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Abstract This paper describes the relationship between the statistics of bed load transport flux and the
timescale over which it is sampled. A stochastic formulation is developed for the probability distribution
function of bed load transport flux, based on the Ancey et al. (2008) theory. An analytical solution for the
variance of bed load transport flux over differing sampling timescales is presented. The solution demonstrates
that the timescale dependence of the variance of bed load transport flux reduces to a three-regime relation
demarcated by an intermittency timescale (tI) and amemory timescale (tc). As the sampling timescale increases,
this variance passes through an intermittent stage (≪tI), an invariant stage (tI< t< tc), and a memoryless stage
(≫ tc). We propose a dimensionless number (Ra) to represent the relative strength of fluctuation, which
provides a common ground for comparison of fluctuation strength among different experiments, as well as
different sampling timescales for each experiment. Our analysis indicates that correlated motion and the
discrete nature of bed load particles are responsible for this three-regime behavior. We use the data from three
experiments with high temporal resolution of bed load transport flux to validate the proposed three-regime
behavior. The theoretical solution for the variance agrees well with all three sets of experimental data.
Our findings contribute to the understanding of the observed fluctuations of bed load transport flux over
monosize/multiple-size grain beds, to the characterization of an inherent connection between short-term
measurements and long-term statistics, and to the design of appropriate sampling strategies for bed load
transport flux.

1. Introduction

Bed load transport plays an important role in river morphology, desertification, and landscape evolution, and is
also a contributor to the average long-term sediment budget. The prediction of bed load transport has been
the topic of intensive research over the last century. However, state-of-the-art, macroscopically averaged
formulas may still predict bed load transport rates that deviate by asmuch as 1 and 2 orders of magnitude from
field data in mountain streams and aeolian systems [Barchyn et al., 2014; Barry, 2004; Gomez and Church, 1989;
Martin, 2003; Sherman and Li, 2012; Wilcock, 2001]. This renders the long-term prediction of river morphology
and desert landscape very difficult. The specific evolution of a given area over a specified period may
significantly differ from themean trend, and this difference depends in part on themagnitude of fluctuations in
bed load flux [e.g., Phillips, 2010, 2011].

The fluctuation of bed load transport flux has received increasing attention in terms of microscale (particle
scale) mechanisms and statistical characterization [Ancey and Heyman, 2014; Heyman et al., 2014; Singh et al.,
2009]. In this regard, these fluctuations show stochasticity [Ancey et al., 2006; Bohm et al., 2004; Frey et al., 2003;
Furbish et al., 2012; Heyman et al., 2013; Turowski, 2011], nonlocality [Bradley et al., 2010; Ganti et al., 2010;
Martin et al., 2012; Nikora et al., 2002], and dependence on broad scales [Bunte and Abt, 2005; Campagnol et al.,
2012; Ergenzinger et al., 1994; Gomez et al., 1989; Hoey, 1992; Martin et al., 2013; Recking et al., 2012; Singh et al.,
2009]. Among the characteristics of bed load transport flux, scale dependence is of specific interest to
geophysicists and engineers, since it is crucial for connecting results from short-term experiments and field
surveys relevant to the prediction of the long-term evolution of river morphology and desert landscape
[Foufoula-Georgiou and Stark, 2010].

The issue of scale-dependent statistics of bed load transport flux arises from the stochastic nature of bed load
transport dynamics that purely deterministic models fail to capture. In general, if a power law relation exists
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between the variance of a fluctuating quantity and scale, it can be applied in a simple and elegant way so that
measurements conducted at one scale can be easily extended to predict measurements at another scale.
A power law characterizing the relationship between the variance of bed load transport flux and sampling
timescale with scaling exponent �1 was proposed in the classical Einstein model, in which probabilistic
concepts were first applied to the study of bed load transport [Einstein, 1937]. Ancey et al. [2006] recast
Einstein’s model into an equivalent Eulerian model that also results in a power law. Recent experiments have
shown that a power law holds locally between the fluctuations of bed load transport flux and different time
intervals [Campagnol et al., 2012; Singh et al., 2009]. However, the existence of a global power law relation
between the statistics of bed load transport flux and sampling timescale has not been demonstrated with
experimental data to date. (See Stumpf and Porter [2012] for a presentation of the mathematical criteria for
the existence of such a relation.)

There is, on the other hand, experimental evidence suggesting a scale relation that is more complex than a
power law. Hamamori [1962] and Carey and Hubbell [1986] attributed bed load transport fluctuation to bed
form migration and obtained a timescale invariant formula for the probability distribution function of bed
load transport flux. Gomez et al. [1989] compared bed load transport flux samples measured at different
timescales and showed that the cumulative distribution function of the bed load transport flux has a
dependency on the timescale. Campagnol et al. [2012] considered the process of bed load transport at fine
scale and demonstrated the existence of a break in the power law relation at small sampling timescales.

The controversial question as to how the statistics of bed load transport vary over different sampling
timescales motivates us to seek a comprehensive understanding of the dependence of bed load transport
flux on scale. We first propose a theoretical formulation for the full-scale probability distribution function
(PDF) of bed load transport flux, based on the theory of Ancey et al. [2008]. This theory can not only resolve
the discreteness of bed load particles but can also characterize long-term autocorrelation associated with the
number of moving particles. We show that the relation between the variance of fluctuations of bed load
transport flux and sampling timescale can be analytically divided into three piecewise power law scaling
relations. Three sets of experimental data available in the literature are used to test the theory, as well as to
characterize the multiregime behavior associated with these scaling breaks.

The present study is organized as follows. Section 2 presents the theoretical formulation of the PDF of bed
load transport flux and the resulting analytical solution for the variance of bed load transport flux over
different sampling timescales. A dimensionless number is proposed to mathematically characterize this
multiregime relation. Section 3 outlines the experimental evidence for this multiregime relation. This
evidence is used to test the analytical formulation derived in section 2. Section 4 discusses the physical origin
of the key parameters governing the multiregime relation and the implications of experimental results. In
section 5 we summarize our findings and discuss the implications of the multiregime formulation, as well as
its potential implication for future studies.

2. Development of Physics-Based Stochastic Theory of Bed Load Transport

We propose a physics-based formulation of the PDF of bed load transport flux over different sampling
timescales and then derive an analytical expression of its variance so as to characterize its relation to sampling
timescale. The formulation is based on the Ancey et al. [2008] stochastic theory, a schematic diagram of which is
shown in Figure 1. Ancey et al. [2008] considered the number of moving particles N(t)∈ {0, 1, 2,⋯} in a fixed
observation window along the streamwise direction. In their study, N(t) is the concerned random variable; it
evolves in time according to a birth-death Markov process (Figure 1). The static bed reservoir of particles, which
we here denote by the label B in Figure 1, is assumed to have an infinite capacity. Furthermore, S is the number of
particles leaving the window. Let P(n; t) denote the probability of N(t) =n. The probabilistic evolution of N(t)
results from the following transition events: (1) A moving particle enters the window from upstream at rate
λ0 [T

�1] in dt, i.e., P(n→ n+ 1; dt) = λ0dt+ o(dt); (2) each moving particle leaves the window independently
at emigration rate γ in dt such that the total emigration rate is γN [T�1], i.e., P(n→ n� 1; dt) =nγdt+ o(dt);
(3) each moving particle settles independently onto the bed in the window at deposition rate σ in dt, such
that the total deposition rate is σN [T�1], i.e., P(n→ n� 1; dt) = nσdt+ o(dt); (4) a resting particle can be
dislodged from the bed by the fluid at a rate λ1 [T

�1], i.e., P(n→ n+ 1; dt) = λ1dt + o(dt); and (5) each moving
particle can destabilize a resting particle and set it moving at rate μ [T�1], i.e., P(n→ n + 1; dt) = nμdt + o(dt).
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Ancey et al. [2006, 2008] experimentally demonstrated the fifth type of transition and described it as collective
entrainment. A master equation governing the evolution of P(n; t) was derived in Ancey et al. [2008],

∂
∂t
Pðn; tÞ ¼ λþ μ n� 1ð Þ½ �P n� 1; tð Þ þ σ þ γð Þ nþ 1ð ÞP nþ 1; tð Þ

� λþ μþ σ þ γð Þn½ �Pðn; tÞ
(1a)

∂
∂t
Pð0; tÞ ¼ σ þ γð ÞPð1; tÞ � λPð0; tÞ (1b)

where λ= λ0 + λ1. Ancey et al. [2008] showed that derived from equations (1a) and (1b), the PDF of number of
the moving particle at steady state is a negative binomial distribution with mean value λ/(σ + γ�μ) and
variance λ(σ + γ)/(σ + γ�μ)2, and that this solution accurately characterizes the fluctuation of number of
moving particles in a given observational window.

