × 100 = ±30%. As initial

onditions we consider a perfectly uniform flow down an inclined

lane of constant slope.

Fig. 11 (a) shows the maximum amplitude of the bed elevation

erturbation z as a function of time. Three phases are distinguished

ince the early development of the stochastic process: the growth

f infinitesimal trains of disturbances in the bed (phase I with t ≤
800 s), the exponential growth of bed forms with a selected wave-

ength (phase II with 1800 ≤ t ≤ 5000 s) and the development of a

aturation stage at t > 5000 s (phase III).

At the intermediate time t = 1800 s the flow looks like the per-

ect uniform flow used as initial condition [see Fig. 11(b)] because

he amplitude of the bed elevation is negligible [< 10−3 m, see

lso Fig. 11(c)]. However there are wide fluctuations in the Pois-

on density b during the whole phase I, as revealed by the dashed

ine in Fig. 11(d) at that time. Indeed, the mean value 〈b〉 and the

ample variance var b, which were computed every 5 × 104 itera-

ions, lie really close to the values of the purely diffusive process

43) with 〈b〉ss = 182.54 m−1 and varss b = 3000 m−2, see Fig. 12.

ere the sample variance approaches the local steady-state variance

arss b = 3072 m−2 due to the small grid size �x used in the nu-

erical simulation (recall the results in Fig. 8). The extra diffusiv-

ty induced by the convective term ūs �x/2 = 0.002 m2 s−1 is much

maller than the particle diffusivity Du = 0.1 m2 s−1 employed in the

omputations and, consequently, its effect is negligible. The auto-

orrelation function ρ(t) and the probability distribution function

gree very well with the theoretical solutions for the diffusive pro-

ess, as shown in Figs. 12(c) and 12(d) at the early instants of time
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Fig. 11. Numerical results obtained with the stochastic model (1)–(5) for the same base flow conditions as used in Fig. 10 and μ = 3 s−1: (a) temporal evolution of the amplitude

of the bed elevation perturbation z, (b) streamwise profiles of the bed elevation (in black) and free surface (in blue) at the intermediate time t = 1800 s and under steady-state

conditions at t = 5000 s, (c) contour plot of the bed elevation perturbation z(x, t) and (d) Poisson rate at the same instants of time as in panel (b). The characteristic curves in (b)

travels upstream indicating that the bedforms corresponds with anti-dunes. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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The second phase is characterized by the exponential growth of

anti-dune trains in the subregion x < 1.7 m. The wavelength is well

defined, varies in the 0.22 ≤ � ≤ 0.29 m range and remains nearly

constant until it reaches the non-linear steady state, as commented

in Section 4.3 for the single anti-dune simulation. The final ampli-

tudes of the bed forms agree well with the previous one obtained in

the pure deterministic simulation. This is not surprising as the wave-

length employed in the deterministic simulation is close to the nat-

ural one determined for the stochastic case. In this simulation the

wavelength of the bed forms is not imposed but is selected natu-

rally in the simulations. However, in the stochastic simulation the

growth rate inferred from the linear fit performed in Fig. 11(a) is

much smaller than the one obtained in the deterministic case, 0.001

vs. 0.068 s−1. The wide stochastic fluctuations affect the growth of

small amplitude waves by attenuating their growth rates, but do not

imped their development.

The wavelength developing in the numerical simulation is in good

agreement with the most unstable wavenumber obtained in the tem-

poral stability analysis. Solving the dispersion relation of (26) with

δ2 = 0.4, Fr = 1.2, u∗ = 0.64, β = 1, D = 0.74, V = 0.13, f = 0.27,

ke = 8.64 × 10−2 and kd = 4.52 for different values of a, and plotting

the temporal growth rate as we did in Fig. 2(d), we found out the
ost unstable dimensionless wavenumber: a tan θ = 2πH/� = 0.3.

his value agrees well with those associated with the wavelengths of

he numerical simulation 0.3 ≤ 2πH/� ≤ 0.4. Furthermore, it lies re-

lly close to the experimental values 0.25 ≤ 2πH/� ≤ 0.3 by Mettra

62], see his Fig. 6.13, corresponding with the experiences marked in

he {Fr, δ2} diagram in our Fig. 3. Indeed the flow conditions sim-

lated herein mimics his experience 4deg3v, see Table 4.1 in [62].

his fact provides a further experimental validation of our theory and

imulations.

The sedimentary dynamics in the lower reach of the flume are dif-

erent while the bed remains nearly flat in the middle reach (1.7 < x

2.5 m), shows degradation upstream (2.5 < x < 3.2 m) and aggra-

ation downstream (x > 3.2 m). Part of the released sediment is de-

osited in the bed forms where sediments accumulate. The amount

f extra sediment in the bed has been evaluated as
∑

i z(xi, t)/mx =
i(yb(xi, t) − yb(xi, 0))/mx in order to quantify the local mass error

ntroduced by the noise term ξ b. Fig. 13 shows that the cumulative

olume of extra sediment in the computational cells is really small

< 2 × 10−4 m). The artificial creation and destruction of sediment

ass can be consequently neglected.

