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a b s t r a c t 

This paper examines the importance of particle diffusion relative to advection in bed- 

load transport. Particle diffusion is not included in existing approaches to bedload trans- 

port. Based on recent advances in the probabilistic theory of sediment transport, this 

paper emphasizes the part played by particle diffusion in bedload transport. The pro- 

posed model consists of the classic Saint-Venant–Exner equations supplemented by an 

advection–diffusion equation for particle activity (solid volume of particles in motion per 

unit streambed area). The model is solved numerically using standard finite-volume tech- 

niques. Our numerical simulations consider two case studies: (i) bed degradation under 

subcritical flow conditions and (ii) anti-dune development in supercritical flows on slop- 

ing gravel beds. These simulations show that particle diffusion plays a key role in bedload 

transport under non-uniform flow conditions. The diffusive sediment transport rate may be 

as large as the advective transport rate. When anti-dunes develop and migrate upstream, 

particle diffusion can create fluctuations in the sediment transport rate, whose amplitude 

compares with the capacity transport rate. Non-uniform flows can be characterized by a 

typical length, referred to as the adaptation length , which represents the distance that a 

particle dislodged from the bed travels before it reaches steady-state velocity. We show 

that the adaptation length is controlled by the particle advection velocity, particle diffu- 

sivity, and entrainment/deposition rates, but is independent of the bedform wavelength 

(contrary to common belief). For simulating bed degradation and anti-dune migration in 

gravel-bed rivers, a benchmark analysis of different bedload transport models provides ev- 

idence that those including particle diffusion perform better than classic models. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

1. Introduction 

In bedload transport theory, the prevailing view has long been that particles are advected by the water flow. This stim-

ulated approaches which are now routinely used for simulating sediment transport over short time-scales ( e.g. , floods) [1] : 

(i) In the classic approach, hereafter referred to as equilibrium transport theory , the sediment transport rate q s is defined

as a conditional function of the Shields number Sh = τb / (�� g d) , with τ b the bottom shear stress, �ϱ the density
� This article belongs to the Special Issue: SI: ANMH 2015. 
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mismatch between fluid and sediment, g the gravitational acceleration, and d the mean particle diameter. The function

is conditional because the Shields number must be greater than the critical value Sh cr (threshold of incipient motion)

for the solid discharge to be nonzero: q s = f (Sh ) for Sh > Sh c , but q s = 0 for Sh ≤ Sh cr . The relation q s = f (Sh ) also

implies that the sediment transport rate is a one-to-one function of the water discharge (or, equivalently, the bottom

shear stress or shear velocity) independently of the flow conditions ( i.e. , for steady as well as unsteady non-uniform

flows) provided that Sh > Sh cr . Many bedload transport equations derived empirically ( e.g. , Meyer-Peter and Müller

[2] , Ackers and White [3] , Parker [4] ) are commonly used and provide decent predictions at sufficiently high Shields

numbers and over long time-scales [5] . When embodied in the Exner equation, these equations also dictate bed

evolution. 

(ii) The alternative approach, hereafter referred to as non-equilibrium transport theory , is rooted in Einstein’s pioneering

work [6] . In Einstein’s view, sediment transport results from the imbalance between the entrainment and deposition

rates. Thus, the sediment transport rate is not uniquely defined by the Shields number but adjusts to the flow con-

ditions. One might expect there to be an evolution equation for q s which describes its time variation depending on

the flow conditions. Indeed, a steady state is reached in a domain at a certain distance beyond the system bound-

aries and/or once a certain time has elapsed from the initial state, and so there is a domain for which sediment

transport is out of equilibrium. The question arises of how to characterize the dimensions of this domain. Authors

introduced the adaptation length (also called the relaxation or saturation distance) as an additional parameter rep-

resenting the typical distance that a particle dislodged from the bed travels before it reaches steady-state velocity

[7–9] . Non-equilibrium transport theory has recently attracted growing attention, especially in the context of rapidly

varying flows, e.g. , sediment-laden flows with various sediment transport modes [10,11] , erodible dam-break flows

[12–15] , aggradation due to overloading and degradation by overtopping flow [14,16,17] , turbidity currents [18] , sedi-

ment budget estimation [19] , and cyclic steps [20] . 