It is worth noting that all four parameters λ, μ, σ, and γ have a physical meaning. Both σ and γ can be observed
directly from imaging techniques. Let L andW denote the length of the observation window and the channel
width, both with unit (L), and ūs be the average velocity of moving particles with unit (LT�1). The parameter γ in
the equilibrium state can be estimated as ūs/L [Ancey, 2010]. The individual entrainment rate λ1 should be
proportional to bed area, i.e., λ1 ~O(LW), whereas μ and σ are independent of it. The parameters λ1 and μ are,
however, difficult to determine separately by image analysis and need to be calibrated using other statistical
information. Thus, the mean number of moving particles, expressed as hNi= λ/(σ + γ�μ) ~O(LW) and the
mean flux, expressed as hγNi~O(Wūs), are consistent with their corresponding physical definitions. Accordingly,
the total entrainment rate is f1(N) = λ+μN~O(LW), the total deposition rate is f2(N) = σN~O(LW), and the total
emigration rate is f3(N) = γN~ O(ūsW). Here ūs and W are constant in any particular case, while L can vary
according to the size of the observation window from a small value up to the limiting streamwise geometry
boundary (channel length).

In the Ancey et al. [2008] model, the collective entrainment rate μ is a crucial parameter for describing large
fluctuations of N. If μ= 0, var(N) =mean(N) = λ/(σ + γ), and the statistics of N are described by a Poisson
distribution, as is the increment number of emigrating particles S in a time period. However, as μ→ σ + γ, var
(N) ≫mean(N) and the fluctuation of N is large. A large value of μ allows a long-term autocorrelation of N,
as presented below. It is worth noting that the original Einstein model [Einstein, 1937, 1950] can be
interpreted as a special case of the Ancey et al. [2008] model with μ= 0.

We are concerned here with the statistics of the bed load transport flux over a broad range of timescales.
Recall that Ancey et al. [2008] focused on the statistics of the number of moving particles, while Heyman et al.
[2013] were interested in the statistics of waiting time between particles leaving the window. No governing
relation has been previously presented, however, for the evolution of particle flux in time. We derive such
a relation below, in this section. More specifically, we derive the probability density function and variance of
the bed load transport flux as a function of sampling time.

Figure 1. Sketch of definitions for the stochastic theory of bed load transport. N is the number of moving particles, and B is
the number of particles in the granular bed. S represents the number of emigrating particles. Transition events can occur as
follows: (1) a rest particle can be entrained individually by the water flow at rate λ1; (2) a rest particle can be destabilized and
moved by any moving particle at rate μ independently, i.e., total entrainment rate f1(N) = λ1 + μN[T�1]; (3) any moving
particle can independently settle down to rest at rate σ, i.e., total deposition rate f2(N) = σN[T�1]; and (4) any moving
particle can leave the window at rate γ independently, i.e., total emigration rate f3(N) = γN[T�1]; and (5) particles enter the
window from upstreamwith a rate λ0, which is merged with λ1 into λ = λ0 + λ1 in the present study, as is f1(N) = λ + μN[T�1].
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As shown in Figures 2a and 2b, the
instantaneous volume flux of bed load
transport can be defined as

Qs tð Þ ¼ ∬A
us�ndA (2)

where us is the velocity vector and n is
the unit normal vector of cross-section A.
When conducting experiments and field
survey, several factors in equation (2) are
difficult to measure [Ancey, 2010; Ballio
et al., 2014]. Thus, the time-averaged flux
of bed load transport is usually used
instead of the instantaneous value
[Ancey, 2010; Ballio et al., 2014;
Campagnol et al., 2012; Singh et al., 2009],

Qs t; δtð Þ ¼ ∫
tþδt

t
Qs τð Þdτ
δt

¼ ∬A∫
tþδt

t
us�ndτdA
δt

¼ δVs

δt
¼ vs

δS t; δtð Þ
δt

(3)

where Qs(t; δt) is the volume flux
averaged over δt; δVs is the volume of
bed load particle passing through A
within δt; S(t) is the cumulative number of
particles passing through the cross
section since t = 0 while δS(t; δt) is the
cumulative number of particles passing
through the cross section within δt, i.e.,
δS(t; δt) = S(t+ δt)� S(t) (see Figure 2c);
and vs=1/6πD

3 is the volume of a particle
and D is the diameter of a particle. Here
we drop the parameter vs (which we take
to be constant for any given experiment)
for simplicity and define the particle flux
of bed load transport as

qs t; δtð Þ ¼ δS t; δtð Þ=δt (4)

This form can be easily transformed into the mass or volume flux of bed load transport by multiplying by the
particle mass or volume. Here qs(t, δt) is a random variable. A strict definition of fluctuation of bed load
transport flux is thus qs′= qs�hqsi. Here we simply use hqs′2i, i.e., the variance of qs(t, δt), to represent the
strength of fluctuations.

Based on equation (4), the bed load transport flux can be calculated as the sum of emigration events δS
during a given time period δt (see Figure 2c). Emigration is one of the discrete transition events of N(t). Thus, it
would be possible to count the number of the transition events, which is also a random variable. In fact, this
counting statistics problem has been widely tackled in many scientific fields [Gopich and Szabo, 2006;
Ohkubo, 2008; Ohkubo, 2009; Pilgram et al., 2003; Sinitsyn and Nemenman, 2007]. Two groups of approaches,
i.e., the path integral formulation [Ohkubo, 2008, 2009; Pilgram et al., 2003; Sinitsyn and Nemenman, 2007] and
transition matrix approach [Gopich and Szabo, 2006], have been developed. We pursue our theoretical
treatment in terms of the path integral formulation, which is closer to the physical origin of stochasticity.
It should be noted, however, that the analytical solution for the fluctuations derived from the path integral
formulation coincides with the one obtained from the transition matrix approach.

Figure 2. Schematic diagram of the definition of bed load transport flux.
(a) Vertical plan. X is the streamwise direction, Y is the vertical direction,
and Z is the spanwise direction. (b) Perspective view. The unit normal vector
of the cross-section A is n, and us is the velocity vector of the particle. (c) A
sketch of the definition of bed load transport flux. Counts of accumulated
particle numbers describe emigration events, which occur when particles
pass through a cross section at specified time points. The bedload transport
flux is defined as the increment of accumulated particle numbers between
two times, i.e., δS divided by the temporal increment δt.
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2.1. Stochastic Formulation of the Bed Load Transport Flux

The bed load transport flux is defined by equation (4). Since the statistics of N(t) are known, we can derive the
theoretical formulation of the PDF of the bed load transport flux by connecting it to the statistics of N(t). We
first discretize time and, correspondingly, the number of moving particles and emigration events in a time
interval [ti, ti+Δti) as ΔNi=N(ti+Δti)�N(ti), ΔSi= S(ti+Δti)� S(ti), and ti+1 = ti+Δti. When max {Δti }→ 0, we
have the following governing equations:

P ΔSi ¼ 1 N tið Þ ¼ Nij½ � ¼ γNidt þ o dtð Þ (5a)

P ΔSi ¼ 0 N tið Þ ¼ Nij½ � ¼ 1� γNidt þ o dtð Þ (5b)

As shown in Ancey et al. [2008], there exists a time interval that is long enough to allow several emigration
events to occur, but sufficiently short so that the number of particles that commence movement and
then migrate out of the window within the same interval can be taken to be zero. In this time interval, the
PDF of the number of emigration events can be expressed as a binomial distribution with parameter
pm = 1� exp(�γΔt), i.e.,

P ΔSi ¼ k N tið Þ ¼ Nij½ � ¼ Ni !
k! Ni � kð Þ! p

k
m 1� pmð ÞNi�k (6)

Pilgram et al. [2003] and Sinitsyn and Nemenman [2007] further pointed out that when N ≫ 1, there exists a
timescale Δt (far larger than dt), over which many transitions into and out of N occur, but the fractional
change of N is still small, i.e., 1≪ ΔN≪ N. For this condition, the change of the total emigration rates, Δf3, are
also small and all emigration events are uncorrelated and Poissonian as expressed by the relation below

P ΔSi ¼ n N tið Þ ¼ Nij½ � ¼ exp �f 3 Nið ÞΔt½ � f 3 Nið ÞΔt½ �n
n!

(7)

As shown in Appendix A, equations (5a), (5b), and (6) can be transformed into equation (7). Thus, equation (7)
can be used as a basis for developing a formulation representing the emigration process. Note that the
number of emigration events ΔSi depends only on the status of N(ti); thus, when the exact state of N(ti) is
known, every value of ΔSi is conditionally independent of each other.