To conclude, it is worth mentioning that the empirical mean and

ariance shown in Fig. 12 are close to the steady-state values during
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Fig. 12. (a) Empirical variance and (b) mean value computed every 5 × 104 iterations (solid line) for the simulation shown in Fig. 11. The dashed line corresponds to the the-

oretical values of the diffusive process (43). (c) Autocorrelation functions: the circles show the empirical autocorrelation function obtained in the time interval t ≤ 180 s, the

solid line corresponds to the theoretical solution ρ(t) = 1 − erf(
√

κ t). (d) Empirical probability distribution function of the Poisson density b computed for t ≤ 180 s, the normal

distribution function with mean 〈b〉ss = 182.54 m−1 and variance varss b = 3000 m−2, and the gamma distribution function with input parameters α̃ = 〈b〉2
ss/varss b = 11.11 and

β̃ = varss b/〈b〉ss = 16.43 m−1.
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the period of time t ≤ 2500 s when the amplitude of the bed forms

were small. Later the flow becomes non-uniform and, consequently,

the variance and the mean deviate from the equilibrium values and

reach a maximum, of 6985 m−2 and 244.3 m−1, respectively, at a later

time t ≈ 4790 s. It seems important to take into account the non-

uniformity of the flow field when evaluating the Poisson density b.

Fig. 11(d) indeed shows larger fluctuations in the streamwise profile

of b at t = 5000 s compared to t = 1800 s. The numerical model de-

veloped in this work allows for this task and could be useful to cali-

brate the model parameters from flume experiments.

5. Summary and conclusions

In this article we have proposed a stochastic bed load transport

model (1)–(5) within the framework of the frictional shallow-water

equations. To our knowledge, this is the first attempt of resolution

of the stochastic-deterministic Saint-Venant-Exner equations. A po-

tential application is the study of noise-induced pattern formation

which has been considered in detail through the current article. The

original experiments by Gilbert in 1914 [39] and subsequent stud-

ies [e.g., [20,51,62,67]] showed the developments of pattern forma-

tion on background flows that are essentially a uniform stream down

an erodible bottom slope. We have considered the particular case of

anti-dunes formation in steep slopes occurring for threshold Froude

numbers approximately of 0.5–1.8 [19] and have proven by means of

a spatio-temporal linear stability analysis that the unstable modes

of our mean balance equations (20) correctly catch the anti-dune

regime depicted in Fig. 3. We found out a minimum particle diffu-

sivity Dabs required for the onset of anti-dunes, see Fig. 4(a), corrob-

orating that pattern formation is a diffusive process as in Turing-like

instabilities [69]. The wavelength selection mechanism observed in

the full non-linear numerical simulation in Section 4.4 and the agree-

ment between the anti-dunes wavelength obtained therein with the

absolute instability theory and the experiments by Mettra [62] serves

to illustrate the potential capabilities of our modeling technique.

In the absence of collective entrainment, i.e. μ = 0, and uniform

flow conditions, our model retrieves the bed load flux function

q̄s by Fernandez Luque and van Beek [34] which could be readily

extended with further classical bed load formulas for calibration

in the near future. In addition, the current stochastic formulation

comprises a parabolic subproblem and a Wiener process repre-

senting physical processes as diffusive sediment transport and

stochastic fluctuations. Hence the numerical method developed to

solve the model equations (1)–(5) includes not only an approximate

Riemann solver for the hyperbolic subproblem but also a Crank–

Nicholson scheme combined with the Euler–Maruyama method

for the stochastic source terms. The simulations presented in the

numerical analysis in Section 4 have shown that the proposed

numerical scheme allows us to accurately compute the statistical

properties of the Poisson density b such as the mean, sample vari-

ance, autocorrelation function and probability density function.

Furthermore the dimensions of the anti-dunes obtained in the full

non-linear numerical simulation are physically sound and lie in the

range observed in laboratory experiments. The current numerical

model could be valuable to calibrate the input parameters from

experimental or field data and could be readily incorporated in other

source codes previously developed for the Saint-Venant equations.
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ppendix A. Approximate Riemann solver

The Jacobian matrix of (30) reads

= ∂F

∂U
=

⎛
⎜⎜⎝

0 1 0 0

g h − v̄2 2v̄ 0 0

−β v̄ b

h

β b

h
β v̄ 0

0 0 0 0

⎞
⎟⎟⎠ . (A.1)

he eigenvalues sp of (A.1) are given by the diagonal entries of � =
J P−1 and the corresponding right eigenvectors rp by the column

ectors of P with

=

⎛
⎜⎝

v̄ + c 0 0 0
0 v̄ − c 0 0
0 0 β v̄ 0
0 0 0 0

⎞
⎟⎠ ,

P =

⎛
⎜⎜⎝

1 1 0 0
v̄ + c v̄ − c 0 0

gβ b

c (c + v̄ − β v̄)

gβ b

c (c − v̄ + β v̄)
1 0

0 0 0 1

⎞
⎟⎟⎠ , (A.2)

n which c =
√

g h. The states u in the Riemann problem corre-

pond to the reconstructed interface values of Ui from the fifth or-

er component-wise weighted essentially non-oscillatory (WENO)