It is noteworthy that none of these approaches considers diffusion to be a key process of sediment transport over

short time-scales. However, there are many reasons why the role played by diffusion should be reconsidered. Firstly, ex-

periments have highlighted the diffusive nature of bedload transport [21–27] . Particle tracking led to diffusivity in the

0 . 007 − 0 . 04 m 

2 s −1 range [28,29] , whereas other techniques based on the spread of particle clouds showed diffusivity to

be lower, ranging from 2 . 6 × 10 −4 m 

2 s −1 to 4 . 6 × 10 −4 m 

2 s −1 [30,31] . Secondly, for hillslope sediment transport occurring

over long time-scales (soil creep over many years, landscape dynamics over centuries), diffusion is usually the prevailing

transport process [32–36] . To fill the theoretical gap, new theories incorporating diffusion have been developed in recent

years. They have provided evidence that particle diffusion gives rise to fluctuations in the particle transport rate q s and

particle activity γ (solid volume of particles in motion per unit streambed area) [37,38] . Strikingly, theory also shows that

particle advection produces nonlocal effects, which look like (local) diffusion on the macro-scale, with a pseudo-diffusivity

depending on the scale of analysis and particle velocity [39] . 

This paper examines the part played by particle diffusion in bedload transport. To do so, it uses a simple one-dimensional

morphodynamic model consisting of the Saint-Venant–Exner equations. These equations are supplemented by an advection–

diffusion equation that describes the dynamics of sediment transport and is a continuation of the authors’ earlier develop-

ments [38,40] . One key feature of this approach is that it sheds new light on non-equilibrium bedload transport theory; it

thus allows us to revisit the concept of adaptation length. More specifically, our approach shows how the adaptation length

depends on the mean sediment velocity ū s (the velocity of particles carried by the stream), particle diffusivity D u , and the

erosion/deposition rate κ [25] . This contrasts with non-equilibrium bedload transport models, in which the modeler pre-

scribes the adaptation length and transport capacity using empirical relationships (the numerical outputs are therefore very

sensitive to the modeler’s choices, as shown by Zhang and Duan [41] and Wainwright et al. [42] ). The present paper shows

how transport capacity can be determined for Shields numbers in the range of 0–0.3, i.e. , from vanishingly low transport

rates to a full mobility regime, but below the threshold of sheet flow and suspended load [43] . This paper also shows how

useful the dimensionless Péclet number Pe = ū s / 
√ 

D u κ is in estimating the influence of diffusive transport on total bedload

transport (compared to advective transport). 

The paper is organized as follows. Section 2 recaps the governing and closure equations derived in our earlier publica-

tions [38,40] . Section 3 revisits the concept of adaptation length and shows numerical solutions to our governing equations.

We study the geometry of a flume, with a focus on (i) bed degradation – a standard in any benchmark numerical simula-

tions – and (ii) anti-dune migration. These two scenarios are representative of shallow, nearly one-dimensional water flows

over erodible gravel beds (more complex bedforms, such as alternate bars, are not investigated). Aside from its practical

benefits in engineering, we use bed degradation as an example with which to estimate the significance of diffusive bed-

load transport relative to advective transport under gradually varying flow conditions. Our simulations can be compared

with Newton’s experiments [44] . The second scenario tests our model’s capacity to produce regular bed patterns, such as

anti-dunes. More specifically, the test can be considered successful if, starting from an initially planar bed condition, the

model predicts bed instability and properly self-selects the anti-dune wavelength. For this scenario, the model’s perfor-

mance can be evaluated by comparing numerical simulations with experimental data [45–48] . For both scenarios, we show

that particle diffusion is a key process. Numerical simulations further suggest that the convective and diffusive transport

rates are of comparable magnitude when bedforms develop along the streambed. To the best of our knowledge, this is the

first time that this remarkable feature has been reported. Section 4 comments on the similarities and differences between
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our model and existing equilibrium and non-equilibrium bedload transport models. Finally, our conclusions are presented in

Section 5 . 

2. Governing equations 

We previously developed a model referred to as the stochastic Saint-Venant–Exner (SVE) equations [40] , but here we use

an ensemble-averaged formulation. This formulation consists of four coupled equations. The first three describe water flow

over a sloping erodible bed; the fourth is related to sediment transport. For the sake of simplicity, the flow is assumed to be

one-dimensional. A coordinate system Oxyz is defined with the x -axis pointing in the horizontal direction, the z -axis across

the flow, and the y -axis pointing in the vertical direction. Water flows in the x -direction. 