Equation (7), which pertains to the emigration process at short timescales, is insufficient to connect statistics
of Swith N analytically. An additional observation can help us obtain this connection readily. We observe that
since hNi= λ/(σ + γ�μ) ~O(L), the total entrainment rate f1 = λ+μN~O(L) and the total deposition rate
f2 = σN~O(L), but f3 = γN~O(1). This indicates that when L is sufficiently large, fi = 1,2≫ fi = 3 and the number of
moving particles (N) are dominated by the transition events of fi = 1,2 and show only weak dependence on
fi = 3, i.e., emigration events S. In other words, N is so large that the emigration events perturb it only
minimally, so that N(t) has only a weak dependence on δS. We thus have

P
X

ΔSi ¼ n N1;N2⋯j
� �

¼ exp �
X

f 3 Nið ÞΔt
h i X

f 3 Nið ÞΔt
h in

n!
(8)

which can be rewritten in continuous form with a path integral as

P δS ¼ n N tð Þ : t0 < t < t0 þ δtj½ � ¼ exp � ∫f 3 N τð Þ½ �dτ
n o ∫f 3 N τð Þ½ �dτ

h in
n!

(9)

where δS= S(t0 + δt)� S(t0) and δt=
P

Δti. A detailed proof of equation (8) can be found in Appendix B.

Therefore, the probability for δS= n is expressed by a conditional expectation as

P δS ¼ nð Þ ¼ E P δS t0; δtð Þ ¼ n N tð Þ : t0 < t < t0 þ δtj½ �f g ¼ ∫ e
�ααn

n!
P α; tð Þdα (10a)

α ¼ ∫
t0þδt

t0
f 3 N τð Þ½ �dτ (10b)

where P(α, t) is the PDF of α and f3(N(t)) = γN(t). Equations (10a) and (10b) define a Cox process (or doubly
stochastic Poisson process), where the parameter of a generalized Poisson process α is also a random variable
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[Cox, 1955]. It represents a superposition of a series of Poisson distributions, taking every possible integral
path of N(t) into account. Equations (10a) and (10b) can be tested accurately by the Gillespie algorithm
[Gillespie, 1991].

Equations (10a) and (10b) together with equation (4) provide a stochastic description of the bed load
transport flux, based on counting statistics of emigration events. The structure of the theoretical formulation
turns out to be a doubly stochastic process, and more specifically a Poisson process parameterized with the
time integral of N(t) [Cox, 1955; Gillespie, 1991; Snyder and Miller, 1991]. To further interpret the Cox process,
we start from the simplest case. If the parameter of a Poisson process is constant in time, it represents the
simplest homogenous Poisson process, such as the one of the Einstein model. When the governing
parameter of a Poisson process is a function of time, the process becomes an inhomogeneous Poisson
process. In both cases, the parameters are deterministic functions (or constant). Eventually, when the
parameter of a Poisson process is also a random variable, the process becomes a doubly stochastic Poisson
process or Cox process. Due to the time integral of N(t), the future state of the system thus depends not only
on the present state but also on its history (non-Markovian). These memory mechanisms may be crucial for
resolving the features of the scaling relation between fluctuations of bed load transport flux and sampling
timescales. Because of the time integral, the analytical solution of equations (10a) and (10b) is difficult to
obtain. Nevertheless, the variance of δS, i.e., a measure of the strength of fluctuations, can be analytically
derived. We do this in the next subsection.

2.2. Multiregime Fluctuations Over Timescales: Analytical Solution

Equations (10a) and (10b) connect the process δS with the temporal integral of a known process N. Though
such a connection does not directly allow an explicit solution of PDF of δS, statistical moments of δS can be
straightforwardly derived from equations (10a) and (10b) and moments of α. Equation (11) presents the
relation between moments of δS and α:

n n� 1ð Þ⋯ n� pþ 1ð Þh iδS ¼
X∞
n¼1

n n� 1ð Þ⋯ n� pþ 1ð ÞP δS ¼ nð Þ

¼
X∞
n¼1

e�ααn�p

n� pð Þ! ∫α
pf α; tð Þdα ¼ αph i

(11)

Thus, we have hniδS= hαi and hn2iδS�hniδS= hα2i. Correspondingly, var δSð Þ ¼ n2h iδs � nh i2δs¼ var αð Þ þ αh i.
Appendix C presents the details of an iterative procedure which can be used to derive analytical expressions
of the moment of α up to any order. The analytical expression of var (δS) takes the form as (Appendix C)

var δS δtð Þ½ � ¼ α δtð Þ; α δtð Þh i þ α δtð Þh i
¼ γ2

λ σ þ γð Þ
σ þ γ� μð Þ2 2tc δt � tc 1� e�δt=tc

� �h i
þ γλ
σ þ γ-μ

δt
(12)

where tc=1/(σ + γ�μ) is the autocorrelation time of N(t), representing the memory timescale of the system,
and the autocorrelation function is

ρ τð Þ ¼ N t0 þ τð Þ;N t0ð Þh i
var Nð Þ ¼ exp � τ=tcð Þ (13)

where the longer tc is, the longer is the time over which correlation is sustained [Ancey et al., 2008]. The
variance of bed load transport flux can be computed from equation (4), i.e., var(qs(δt)) = var(δS(δt))/δt2, with
unit (T�2).

We transform the parameter var(qs(δt)), which is a decreasing function of δt, into a nondecreasing one by
multiplying the two, i.e.,

δt � var qs δtð Þ½ � ¼ γ2
λ σ þ γð Þ

σ þ γ� μð Þ2 2tc 1� tc
δt

1� e�δt=tc
� �� �

þ γλ
σ þ γ� μ

(14)
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Based on the above equation, we can now divide the timescale dependence of variance of bed load transport
flux (equation (14)) into three stages, namely, intermittent (0< δt≪ tI), invariant ( tI< δt< tc), andmemoryless
(δt ≫ tc) stages. These are, respectively, defined as follows:

δt � var qs δtð Þ½ � ≈

γλ
σ þ γ� μ

0 < δt≪ tI

δt � γ2λ σ þ γð Þ
σ þ γ� μð Þ2 tI < δt < tc

2γ2
λ σ þ γð Þ

σ þ γ� μð Þ2 tc þ
γλ

σ þ γ� μ
tc ≪ δt < ∞

8>>>>>>>><
>>>>>>>>:

(15)

where tI = (σ + γ�μ)/[γ(σ + γ)] denotes the transition timescale from the intermittent stage to the
invariant stage, here called the intermittent timescale. Thus, when δt≪ tI, bed load transport flux is
intermittent: That is, most of the time it has zero value, and rest of the time it has the value of 1/δt,
which corresponds to high intermittency since δt is very small. When δt≫ tc, the correlation between of
the number of moving particles vanishes and the fluctuations become independent. When δt falls into
the range tI< δt< tc, var(qs(δt))≅ γ2λ(σ + γ)/(σ + γ�μ)2 = var(γN(t)), corresponding to a constant value.

Equation (15) demonstrates that within the intermittent stage, the variance decays with timescale as a power
law with exponent �1. Within the memoryless stage, although a power law decay exponent of �1 is also
seen, the fluctuation strength is much larger than the one predicted by the recast Einstein model. In addition,
due to the vanishing of correlation between the number of moving particles, the fluctuations turn out to be
white noise (i.e., a series of independent discrete signals with zero mean and finite variance), where the
Central Limit Theorem applies.

Between these two stages, there is, interestingly, a fluctuation-invariant stage, and the strength of fluctuation
within it equals the variance of its transition rate function f3(N) = γN(t), i.e.,

var qs δtð Þ½ � ¼ var γN tð Þ½ � ¼ γ2λ σ þ γð Þ= σ þ γ� μð Þ2

Physically, this means that if one simply uses the number of moving particles to evaluate the statistics of bed
load transport flux, i.e., qs=N(t)ūs / L≅ γN (t) (where ūs is the mean velocity of a particle), the value would be
correct only within the fluctuation-invariant stage. For instance, in the intermittent stage, the evaluated
variance is underestimated compared with the real variance, and the opposite behavior is shown within the
memoryless stage.

2.3. Dimensionless Number for Three-Regime Relation

To gain more insight into the three-regime relation, we further propose a dimensionless number that
quantifies the relative strength of fluctuations, as well as the significance of multiregime phenomena. This
dimensionless number, Ra, is defined as follows:

Ra δtð Þ ¼ δt � var qs δtð Þ½ �
mean qs δtð Þ½ � ¼

2tc
tI

1� tc
δt

1� e� δt=tc
� �� �

þ 1≈

1 0 < δt≪ tI
δt
tI

tI < δt < tc

2tc
tI

þ 1 tc ≪ δt < ∞

8>>>><
>>>>:

(16a)

Ram ¼ max
δt>0

Ra δtð Þ½ � ¼ 2tc
tI

þ 1 (16b)

Ra describes the three-regime relation between fluctuations of bed load transport processes and sampling
timescales under different physical conditions within a common framework. First, Ra emphasizes the importance
of the sampling timescales, so that it would be meaningless without specifying the sampling timescale when
discussing the fluctuation of bed load transport. Second, Ra always takes the value of unity at the intermittent
stage. This is essential in order to allow direct comparisons of fluctuation strengths under different physical
conditions. Third, Ra explicitly precludes the influence of mean flux as well as the width effect quantified by λ.