cheme [53]. In Section 4.2 we will discuss the performance of the

ENO scheme including an approximate Riemann solver for the dis-

retization of the convective operator in the stochastic PDE of the

oisson density b. The discussion will be based on a thorough com-

arison between the numerical simulations and theoretical solutions

erived by Ancey et al. [3]. The spatial jumps �u = ur − ul of recon-

tructed conservative variables with right and left states ur and ul

ere decomposed in terms of the eigenvectors rp or waves W p as

u = ur − ul =
∑

p

αprp =
∑

p

W p (A.3)

ith

1 = (c − v̄)�h + �hv̄
2 c

, α2 = (c + v̄)�h − �hv̄
2 c

,

3 = �b + 1

2 c
(P31 − P32)(v̄�h − �hv̄) − 1

2
(P31 + P32)�h ,

4 = �yb . (A.4)

he fluctuations are computed using a Roe solver with entropy fix as

escribed in [57]. Following the same procedure as for the shallow

ater equations, we derive the Roe averages for (30)

h̃ = 1

2
(hL + hR) , c̃ =

√
g h̃ , ṽ = v̄L

√
hL + v̄R

√
hR

√
hL +

√
hR

,

b̃

h̃
= bL

√
hR + bR

√
hL

hL
√

hR + hR
√

hL
. (A.5)

he left and right states of the flow depth hL, R were corrected using

he hydrostatic reconstruction by Audusse et al. [6] as described in

ing and Shu [79],

hL ← max
(
0, hL + yL

b − max
(
yL

b, yR
b

))
,

R ← max
(
0, hR + yR

b − max
(
yR

b, yL
b

))
. (A.6)
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he flux correction in the hydrostatic reconstruction was shifted to

he source term in our implementation. The values (A.5)–(A.6) were

sed when evaluating (A.1)–(A.4).

It is worth commenting that the eigenvalues � and eigenvectors

matrices (A.2) and consequently the waves W in (36) do not coin-

ide with those obtained in former deterministic Saint-Venant-Exner

quations in which the Jacobian matrix depends at leading order on

he adopted bed load formula, see e.g. Murillo and García-Navarro

63] and Juez et al. [45]. Furthermore, the dynamics of the sediment

articles is influenced in our model not only by the advection veloc-

ty (or the waves W of the hyperbolic subproblem) but also by the

iffusive sediment transport mechanism, the erosion and deposition

ates and the stochastic Wiener process which are basic in the devel-

pments of anti-dunes, as shown in Sections 3 and 4.

ppendix B. Stochastic-deterministic source terms

Taking into account the numerical considerations on the source

erms established in Section 4.1, the cell averaged source terms read

i ≈ 1

�x

∫
Ci

S(x, t)dx

≈

⎛
⎜⎜⎜⎝

0

g ỹb �̃ys + g�̃

(
y2

b

2
− ys yb

)
− τ̃b

ρ

λ′
i
− κ bi +

√
2 μ bi ξb(xi, tn)

(κ VpB−1 〈b〉i − λi)/(1 − ζb)

⎞
⎟⎟⎟⎠ (B.1)

n which

ỹb =
y∗

b,i+ 1
2

+ y∗
b,i− 1

2

2
, �̃ys =

yL
s,i+ 1

2

− yR
s,i− 1

2

�x
,

˜

(
y2

b

2
− ys yb

)
=

(
y∗

b,i+ 1
2

)2

−
(

y∗
b,i− 1

2

)2

2�x

−
yL

s,i+ 1
2

y∗
b,i+ 1

2

− yR
s,i− 1

2

y∗
b,i− 1

2

�x
,

τ̃b

ρ
= τb,i/ρ

1 − �t
ρ

∂τb,i

∂hv̄

= fi hi v̄i |v̄i|
2 (4 hi + �t fi |v̄i|) . (B.2)

n the deterministic shallow water equations the bed elevation

as evaluated as y∗
b,i+1/2

= max(yL
b,i+1/2

, yR
b,i+1/2

) to ensure the well-

alanced property in equivalent manner with Xing and Shu [79].

n contrast, in the stochastic partial differential equations of the b-

ariable we used an explicit pointwise evaluation of the source terms

s usually done in the Euler–Maruyama scheme [55].

The individual entrainment rate λ′
i

is evaluated in (B.1) from the

olumetric flux of individual entrained particles per unit of bed area

given, for instance, by Eq. (17):

′
i = B

Vp
λ(τb,i) . (B.3)

he differential rate κ between deposition and collective entrain-

ent rates is set to the constant value (16). For the sake of simplic-

ty, the collective entrainment rate μ is set to a constant value in

he examples presented in Section 4. The noise term is computed as

b(xi, tn) = rnd/
√

�t �x where rnd denotes a mx-dimensional stan-

ard normally distributed random variable with zero mean value and

nity standard deviation [41]. It was generated with vdRngGaussian
ntel® subroutine. The last step in the source terms’ discretization is

he evaluation of 〈b〉i and λi, which was achieved by taking the time

veraging the cell values.
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