2.1. Momentum and mass conservation for water and mass conservation for the bed 

The first two equations are the shallow water equations (also called the Saint-Venant equations) that express the mass

and momentum conservation of the water flow; these are supplemented by the Exner equation tracking the bed-stream

interface [49] : 

∂h 

∂t 
+ 

∂h ̄v 
∂x 

= 0 , (1) 

∂h ̄v 
∂t 

+ 

∂h ̄v 2 

∂x 
+ gh 

∂h 

∂x 
= −gh 

∂y b 
∂x 

− f v̄ | ̄v | 
8 

+ 

∂ 

∂x 

(
νh 

∂ ̄v 
∂x 

)
, (2) 

(1 − ζb ) 
∂y b 
∂t 

= D − E, (3) 

in which h (x, t) = y s − y b denotes the flow depth with y b ( x, t ) [m] and y s ( x, t ) [m] the bed and free surface elevations,

respectively, v̄ [m s –1 ] is the depth-averaged velocity, t [s] is time, f is the dimensionless Darcy–Weisbach friction fac-

tor, ζ b is the bed porosity, D [m s –1 ] and E [m s –1 ] represent the deposition and entrainment rates, respectively, and the

extra term ∂ x (νh∂ x ̄v ) represents a depth-averaged Reynolds stress. A rough estimation of the eddy viscosity is given by

ν ≈ νt h v 
√ 

f/ 8 [m 

2 s –1 ] with the dimensionless parameter νt in the 4–18 range [40,50] . Empirical closure equations are 

used for f, E , and D : 

• The Darcy–Weisbach friction factor f is assumed to be a nonlinear function of the relative grain roughness δ2 = d/h with

d as the mean particle diameter [51] . For a fully developed turbulent flow and a rough regime, we use the Colebrook

equation: 

1 √ 

f 
= −2 log 

(
k s δ2 

3 . 71 

)
, (4) 

in which k s is a scaling factor requiring calibration to account for sidewall effects, form drag, and flow recovery [51] .

Thus, the local Shields number reads: 

Sh = 

f F r 2 

8 (s − 1) δ2 
with F r = 

| ̄v | √ 

g h 

, (5) 

where s represents the sediment-to-liquid density ratio (typically s = 2 . 65 for gravel in water) and Fr denotes the Froude

number. 
• The deposition and entrainment rates are linear functions of the mean particle activity: 

D = σ 〈 γ 〉 and E = λ + μ 〈 γ 〉 , (6) 

where 〈 γ 〉 is the mean particle activity (the angular brackets 〈·〉 denote the ensemble average). σ , λ, and μ are the par-

ticle deposition, entrainment, and collective entrainment coefficients, respectively. The linear structure of these relation-

ships is a key assumption of the stochastic model [38,39,52] . Little is known about the dependence of these coefficients

on the flow variables. Experiments conducted by Ancey et al. [52] showed that λ and σ vary almost linearly with v̄ ,
whereas μ is nearly constant for the flow range explored. 

2.2. Mass conservation for bedload 

Bed load transport is described using the following advection–diffusion equation: 

∂ 

∂t 
〈 γ 〉 + 

∂ 

∂x 
( ̄u s 〈 γ 〉 ) − ∂ 2 

∂x 2 
(D u 〈 γ 〉 ) = E − D , (7)
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where 〈 γ 〉 is the mean particle activity [m], D u [m 

2 s –1 ] is the particle diffusivity, and ū s = β v̄ [m s –1 ] is the mean velocity

of moving particles, with β given by Bohorquez and Ancey [40] : 

β ≡ min 

( 

1 . 44 

√ 

f 

8 Sh cr 
, 1 

) 

. (8)

Eq. (7) is a deterministic partial differential equation that is obtained by taking the ensemble average of Eq. (A.1) (see

Appendix A ). It describes how the number of moving particles (per unit streambed area) varies with time as a result of

advection by the water flow (at velocity ū s ), spread along the x -axis, and entrainment or deposition depending on the sign

of E − D . This equation reveals how many particles are moving, but it does not tell us much about the particle transport

rate. To answer this point, we need a clear definition of the particle transport rate. 