The structure of Ra allows the occurrence of an interesting circumstance when comparing fluctuation strengths
of two bed load transport processes with each other. Suppose there are two processes having the same mean
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value of bed load transport flux.
Process A has tI = 1 s and tc = 10 s, while
Process B has tI = 10 s and tc = 200 s.
It is easy to find that at the timescale
δt = 10 s the fluctuation of Process A is
larger than Process B, whereas at the
timescale δt = 200 s the fluctuation of
Process B is larger than Process A.
This means that there is no strength
consistency across sampling timescales
when comparing the fluctuation
strengths of two cases with each
other. Thus, a sole comparison of
fluctuation strength at one sampling
timescale cannot be extendable to
other sampling timescales without
Ra. This further emphasizes the
importance of obtaining Ra over a
broad range of sampling timescales
when investigating fluctuations of
bed load transport process.

Ram is the maximum Ra at large
sampling timescales (i.e., δt ≫ tc).
Ram quantifies both the significance of

the three-regime relation and the relativemagnitude of fluctuations of bed load transport flux. The larger Ram
is, themore strongly the statistics of bed load flux showsmultiregime behavior, and the stronger the fluctuations
are. On the contrary, when Ram = 1, fluctuation strength versus sampling timescale obeys a single-scaling law
relation in which case all the three regimes collapse into one, and the fluctuations are Poissonian.

In the next section, we use three sets of experiments to demonstrate the three-regime behavior predicted by
equation (16) and to evaluate the ability of the model to capture this behavior.

3. Experiments
3.1. Experimental Setup and Data Collected

Three experiments are used to investigate the detailed statistics of bed load transport flux [Ancey et al., 2006;
Heyman et al., 2013; Singh et al., 2010]. All three experiments concern steady flows with constant particle
feed rate. The mean bed load transport flux is under weak and moderate conditions, so that the particles are
near the incipient condition for motion and move through frequent saltation rather than intense sheet
sliding. In this section, we introduce all three experimental setups, experimentally demonstrate the
observation of multiregime fluctuations, and compare them with the theoretical predictions.

The first experiment was conducted in a small-scale channel at Laboratory of Environmental Hydraulics,
École polytechnique fédérale de Lausanne, to investigate the bed load transport of monosize particles in
supercritical flow (hereafter referred to as P1). The details of the experimental facility can be found in Heyman
et al. [2013, 2014]. Here we briefly describe the experimental conditions. The flume is 2.5m long and 8 cm
wide. The bed consisted of natural particles which were monosize with a diameter of 8.5mm. Both output
solid discharge and bed elevation were monitored during experiments. The temporal resolution of output
solid discharge was about 10�1 s, and the data were collected for about 105 s. This high temporal resolution
allows us to perform statistical analysis over a wide range of scales. The bed exhibited a two-dimensional
form, with upstream-migrating antidunes (Figure 3a), and the pattern of upstreammigration of the antidunes
is illustrated in Figure 4. (Supporting information can be found in Heyman et al. [2013].) The mean height Hb,
length Lb, and crest celerity Cb of antidunes were 1.0 cm, 25 cm, and 0.2mm/s, respectively.

In the second experiment (hereafter referred to as A2), Ancey et al. [2006] used another steep flume. The bed
consisted of monosize spherical particles with a diameter of 6mm. The channel width was only slightly

Figure 3. Photographs of bed forms in three experiments. (a) Two-dimensional
antidune-covered bed and free surface of P1: elevation varies only along
the streamwise direction. (b) Particle clusters of A2. (c) Three-dimensional dunes
of S3: bed elevation varies along both the streamwise and spanwise directions.
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greater than the particle diameter.
The flow and the bed formation were
completely 2-D, preventing any
complex 3-D bed forms [Frey and
Church, 2009]. All the trajectories of
moving spherical particles were
captured in a fixed window using a
high-speed camera. The data have high
temporal resolution (about 10�2 s) but
are limited in time (about 60 s). An
examination of the 60 s videos of the
experiments reveals collective
entrainment and the formation and
destruction of intermittent particle
clusters (Figure 3b). Collective
entrainment serves as a feedback loop
for more entrainment, and particle
clusters result in correlated patterns of
bed load transport, both of which
contribute to the long-term correlated
motion of bed load particle.

As opposed to the two experiments above, the water flow of the experiments of Singh et al. [2010] (hereafter
referred to as S3) was subcritical. The experiment was carried out in a large flume with a gentle slope; the
flume was 55m long, 2.74m wide, and had a maximum depth of 1.8m, as shown in Figure 2c. The water
discharge is 2800 L/s. The average bed load transport flux is much larger in this case than the other two cases.
The bed consisted of particles with two separate groups of diameters, with a median diameter of 7.7mm.
The bed load particle accumulation series were 20 h long, with a temporal resolution of 1.1 s. In Ganti et al.
[2009], it was suggested that 2min averaging may be needed to remove mechanical noise (due to vibrations
of particle weighing pans). The bed was covered with three-dimensional dunes (see Figure 3c). As first
demonstrated by Hino [1968] for the case of dunes, bed forms show correlated behavior, which implies
correlated behavior of the bed load particles that construct them. The mean height Hb, length Lb, and crest
celerity Cb of bed forms were 8.34 cm, 3.29m, and 6.94mm/s, respectively [Singh et al., 2010, 2011, 2012b].
The data allow determination of bed load transport over a multisize bed and may show inherent multiple
dynamics of different sized particles because of size-selective particle entrainment and particle inertia.
The experiment thus allows testing as to whether the same kind of multiregime relation in bed load
transport, as seen in experiments P1 and A2, also holds for Froude-subcritical flow over a bed covered with
dunes. All the relevant dimensionless numbers and experimental conditions are shown in Table 1, where τb
is Shields stress on the bed which is obtained by removing the sidewall stress from the total Shields

stress τt ¼ h sin θ=Dm= ρs=ρ� 1ð Þ [Vanoni, 1975; Wong and Parker, 2006]; Fr ¼ u=
ffiffiffiffiffiffi
gh

q
is the Froude

number; θ is the slope angle (%); ū is the mean fluid velocity (m/s); h is the mean water depth (cm); and
qs is the mean bed load transport flux (particles/s).

Figure 4. Bed elevation evolution over the entire flume length of P1. The
bed elevation variation corresponds to antidunes. Above the black arrow
line, an antidune is seen to start from the downstream end of flume and
propagate upstream. The figure allows the determination of antidune
height and celerity.

Table 1. Experimental Conditions and Dimensionless Numbera

τb Fr θ ū h qs

P1 0.076 1.44 7 0.53 1.37 1.11
A2 0.080 1.37 10 0.41 1.08 6.85
S3 0.132 0.64 0.29 1.59 64 1553.02b

aShields stress (τb) on the bed which is obtained by removing the sidewall stress from the total Shields stress τt ¼ h

sinθ=Dm= ρs=ρ� 1ð Þ, as specified by Vanoni [1975] andWong and Parker [2006]; Fr ¼ u=
ffiffiffiffiffiffi
gh

q
is the Froude number; θ is

the slope angle (%); ū is the mean fluid velocity (m/s); h is the mean water depth (cm); and qs is the mean bed load
transport flux (particles/s).

bBed load transport flux is calculated from the mass flux and the median diameter of particles.
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3.2. Results
3.2.1. Overview of Experimental
Multiregime Relation
We first introduce the procedure to
obtain the relevant quantities used in
the subsequent analysis. The bed load
transport flux is calculated by counting
howmany particles pass through a cross
section of the channel in a specified
timescale (sampling timescale) as
defined by equation (4). Though this
definition is commonly used in
experiments and field surveys [Ancey,
2010; Gomez and Church, 1989], the
problem of temporal fluctuations arises
and restricts its application [Ancey, 2010;
Bunte and Abt, 2005; Singh et al., 2009].
The study herein is motivated precisely
by this issue.

In all three experiments used here,
high-resolution series of accumulated
bed load particles S(t), passing through a
measuring cross section, were acquired.
Here we divide the duration of the
record into equal time intervals, i.e., the
sampling timescale δt, and count the
incremental number of accumulated
bed load particles during each interval
δt, i.e., δS(t,δt) = S(t+ δt) � S(t) (Figure 2c).
The series of bed load transport flux qs
can be obtained from equation (4) as
shown in Figure 5a. The fluctuation
strength sampled in three different
timescales (i.e., 10 s, 5min, and 30min)
clearly decrease as timescale increases
(Figure 5a). Let Tm and S be the total

duration of measurement and the total number of accumulated particles, respectively. One can verify that the
arithmetic mean of qs(t, δt) equals S/Tm, a value which does not change with δt since the whole series is
partitioned into equal pieces without overlaps. (We note that this nonoverlapping partitioning was not used in
the averaging methods of Singh et al. [2009].) We further analyze the experimental data to identify the relations
between the variances of bed load transport flux and their sampling timescales. For the sake of clarity, we
show the variance of bed load transport flux extracted from the data of P1 in Figure 5b. We present the data
from the other two experiments below, in a comparison with the theoretical formulation.