Unfortunately, there is no unique definition of the sediment transport rate [53–55] . Here, we follow Furbish et al. [37] and

define the mean sediment transport rate (per unit width of the flow) q̄ s as the sum of convective and diffusive contributions:

q̄ s = ū s 〈 γ 〉 − ∂ 

∂x 
(D u 〈 γ 〉 ) . (9)

In subsequent sections, we will refer to the advective transport rate as q̄ c,s = ū s 〈 γ 〉 and to the diffusive transport rate as

q̄ d,s = −∂ x D u 〈 γ 〉 . Both contributions can be computed by solving the advection–diffusion equation (7) for the mean particle

activity 〈 γ 〉 . 
2.3. Steady state solutions 

Steady state solutions are not only important for characterizing the system’s behavior, but they are also useful in sta-

bility analysis (see Section 3.3 ). Let us consider a steady uniform flow down a sloping bed with constant bottom slope

−∂ x y b = tan θ and with a constant water discharge Q (per unit width). The solution to the Saint-Venant–Exner Eqs. (1) –(3)

is straightforward: h = H, v̄ = V, y b = −x tan θ, where H denotes the flow depth, and V is the flow depth-averaged veloc-

ity. The flow variables H and V are the implicit solutions to the dimensionless relation reflecting the balance between the

gravitational forces and flow resistance in Eq. (2) : 

tan θ = 

f V 

2 

8 g H 

= 

f 

8 

F r 2 , (10)

where F r = V/ 
√ 

g H denotes the Froude number. Under steady-state planar-bed conditions, the Shields number (5) achieves

the constant value: 

Sh = 

tan θ

(s − 1) δ2 
. (11)

The steady-state particle activity 〈 γ 〉 ss reflects the balance between deposition and entrainment ( E = D ) in Eq. (7): 

〈 γ 〉 ss = 

λ

κ
with κ = σ − μ. (12)

The steady-state sediment transport rate is: 

q̄ ss = ū s 〈 γ 〉 ss = β v̄ 
λ

κ
. (13)

In Appendix B , we show how the empirical bedload transport equation q̄ ss (Sh ) developed by Fernandez Luque and van Beek

[56] can be extended to cover a wide range of flow conditions, and we use this extended equation in our computations. 

Note that neither the steady-state particle activity 〈 γ 〉 ss , nor the steady stage q̄ ss are influenced by particle diffusion. 

3. Results 

This section focuses on the two following issues: (i) we show how the concept of adaptation length fits in with SVE Eqs.

(1) –(3) and (7) (see Section 3.1 ), and (ii) we analyze the importance of particle diffusion relative to particle advection in two

different case studies, which also serve to benchmark the numerical results against experimental and theoretical solutions.

Section 3.2 is devoted to the simulation of a degrading bed, whereas Section 3.3 gives a numerical study of anti-dune

migration along gravel streambeds over a steep slope. 

As the numerical implementation has been detailed previously and at length in [40,57] , we will not dwell on this is-

sue. However, a summary explanation is needed. A fractional-step method was applied to split the advection–diffusion Eqs.

(1) –(3) and (7) into a hyperbolic subproblem with source terms and a parabolic subproblem. The hyperbolic subproblem

was solved numerically using a fifth-order accurate, weighted essentially nonoscillatory (WENO) scheme, a second-order-

accurate, source term discretization, and a third-order accurate, strong stability preserving (SSP), Runge–Kutta time integra-

tion – denoted by SSPRK (3,3) in [58] . The eddy and particle diffusivity terms were integrated with the one-step implicit

Crank–Nicholson scheme, which is second-order accurate in space and time. 
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Fig. 1. Nondimensional particle activity 〈 γ 〉 / 〈 γ 〉 ss at several scaled distances x / � c,d in the experiments carried out by Jain [8] (Runs 1 and 2) and Bagnold 

[60] (Runs 3 and 4). The solid line represents the theoretical solution (15) . The adaptation length � c,d was calibrated by fitting the dimensional solution 

〈 γ 〉 ( x ) to each experimental series of Jain [8] . This yielded: � c,d = 17 . 67 m, 6.35 m, 1.96 m, and 0.47 m for transport stage parameters T = Sh/Sh cr − 1 = 0 . 24 , 

0.62, 1.68, and 16.6 from Run 1 to Run 4, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. The adaptation length 

The adaptation length (also called the saturation or relaxation length), denoted by � c,d , is the characteristic distance that

particles travel before reaching steady state after being entrained by the stream [59] ; the sediment transport rate and par-

ticle activity also come close to their steady-state values q̄ ss and 〈 γ 〉 ss , respectively. 

The parametric dependence of � c,d on flow variables remains unresolved in the numerical simulations dealing with tran-

sient flows and non-equilibrium sediment transport [15,17] . Using dimensional analysis arguments, Charru [59] found that

the adaptation length for bedload transport is proportional to the particle velocity. More recently, Heyman et al. [25] sug-

gested including particle diffusion in the definition of � c,d . We shall see that our theory is consistent with [25] and retrieves

Charru’s [59] scaling in the absence of particle diffusion. 

Heyman et al. [25] recently derived the expression of the adaptation length by calculating the steady-state solution to

the mean advection–diffusion Eq. (7) for a prescribed uniform particle velocity ū s and the following boundary conditions: 

d 

d x 
( ̄u s 〈 γ 〉 ) − d 

2 

d x 2 
(D u 〈 γ 〉 ) = λ − κ 〈 γ 〉 , 

〈 γ 〉 = 0 at x = 0 and 

d 〈 γ 〉 
d x 

= 0 at x → ∞ . (14) 

When ū s > 0 , solving Eq. (14) for 〈 γ 〉 (and assuming a constant sediment velocity ū s ) leads to: 

〈 γ 〉 (x ) 

〈 γ 〉 ss 
= 1 − e −x/� c,d with � c,d = 

2 D u 

ū s 

[√ 

1 + 4 

D u κ

ū 

2 
s 

− 1 

]−1 

. (15) 

When ū s = 0 , we get � c,d = � d = 

√ 

D u /κ . The adaptation length does not depend explicitly on the erosion rate λ, whereas

the steady-state particle activity 〈 γ 〉 ss [see Eq. (12) ] is affected by λ. To leading order, � c,d is expected to reflect the balance

between particle advection and deposition [59] . Indeed, the Taylor series expansion at D u = 0 up to the fifth order, 

� c,d = � c + � d 

[
� d 

� c 
−

(
� d 

� c 

)3 

+ 2 

(
� d 

� c 

)5 

+ O 

((
� d 

� c 

)7 
)]

, � c = 

ū s 

κ
, � d = 

√ 

D u 

κ
, (16)

shows that � c,d ≈ � c in the limit � d → 0, where � c is the adaptation length in the absence of particle diffusion ( i.e. , D u = 0 ),

whereas � d is the adaptation length when advection is removed ( i.e. , when ū s = 0 ). In the absence of particle diffusion, our

developments retrieve Charru’s [59] scaling by setting � c,d = � c = ū s /κ . How sediment diffusion affects the adaptation length

(relative to particle advection) can be evaluated using the ratio � d /� c = Pe −1 = (D u κ/ ̄u 2 s ) 
1 / 2 , which represents the inverse of

the Péclet number [38] . For Pe 
 1 ( i.e. , D u κ � u 2 s ), particle advection is the predominant mechanism, whereas for Pe → 0,

sediment diffusion is the key process. 

Fig. 1 shows the variation in 〈 γ 〉 with position. The labeled points correspond to Jain’s and Bagnold’s experimental

data [8,60] . Neither Bagnold nor Jain measured the adaptation length. We therefore adjusted the theoretical scaled profiles

〈 γ 〉 ( x )/ 〈 γ 〉 ss on the experimental data. The adaptation lengths are � c,d = { 17 . 67 , 6.35, 1.96, 0.47} m, whereas the mass trans-

port rates are � s ̄q ss = { 2 . 2 , 19.0, 10.0, 148.0} g (s m) –1 for T = { 0 . 24 , 0.62, 1.68, 16.6}, where the transport stage parameter
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Fig. 2. Time variation of the bed (solid line) and free-surface (dashed line) elevations for (a) the diffusive and (b) non-diffusive cases for Run 3 of 

Newton [44] . (c) Local depth scour at x = 3 . 66 m. (d) Sediment transport rate at the flume outlet. The symbols (circles) correspond to the experimental 

measurements taken by Newton [44] . Similar to Fig. B.8 , the inset in (d) represents the experimental values of Q s in the plane { �, ̂ Sh } for Sh ∗ = 0 . 04 and 