As shown in Figure 5b, the fluctuation strength tends to decrease as the sampling timescale increases, as
expected. The slope of the variance of qs versus δt in double logarithmic coordinate changes with sampling
time, so there is no unique scaling law. When the timescale is either sufficiently small or large, there are two
separate power law relations between the variance of the bed load transport flux and the sampling timescale,
both with scaling exponent �1. A transition stage with a much gentler slope links the two stages. Near the
center of the transition stage, the strength of fluctuations decreases only mildly as the timescale increases.

The prediction of the Poisson process model remains accurate only at small sampling timescales. When the
sampling timescale increases up to a certain bounding timescale (tI), the experimental variance starts to
deviate from the Einstein model. Another power law stage with a much gentler slope and more fluctuations

Figure 5. The bed load transport flux series and fluctuations of P1.
(a) Stationary series of the bed load transport flux averaged over 10 s
(black line), 5 min (green line), 30 min (red line), and the accumulated
number of particles (purple line). These series show that the strength of
fluctuations decay as sampling scale increases. (b) Variance of bed load
transport flux versus sampling time. Einstein’s theory, i.e., Poisson process,
underestimates the fluctuations and predicts a power law decay relation.
Experimental data, however, exhibit the three-stage curve obtained herein.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003308

MA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2662



than the Einstein model emerges and is seen over several orders of magnitude of sampling timescale. In this
regime the larger the sampling timescale is, the more is the variance. When the sampling timescale increases
beyond a second turning point (tc), a third power law stage with scaling exponent �1 shows, within which
the variances are orders of magnitude larger than the ones predicted by Einstein model. At the largest
timescales (e.g., δt >3 h), there are too few data to estimate a reliable variance. This is a likely reason for the
scatter in this region apparent in Figure 5b.

Qualitatively, the experimental multiregime relation coincides with the theoretical prediction very well.
To gain a quantitative description, the model parameters need to be estimated first.
3.2.2. Estimation of Parameters
Equations (16a) and (16b) can be used to predict multiregime relations, once the four parameters (i.e., λ, μ, σ,
and γ) are obtained. In the Ancey et al. [2008] model, the deposition rate σ was directly measured and the other
three parameters were inferred from the measurement of the statistics of N(t). Equations (16a) and (16b),
on the other hand, provide three relations for the four unknown parameters, based on the pattern of
Ra. Therefore, if one parameter is determined independently, the other three can be computed from
the theory.

Of the four parameters λ, μ, σ, and γ, the easiest one to measure directly is σ. Thus, the straightforward way to
test the theory would be to use an experimentally determined value of σ, evaluate λ, μ, and γ from the
theory, and then test the theory against the data. In the cases of experiments P1 and S3, however, the
measurements needed to determine σ were not taken. In addition, in the case of experiment A2, although σ
wasmeasured, the lack of information necessary to estimate tc results in onemore tunable parameter. With this
in mind, we choose μ in P1 and S3 and tc in A2 as a tunable parameter to test the theory. The measured and
calculated parameters are listed in Table 2. It is straightforward to design future experiments which would
provide enough information to make this tuning unnecessary.

Note that the current estimation method is an alternative for which only the data of the cross sectionally
averaged flux are available to use. A rigorous calibration based on imaging techniques may provide a better
basis for the development and testing of stochastic formulations. In addition, predictive relations between
the parameters λ, σ, λ, and μ and parameters governing the hydraulics of the flow need to be developed.
3.2.3. Comparison Between Theory and Experiments
As shown in Figure 6, the theoretical formula, in general, agrees well with the experimental data in all three
cases. As predicted by the theory, three stages of the multiregime relation can be identified, in particular in the
case of P1. The A2 data were acquired from a high-speed camera which had a high temporal resolution (10�2 s);
but the duration of the record was not long enough to completely represent the invariant stage or any of
the memoryless stage behavior; thus, the memory timescale tc can be neither obtained experimentally nor
calculated solely from other parameters related to the experimental results for bed load transport flux, such as
hqsi and tI. When the timescale is large (e.g., δt> 10 s), the variable data are not reliable, since themeasurement
duration is not long enough to accurately compute them. If unreliable points in the range δt > 10 s are
excluded, the agreement with theory is good and, in addition, the degree of agreement between the theory
and experiment is independent of tc as it ranges from 5 s to infinity, so the memory time for A2 is simply set to
10 s. The S3 data, on the other hand, is sufficiently long to approach the memoryless stage, but the temporal
resolution (about 1.1 s) is so low that only part of the invariant stage could be identified. In addition, the
intermittent stage could not be resolved. Because the memory timescale tc could be obtained from the data for
this experiment, however, it was possible to compute tI from the relation tI = 2tc /(Ram � 1).

Table 2. Measured and Calculated Parametersa

tc tI Ram λ σ μ γ

P1 181.82 0.49 749.68 2.6767 5.0032 5.00 0.0023
A2 10.00 1.14 18.54 38.09 4.86 4.778 0.0180
S3 125.00 0.0027 92593.59 20.13 4.39 5.00 0.62

aThe memory timescale is tc (s); tI is the intermittent timescale (s); Ram is the dimensionless number quantifying the
relative strength of fluctuations of bed load transport flux; λ is the individual entrainment rate (s�1); σ is the deposition
rate (s�1); μ is the collective entrainment rate (s�1); and γ is the emigration rate (s�1). In P1 and S3, tc and Ram were
experimentally measured and μ was set to 5.00 s�1, and then tI, λ, σ, and γ can be calculated; in A2, nevertheless, tI
and σ were measured and tc was set to 10 s, and Ram, λ, μ, and γ can be calculated.
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It is important to point out that herein
only one new element, i.e., collective
entrainment, which lumps correlated
behavior of particle motion due to a
wide range of physical mechanisms,
has been added to the classical
Einsteinian model. It is this single
addition that gives rise to the rich
pattern of multiregime behavior
documented here.

4. Discussion
4.1. The Physical Origin of tc and tI

As shown above, the dimensionless
number Ra and Ram can well describe
the three-regime relation. Ra and Ram
consist of two essential characteristic
timescales, tc and tI. The physical origin
and significance of parameters tc and tI
are worth discussing.

The value of tc is obtained from the
autocorrelation function (equation (13))
of the number of moving particles. This
mathematically reveals the crucial
influence of correlated motion of bed

load transport on multiregime behavior. In the Ancey et al. [2008] theory, the main source of correlation
comes from collective entrainment, i.e., moving particles colliding and destabilizing static particles and
producing more moving particles. Collective entrainment acts as a feedback loop; and thus, μ is a key
parameter controlling the internal correlation of the system [Ancey et al., 2008; Ancey, 2010]. In addition to
collective entrainment, however, there remain numerous mechanisms that can also result in correlated
motion of bed load particles. To understand these mechanisms more fully, an analysis of the dynamics of
particle motion is needed.

Since bed load transport is a typical two-phase flow system, particles are driven by the forces of the fluid field,
such as the drag force, lift force, and related continuous forces [Fu et al., 2005; Zhong et al., 2011], as well as
forces associated with particle motion and interaction, such as collective entrainment produced by random
collisions among moving particles and destabilization of bed forms under shear flow. Such behavior may
induce long-term correlated motion of particles [Ancey et al., 2008; Gomez et al., 1989; Heyman et al., 2013;
Staron et al., 2006]. Turbulent flow, including uncorrelated random fluctuations [Fu et al., 2005; Zhong et al.,
2011] and large coherent eddy structures [Drake et al., 1988], acts to destabilize particles and entrain them
into motion. In multisized sediment, bed load entrainment and emigration rates vary according to particle
size, and are also correlated to each other by factors such as hiding [Ganti et al., 2010; Hassan and Church,
2000]. At low bed load transport rates, the intermittent formation and disintegration of microform clusters
creates correlated fluctuations [Strom et al., 2004]. Finally, when the bed organizes itself into bed forms, the
migration of these bed forms creates correlated motions [Gomez et al., 1989; Hamamori, 1962; Hino, 1968;
Nordin, 1971; Singh et al., 2011]. In the text below, we use the term “cluster” in a generic sense, to describe any
parcel of particles with correlated motion, from collective entrainment and microclusters to dunes
and antidunes.

Correlated transport acts differently. Correlated patterns of particle motion indicate that the history of
motion (e.g., particle collisions, particle cluster formation and disintegration, local destabilization in zones of
locally higher slope, eddy bursts, and interaction between grains of different sizes and bed form migration)
can influence particles such that their motion is no longer independent; the motion at any given time may be
stimulated (or suppressed) by the history of movement of a bed load particle. In principle, tc should be

Figure 6. Dimensionless variance Ra = δt � var[qs(δt)]/mean[qs(δt)] of bed
load transport flux qs(δt) versus dimensionless sampling timescale. Ra is
divided into three stages demarcated by an intermittent timescale (tI) and a
memory timescale (tc). The three stages are the intermittent stage(δt≪ tI),
the invariant stage(tI< δt< tc), and the memoryless stage (δt≫ tc),
respectively. Ram=max{Ra} = 2tc/tI+ 1. For P1, tc= 181.82 s and tI = 0.49 s.
For A2: tc= 10 s and tI= 1.14 s. For S3: tc= 125 s and tI= 0.0027 s. The three
stages and the value of Ram for P1 are labeled in the figure. The value of tc
for A2 cannot be inferred from the experiment or calculated by the theory,
and thus is taken as 10 s. The precise value of tc has no influence on the
agreement between experiment and theory as long as tc> 5 s.
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associated with the longest correlated timescale among these mechanisms. In addition, the geometry of the
boundary may also influence the autocorrelation of bed load transport. Although Ra is explicitly independent
of mean flux and the width effect parameterized by λ, the influence of physical geometry or boundary on
the fluctuations might be implicitly included in the parameter μ. For instance, when the channel width is
very large, μ may be constant as well as Ram, even though the width varies. On the contrary, when the
channel width is relatively small, the width effect may influence the formation of bed forms [Crickmore, 1970]
and thus may influence the values of μ, tc, and Ra. Similarly, although the several mechanisms described
above that are not explicitly included in the Ancey et al. [2008] theory can also cause correlated motion of bed
load particles, we assume that correlation induced by all these clustering mechanisms can be simply lumped
into μ in our study.

When μ=0, Ram=2γ/(σ + γ) + 1≅ 1, yielding the power law relation predicted by the recast Einstein model.
On the other hand, when μ→ σ + γ, tc and Ram are very large (tc, Ram→∞) and the longmemory time leads to
a wide range of the invariant stage (tI, tc). Thus, a plot of the range of three stages, i.e., (0, tI), (tI, tc), and (tc, ∞), is
most clearly expressed in terms of logarithmic coordinates. These predictions of the theoretical formulation
further emphasize the importance of the correlated motion of particles on the three-regime relation.

Meanwhile, the discrete nature of bed load particle motion needs to be emphasized in order to understand
the physics of the intermittent stage and its characteristic timescale tI. It can be expected that when the
sampling timescale is sufficiently small, particles intermittently cross the counting plane, and such motion
can induce an instantaneous flux up to 1/δt, which appears as a series of spikes bounded by long zones of
vanishing flux. It is for this reason that we call this stage the intermittent stage. The flux becomes a discrete
process, and the sampled time series can be seen as a series of Bernoulli trials (only 0 or 1 particle crosses the
plane during δt). The Bernoulli distribution with a very low occurrence probability has a variance equal to its
mean, so that the variance of the bed load transport flux also converges to the ratio of mean flux to δt at
sufficiently small timescales. Thus, at this scale different modes of particle motion cannot be distinguished.
The timescale dependence of the variance of bed load transport flux at the intermittent stage is expressed as
a power law with scaling exponent �1. The intermittent stage consisting of a series of Bernoulli trials is
simple. If assuming that the Bernoulli trials are independent, we obtain a white noise process in every
sampling timescale, which leads to an overall power law with scaling exponent �1. But the existence of
correlations between Bernoulli trials results in the nonlinear superposition of microscopically simple
behaviors, which can create more complex, fascinating phenomena at the macroscopic scale. The parameter
tI quantifies the boundary between the intermittent stage and invariant stage. As the timescale increases up
to tI, there can be more than one particle passing through the cross section in a given time interval, allowing
more fluctuations. Thus, tI denotes the smallest time gap between emigration particles in the case of cluster
transport of moving particles. For instance, if the coherent eddy structure is responsible for a cluster pattern
of transport of moving particles [Drake et al., 1988], tI could be a ratio of a minimum timescale of coherent
eddy structure to the number of massive moving particles carried by the eddy. Therefore, assuming the
turbulent energy of the coherent eddy structure to be invariant, the finer a particle is, the more often it would
be put in motion, so that a smaller value of tIwould be expected. These local features, such as compactness or
composition of granular bed, may have more influence on tI than global features.

In summary, tc and tI represent the correlated motion and discrete nature of bed load particles, respectively.
Among all the correlated motion mechanisms, tc should be associated with the longest correlated timescale,
whereas tI denotes the smallest time gap between emigration particles in the case of cluster transport of
moving particles. The two characteristic timescales govern the three-regime relation. At the intermittent
stage, the sampled flux is a discrete process (either 0 or 1/δt) and its variance is suppressed. Different modes
of particle motion can no longer be distinguished. The timescale dependence of the variance of bed load
transport flux at the intermittent stage takes the form of a power law with scaling exponent �1. At the
invariant stage, due to the correlated motions of bed load particles, the flux may sometimes rise abruptly or
remain static for some time [Nikora et al., 2002]. This results in large fluctuations around the mean. When the
correlated motion of particles is dominant, the larger the timescale, the higher is the probability that an
abrupt peak occurs. Therefore, although a larger sampling timescale can smooth the fluctuations of the bed
load transport flux, it allows more abrupt peaks and concomitantly more fluctuations. The two effects
compete to balance each other, so that the strength of fluctuations in this stage is insensitive to sampling
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time. Lastly, each type of correlated particle motion has its own characteristic memory time (i.e., autocorrelation
time), such that when the timescale is much larger than a characteristic memory timescale tc, the possibility
of abrupt peaks becomes vanishingly small. Beyond this scale, fluctuations become not only memoryless but
also single scaling with exponent �1.

4.2. Implications of Experiments

Taking a closer look at Figure 6, we can distinguish the three experiments in terms of different curves of Ra
versus δt/tc and different values of Ram. Interestingly, experiment S3, which has a subcritical flow condition
and the largest bed load transport flux, has the largest value of Ram. Insofar, as the conditions of this
experiment most closely resemble low-slope sand-bed rivers, this result suggests that such rivers may have
larger fluctuations of bed load transport flux than in mountain gravel-bed rivers, which P1 and A2 more
closely resemble. This result suggests a trend that is opposite to previous studies [Ancey et al., 2006; Barry,
2004; Bohm et al., 2004; Martin, 2003; Wilcock, 2001].

To investigate the reason, we recall the expression Ram=2tc /tI+1. S3 has a much shorter intermittent
timescale tI than P1 and A2, indicating a much closer time gap between two migrating particles within a
cluster of particles in transport. In the case of S3, the bed material consists of grains with two separate
populations of diameters, with the finer grains more easily entrained into transport [Hassan and Church,
2000]. Thus, tI may be much shorter than other experimental cases, so giving rise to a very large value of
Ram= 2tc /tI+1. In other words, the tremendously large Ram of S3 results from the variability of grain size.
If we were to conduct an experiment with a bimodal mixture of grain sizes, but with other conditions the
same as A2 (or P1), the intermittent timemight turn out to be smaller than A2 (or P1) and Rammight be larger
than S3.

One can also verify that among all possible correlated scales, the characteristic timescale of bed form
migration tb= Lb/Cb is the closest to the experimental memory time of P1 and S3. For these experiments,
other correlated timescales are smaller than tb by several orders of magnitude. For instance, in P1, tb is 1250 s
and tc is 181.82 s; in S3, tb is 474.0 s and tc is 125 s. In addition, in S3 the average time between two
consecutive bed form crests is 883.8 s [Singh et al., 2012a], i.e., a value that is larger than tb. Both values of tb
for P1 and S3 (as well as the average time gap between two crests of consecutive bed forms in S3) are larger,
but not beyond an order of magnitude above tc, so satisfying the condition δt≫ tc for the memoryless stage.
In regard to A2, it remains difficult to quantify the timescale for the life cycle of clusters (formation to
disintegration) for the purposes of comparison. Having said this, however, the above observations indicate
that (1) the memory scale derived from the stochastic theory is indeed consistent with the corresponding
physical phenomena; and (2) in P1 and S3, the dominant correlated timescales correspond to the
characteristic timescale of bed form migration.

5. Conclusion

In this study, we explore how the sampling timescale influences the fluctuations of bed load transport flux.
We adopt the Ancey et al. [2008] theory of stochastic dynamics of bed load transport to develop a theoretical
formulation for the PDF of bed load transport flux. We obtain an analytical solution for the variance of the bed
load transport flux versus sampling time. The solution agrees well with available experimental data in the
literature. Of particular interest is the fact that the solution exhibits a three-regime behavior of fluctuations of
bed load transport flux, rather than the single regime of the classical Einstein formulation.