� s ̄q s ∗ = 10 −5 kg/m s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is defined as T = Sh/Sh cr − 1 , and ϱs denotes sediment density. The solid line is the exact solution (15) . At the upstream

boundary ( x = 0 ), the particle activity vanishes owing to the prescribed Dirichlet boundary condition 〈 γ 〉 = 0 . Particles are

carried by the stream ( ̄u s > 0 ), and so travel downwards (from left to right in Fig. 1 ). Particle activity increases monotoni-

cally with increasing x . Far from the inlet ( i.e. , for x 
 � c,d ), the particle activity reaches its steady-state value 〈 γ 〉 = 〈 γ 〉 ss . In

practice, steady state is observed for x ≥ 3 � c,d because 〈 γ 〉 ≥ 0.95 〈 γ 〉 ss according to the exact solution (15) . The theoretical

solution (15) closely matches the experimental data. 

In the technical literature, the adaptation length � c,d is often associated with the bedform wavelength � [61] . In contrast

to this common view, the theoretical solution (15) states that � c,d is independent of �. We refer the reader to Section 3.3 for

further discussion about the selection mechanism for the wavelength � as a result of the coupling between the shallow-

water balance Eqs. (1) and (2) and the sediment transport Eqs. (3) and (7) : � is mostly controlled by the eddy diffusivity ν
– introduced in the momentum balance Eq. (2) – of the water phase and particle diffusivity D u of the sediment phase. 

3.2. Newton’s degradation experiment 

Newton ran experiments on bedload transport in a flume including a 9.14 m long, 0.3 m wide, 0.6 m deep test reach

[44] . A hopper filled with sand ( d = 0 . 69 mm) fed the flume with sediment to ensure bed equilibrium along the flume. The

bedload transport rate was maintained at equilibrium ( ̄q s = q̄ ss ) by recirculating sediment from the outlet to the inlet. Sedi-

ment supply was suddenly stopped to study bed degradation. The water discharge Q = 0 . 0057 m 

3 s −1 was kept constant for

the 27 h experiment duration. Newton monitored the bedload flux at the flume outlet, the bed and free surface elevations

along the test reach at several time points (1, 2.17, 4, 12 and 27 h), and the evolution of the local scour depth at x = 3 . 66 m.

The remaining data were used for testing the numerical results shown in Fig. 2 . Initially, the bed was flat, inclined at the

angle of 0.348 ° to the horizontal, the bed porosity was ζb = 0 . 396 , and the depth-averaged velocity was V = 0 . 47 m s −1 . The

flow regime was subcritical with the Froude number F r = 0 . 75 at t = 0 . The data in the downstream reach of the flume ( x

> 6 m) were used for calibrating the model parameters under steady, uniform flow conditions, as described in Appendix C .

We adjusted the model parameter, λ = 4 . 65 × 10 −5 (Sh − Sh cr ) m s −1 with Sh cr = 0 . 044 , μ = 0 and κ = 0 . 245 s −1 . The

sediment velocity ū s and the friction factor f were evaluated from Eqs. (4) and (8) with a bed roughness factor k s = 4

(calibrated using the initial conditions, as shown by El kadi Abderrezzak and Paquier [17] ). In Eq. (2) , the eddy viscosity
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Table 1 

Set of boundary conditions used in the numerical simulations. Physical and numer- 

ical (labeled with an asterisk) boundary conditions are imposed depending on the 

subcritical or supercritical flow regime, as explained in the main text. CVE means 

“characteristic variable extrapolation” method (see the text). 

Channel degradation 

Inlet Outlet 

∂ x h = 0 ( ∗) h = h out (t) 

v̄ h = Q/B, ∂ x ̄v = 0 ∂ x 

(
v̄ h + 2 

√ 

g h 

)
= 0 ( ∗) 