We show that the three-regime relation consists of three piecewise power law relations demarcated by an
intermittent timescale and a memory timescale. The intermittent timescale corresponds to the time gap
between two adjacent particles in cluster transport (which may range from clusters of a few particles up to
dunes and antidunes), and the memory timescale is the longest correlation time of particle transport. The
multiregime model reduces to a (recast) form of the Einstein model in the limit as the parameter μ = 0,
corresponding to a power law relation with an exponent of �1. The Einstein formulation, however, accurately
predicts the variance of bed load transport flux only at timescales less than the intermittent timescale. When
the timescale increases beyond the intermittent timescale, the variance of bed load transport flux becomes
invariant with respect to the timescale and can be well represented by the statistics of the number of moving
particles. The range of the invariant stage depends on the ratio of the memory timescale to the intermittent
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timescale. In the limit as the sampling timescale increases well beyond the memory timescale, another power
law with an exponent of �1 appears.

The three-regime relation may result from both the discrete nature of bed load particles and their correlated
motion. While our model describes the three-regime relation as a result of temporal correlation of the
number of moving particles, it does not account for the details of the physical mechanisms that drive
correlations at different scales. Many possible mechanisms may be responsible, including collective
entrainment, particle cluster formation and disintegration, interaction between the motion of grains of
different size, coherent turbulent structure, local avalanche behavior, and bed form migration. We present
preliminary results showing that correlated particle motion due to bed form migration contributes to the
longest memory scale and captures most of the fluctuations in experiments P1 and S3. A formulation that
fully accounts for the underlying physics is a worthwhile future goal.

It is also worth inquiring as to the connection between the temporal statistics and the corresponding spatial
statistics of bed load transport. It would be of value to try to connect the present three-regime scaling
relation to the three spatial ranges of particle anomalous diffusion first described by Nikora et al. [2002] and
elaborated upon by Martin et al. [2012]. The recent work achieved by Ancey and Heyman [2014] and Heyman
et al. [2014] has shed light on the characteristics of bed load dynamics from a spatial point of view. They found
that the fluctuation of the spatial average of the number of moving particles over different length scales takes
the same form as the variation of Ra over different timescales [Heyman et al., 2014]. An examination of the
Heyman et al. [2014] experimental data, however, shows that Taylor’s frozen-flow hypothesis fails to transform
the spatial variance of the bed load transport flux into the temporal one. It remains an open question as to how
one should connect the temporal and spatial statistics of bed load transport flux effectively.

In terms of practical applications, the three-regime relation presented here provides the basis for a tool for
designing appropriate measuring strategies for bed load transport flux. An appropriate temporal resolution
up to the memory scale might be both necessary and sufficient to capture the detailed statistics of bed
load transport. The pursuit of high-resolution data of bed load transport flux is no longer an endless task but a
sufficiently long measuring duration, i.e., long enough to obtain a reliable determination of the variance
of bed load transport flux as the sampling timescale becomes as large as 10tc is still required to fully describe
the memoryless stage.

Appendix A: Poisson Distribution for the Number of Emigration Events in Short
Time Interval

In previous studies we can find two types of PDF besides the Poisson distribution to express the number of
emigration events in short time intervals. In this appendix, we show that in short time intervals both types of
PDF (equations (5a), (5b), and (6)) can be transformed into a Poisson distribution (equation (7)).

Equations (5a) and (5b) are the governing equations to connect the statistics of the number of moving
particle N(t) with the total number of emigration events in infinitesimal time dt, i.e., ΔS.

P ΔSi ¼ 1 N tið Þ ¼ Nij½ � ¼ γNidt þ o dtð Þ (5a)

P ΔSi ¼ 0 N tið Þ ¼ Nij½ � ¼ 1� γdt þ o dtð Þ (5b)

When Δt=dt→ 0, we have

exp � γNiΔtð Þ ¼ 1� γNidt þ o dtð Þ (A1)

Substituting equation (A1) into equation (7), we can obtain

P ΔSi ¼ 1 N tið Þ ¼ Nij½ � ¼ γNidt þ o dtð Þ (A2a)

P ΔSi ¼ 0 N tið Þ ¼ Nij½ � ¼ 1� γNidt þ o dtð Þ (A2b)

P ΔSi ≥ 2 N tið Þ ¼ Nij½ � ¼ o dtð Þ (A2c)

which are the same as equations (5a) and (5b). This demonstrates the equality between equations (5a), (5b),
and (7).

As proved in Ancey et al. [2008], there exists a time interval that is long enough to allow several emigration
events to occur but sufficiently short so that the number of particles that start moving and then migrate out
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of the windowwithin the same interval can be approximated as zero. In this time interval, the PDF of the number
of emigration events can be expressed as a binomial distribution with parameter pm=1� exp(�γΔt), i.e.,

P ΔSi ¼ k N tið Þ ¼ Nij½ � ¼ Ni !
k! Ni � kð Þ! p

k
m 1� pmð ÞNi�k (6)

To deal with the factorial of a large number, we use Stirling’s approximation:

Ni ! e ffiffiffiffiffiffiffiffiffiffi
2πNi

p Ni

e

� �Ni

; Ni � kð Þ! e ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π Ni � kð Þ

p Ni � k
e

� �Ni�k

(A3)

Similar to equation (A1), pm=1� exp(�γΔt) ~ γΔt. Substituting pm and equation (A3) into equation (6), we have

P ΔSi ¼ k N tið Þ ¼ Nij½ �≅
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni

Ni � k

r
1� k

Ni � k

� �Ni�k

ekexp � Ni � kð ÞγΔt½ � NiγΔtð Þk
k!

≅ exp �NiγΔt½ � NiγΔtð Þk
k!

(A4)

where the following conditions are used (1)Δt is a short time interval; (2) k cannot be arbitrarily large, because
otherwise the trivial result, P[ΔSi= k|N(ti) =Ni] = 0 is obtained due to the term pkm eO Δtk

	 

≪ 1; and (3) Ni is

sufficiently large to satisfy the condition Ni≫ k. Equation (A4) is precisely the same as equation (7). This
demonstrates the equality between equations (6) and (7).

Appendix B: Proof of the Weak Dependence of N on S

A stochastic process described by a master equation can be simulated exactly by Gillespie [1991] algorithm,
and the number of emigration events obey the conditional Poissonian with average f3(Ni)Δt, provided Ni is
unchanged during Δt, as in equation (4). In the Gillespie algorithm, one transition event changes the state of
the system (i.e., Ni), and then the next transition event must be evaluated by using the updated state.
However, if we let Δt become small enough, it becomes possible that there is at most one transition event in
each step, i.e., ΔSi ∈ {0, 1}. Equation (4) remains correct and the conditional independence of each step in
equation (4) can also hold without the assumption of the independence of either ΔSi or Ni.

Another issue concerning the Gillespie algorithm arises in regard to the derivation of equations (5a) and (5b).
The independence of each subequation does not allow equations (5a) and (5b) to hold directly, because the
definition of conditional independence is as follows.

Pr A∩B YÞ ¼ Pr A YÞ Pr B YÞjðjðjð (B1)

Thus, to obtain equations (5a) and (5b), we need to verify the proposition that equation (B2) below holds.

B1. Proposition

As L is sufficiently large, the following equation holds

P ΔSi ¼ n N tið Þ ¼ Nijð Þ? ¼ P ΔSi ¼ n N1;N2;N3⋯jð Þ (B2)

Before proving the proposition, we first list some observations, which are helpful to understand the proof.

Since N(ti) is Markovian and ΔSi is a subevent of N(ti), we have

P ΔSi ¼ n N1;N2⋯jð Þ ¼ P ΔSi ¼ n Ni;Niþ1jð Þ (B3)

Substituting equation (B3) into equation (B2), the proposition can be cast as

P ΔSi ¼ n Nijð Þ? ¼ P ΔSi ¼ n Ni;Niþ1jð Þ (B4)

As documented in the body of paper, if we assume Ni + 1 has no dependence on ΔSi, we can obtain equation
(B4) directly. Each of three transition events of N(t), fi(N)(i=1,2,3), has the following respective transition rate
overΔt : i.e., (λ+μN)Δt∼O(L)Δt, σNΔt∼O(L)Δt, and γNΔt∼O(1)Δt. We can find that the total emigration rate f3(N)
is much smaller than that of other two events when L is sufficiently large, so that the other two transition events
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dominate. In other words, N is so large
(hNi= λ/(σ + γ�μ)∼O(L)) that the
emigration events (hδSi= γλ/
(σ + γ�μ) ∼O(1)) perturb it only
minimally. Therefore, N(t) has only a
weak dependence on δS. The
procedures of this proof are as follows.

First, we show both sides of equation (B4) on an equal base in explicit form and then we show that the
difference between the two sides vanishes as L grows sufficiently large.

B2. Proof of the Proposition
The left-hand side (LHS) of equation (B4) is transformed as

P ΔSi ¼ n Nijð Þ ¼ P Ni ¼ nið Þ
P Ni ¼ ni;Niþ1 ¼ niþ1ð Þ P ΔSi ¼ n Ni ¼ niÞP Niþ1 ¼ niþ1 Ni ¼ niÞjðjð (B5)

The RHS of equation (B4) can then be transformed to

P ΔSi ¼ n Ni;Niþ1jð Þ ¼ P Ni ¼ nið Þ
P Ni ¼ ni;Niþ1 ¼ niþ1ð Þ P ΔSi ¼ n;Niþ1 ¼ niþ1 Ni ¼ niÞjð (B6)

We now let Δt become small enough so that for all i, |Ni�Ni + 1| ≤ 1. Note that the first factor on the RHS of
equation (B5) is the same as the one in equation (B6). Thus, to prove equation (B2), we need only to compare
the remaining terms, the RHS of equations (B5) and (B6), with each other to see whether the difference
vanishes as L is sufficiently large. Table B1 lists the product of the second and third factors on the RHS of
equation (B5), and Table B2 lists the second factor on the RHS of equation (B6). Table B3 lists the differences
between Tables B1 and B2.

From Table B3, we can find that the difference is of the same order as or less than γNiΔt.

Because γ ∼O(1/L), we have

P ΔSi ¼ n Nijð Þ � P ΔSi ¼ n Ni;Niþ1jð Þj j≤ P Ni ¼ nið ÞNiΔt
P Ni ¼ ni;Niþ1 ¼ niþ1ð ÞO 1=Lð Þ (B7)

Thus, the difference between the two sides of equation (B2) becomes vanishingly small as L becomes
sufficiently large.

Appendix C: Statistical Moments of the Time Integral of N

Let eα tð Þ ¼ eα tjt0ð Þ ¼ ∫
t

t0
N τð Þdτ be the time integral of the Markov process N(t) [Gillespie, 1991], defined as

eα t þ dtð Þ ¼ eα tð Þ þ N tð Þdt þ o dtð Þ (C1)

whose m order moment can be obtained by calculating m power of equation (C1)

eαm t þ dtð Þ ¼ eαm tð Þ þmeαm�1 tð ÞN tð Þdt þ o dtð Þ (C2)

Averaging this equation yields

eαm t þ dtð Þh i ¼ eαm tð Þh i þm eαm�1 tð ÞN tð Þ� �
dt þ o dtð Þ (C3)

Taking the limit dt→ 0, we thus arrive
at the set of moment equations:

d
dt

eαm tð Þh i ¼ m eαm�1 tð ÞN tð Þ� �
(C4)

The initial conditions are hαm(t0)i= 0.
However, the cross moments on the
RHS of equation (C4) still need to be

Table B1. Terms of P(ΔSi = n|Ni = ni)P(Ni + 1 = ni + 1|Ni = ni)

ΔSi = 0 ΔSi = 1

Ni + 1 =Ni� 1 (σ + γ)NiΔt + o(δt) o(δt)
Ni + 1 =Ni 1� [λ + (σ + 2γ + μ)Ni]Δt + o(Δt) γNiΔt + o(δt)
Ni + 1 =Ni + 1 (λ +Niμ)Δt + o(δt) o(δt)

Table B2. Terms of P(ΔSi = n,Ni + 1 = ni + 1|Ni = ni)

ΔSi = 0 ΔSi = 1

Ni + 1 =Ni - 1 σNiΔt + o(Δt) γNiΔt + o(Δt)
Ni + 1 =Ni 1� [λ + (σ + γ + μ)Ni]Δt + o(Δt) o(Δt)
Ni + 1 =Ni + 1 (λ +Niμ)Δt + o(Δt) o(Δt)
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closed. To do this, we need the
propagating expression of N(t):

N t þ dtð Þ ¼ N tð ÞþΞ dt;N tð Þ; t½ � (C5)

where Ξ(dt;N(t), t) is the stochastic
propagator function of N(t). Ξ(dt;N(t), t)
represents the stochastic increment of
N(t) in dt. In the present study,

P Ξ dt;N tð Þ; tð Þ ¼ 1½ � ¼ λþ μNð Þdt þ o dtð Þ (C6a)

P Ξ dt;N tð Þ; tð Þ ¼ 0½ � ¼ 1� λþ μþ σ þ γð ÞN½ �dt þ o dtð Þ (C6b)

P Ξ dt;N tð Þ; tð Þ ¼ � 1½ � ¼ σ þ γð ÞNdt þ o dtð Þ (C6c)

Multiplying equations (C2) by (C5), we have

eαm t þ dtð ÞN t þ dtð Þ ¼ eαm tð ÞN tð Þ þmeαm�1 tð ÞN2 tð Þdt
þ eαm tð ÞΞ dt;N tð Þ; tð Þ þ o dtð Þ (C7)

Averaging equation (3.12) and taking the limit dt→ 0, we have

d
dt

eαm tð ÞN tð Þh i ¼ m eαm�1 tð ÞN2 tð Þ� �þ eαm tð ÞB1 N tð Þ; tð Þh i (C8)

where B1(N(t), t) = λ+ (μ� σ� γ)N(t) is the first order moment of the propagator.

With equations (C4) and (C8), one can deduce any order moment of the time integral of γN(τ).

Let m= 1; substituting into equation (C8), one can obtain

d
dt

eα tð Þ;N tð Þh i ¼ var N tð Þð Þ þ u� σ � γð Þ eα tð Þ;N tð Þh i (C9)

where var[N(t)] is the steady variance of N(t) [Ancey et al., 2008], which can be expressed as

var N tð Þð Þ ¼ λ σ þ γð Þ
σ þ γ� μð Þ2 (C10)

Then solving equation (C9), we can obtain the cross moment as

eα tð Þ;N tð Þh i ¼ λ σ þ γð Þ
σ þ γ� μð Þ2 1� exp � t=tcð Þ½ � (C11)

where tc= 1/(σ + γ�μ).

Substituting equation (C11) into equation (C4), the variance of eα can be obtained by equation (C12).

var eαð Þ ¼ 2∫
t

t0
eα tð Þ;N tð Þh ids (C12)

The full expression of the variance of α(t) is

var α δtð Þ½ � ¼ γ2 var eαð Þ ¼ γ2
λ σ þ γð Þ

σ þ γ� μð Þ2 2tc δt � tc 1� e� δt=tc
� �h i

(C13)

and thus the variance of δS(δt) is

var δS δtð Þ½ � ¼ var α δtð Þ½ � þ α δtð Þh i
¼ γ2

λ σ þ γð Þ
σ þ γ� μð Þ22tc δt � tc 1� e�δt=tc

� �h i
þ γλ
σ þ γ� μ

δt
(C14)

Notation

Cb mean crest celerity of bed form migration, [LT�1].
Cv coefficient of variation.

Table B3. Terms of the Differences: P(ΔSi=n|Ni= ni)P(Ni + 1 =ni + 1|Ni=ni)�
P(ΔSi=n,Ni + 1 =ni + 1|Ni=ni)

ΔSi = 0 ΔSi = 1

Ni + 1 =Ni - 1 γNiΔt + o(Δt) � γNiΔt + o(Δt)
Ni + 1 =Ni � γNiΔt + o(Δt) γNiΔt + o(Δt)
Ni + 1 =Ni + 1 o(Δt) o(Δt)
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D diameter of bed load particle [L].
fi(N) total transition rates of ith event, [T�1], where f1(N) is the total entrainment rate, f2(N) is the total

deposition rate, and f3(N) is the total emigration rate.
Hb mean length of bed forms, [L].
Fr Fr ¼ u=

ffiffiffiffiffiffi
gh

q
Froude number.

h mean water depth, [L].
L, Lb length of the elementary window; mean length of bed forms, [L].

mean(*) mean value of *.
N(t) moving particle number in the elementary window.
P(*) probability distribution function of *.
pm probability of one moving particle migrating out of a window in Δt.
Qs volume flux of bed load transport, [L3T�1].

qs, qs particle flux of bed load transport and its mean value, [T�1].
Ra, Ram dimensionless number characterizing multiregime, and its corresponding maximum value.

S(t) accumulative emigration particle number.
tc, tI, tb,Tm memory timescale, intermittent timescale, characteristic timescale of bedfrom migration, and

measurement duration, respectively, [T].
ū, ūs mean fluid velocity; mean particle velocity, [LT�1].
var(*) variance of *.

W channel width, [L].
α time integral of N(t) process, [T].

τb, τt dimensionless bed/total shear stress; τt ¼ h sin θ=Dm= ρs=ρ� 1ð Þ , where τb is obtained after
sidewall correction of τt, see Vanoni [1975] and Wong and Parker [2006].

θ channel slope (%).
λ individual entrainment rate of the whole observation window, [T�1].
μ collective entrainment rate, [T�1].
σ deposition rate, [T�1].
γ emigration rate, [T�1].

hXi mean of random variable X.
hA, Bi covariance of random variable A and B.
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