∂ x 〈 γ 〉 = 11 . 6 〈 γ 〉 exp (−0 . 8 t/ 3600) 〈 γ 〉 = 〈 γ 〉 ss 

∂ x y b = 0 ∂ x y b = − f ̄v 2 / 8 g h 

Anti-dune migration 

Inlet Outlet 

h̄ = H CVE ( ∗) 

v̄ = V CVE ( ∗), ∂ x ̄v = 0 

〈 γ 〉 = 〈 γ 〉 ss ∂ x 〈 γ 〉 = 0 

∂ x y b = 0 ∂ x y b = − f ̄v 2 / 8 g h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was ν = νt h ̄v 
√ 

f/ 8 , with νt = 4 [40] . In the numerical simulations, the length of the computational domain was 8.6 m, and

the grid consisted of 100 cells. The time step in the numerical simulations was adjusted dynamically during the simulation

process in order to satisfy the Courant–Friedrich–Lewy (CFL) stability condition [62] . With a CFL value of 0.25, the time step

was close to 0.05 s. 

The Péclet number Pe = β V/ 
√ 

D u κ was initially at its maximum ( Pe = 0 . 64 at t = 0 , with κ = 0 . 245 s −1 , D u =
1 . 05 m 

2 s −1 , and β = 0 . 692 ) when the bed slope was steepest. The adaptation length � c,d = 2 . 84 m was initially larger

than both the zero-diffusion length � c = 1 . 32 m and the zero-advection length � d = 2 . 07 m. Taking into account that Pe ∼
O (0.1) and (� c,d − � c ) /� c ∼ O (1) , we expected the diffusive sediment transport rate q̄ d,s to be significant in the upper part of

the flume (approximately for x < 3 � c,d ). In other words, both particle advection and diffusion were expected to play a part

in bedload transport. 

Table 1 summarizes the boundary conditions employed in the numerical simulations. As the flow was subcritical during

the experiment, we selected the following boundary conditions: (i) at the inlet, a constant water discharge Q , and (ii) at

the outlet, a water depth h out ( t ) [see Fig. C.9 (b)]. Two additional numerical boundary conditions (labeled with an asterisk

in Table 1 ) were required in the first step of the fractional-step method, which solved the inviscid shallow water equations

with source terms [63] . We followed the commonest approach by extrapolating the water depth from the inner computa-

tional domain to ghost cells at the flume inlet and by extrapolating the outgoing Riemann invariant at the flume outlet,

as described by Blayo and Debreu [64] . The absence of local scour in Newton’s experiments provided clear evidence that

sediment was entrained from the sand reservoir into the test reach. Indeed, in the absence of sediment supply, degradation

would have caused deep scour holes near the flume inlet [7] . Due to the lack of information on the experimental condi-

tions, we performed an optimization process by varying the value of ∂ x 〈 γ 〉 that was imposed at the inlet. This procedure

was repeated by varying the particle diffusivity from 10 −4 m 

2 s −1 to 100 m 

2 s −1 . The optimum values for minimizing the

root mean square error in the bed elevation y b [see Fig. 2 (a)] are given in Table 1 for D u = 1 . 05 m 

2 s −1 . Finally, we set the

steady-state particle activity 〈 γ 〉 = 〈 γ 〉 ss at the flume outlet, which was realistic since the flume was much longer ( ∼10 m)

than the initial adaptation length ( � c,d = 2 . 84 m). 

Fig. 2 (a) shows that the simulated bed elevation (solid line) obtained with D u > 0 is in good agreement with the experi-

ments (empty circles) at all times. The Root Mean Square Error (RMSE) of the bed elevation ranged from 0.7 mm to 2.2 mm

(see Table 2 ), and so was of the order of a grain size of d = 0 . 69 mm ( i.e. , RMSE ≤ 3.2 d ). The error was therefore negligi-

bly small. The bed slope decreased progressively as degradation progressed until it reached a near steady state late in the

experiment. The slope of the free surface (dashed line) remained nearly parallel to the bed. The flow depth increased with

decreasing bed slope. In the absence of sediment diffusion [see Fig. 2 (b)], a shallow scour hole developed next to the inlet

when t ≤ 12 h, but disappeared later in the experiment. A comparison between Figs. 2 (a) and 2 (b) shows that when particle

diffusivity was nonzero, the total sediment transport rate was higher under non-uniform flow conditions (degradation) than

under uniform flow conditions. This is consistent with our analysis of � c and � d in the introduction of Section 3.2 . As did El

kadi Abderrezzak and Paquier [17] (see also [67] ), we evaluated the model’s performance using the Brier Skill Score: 

BSS = 1 −
∑ M 

i =1 

(
y exp 

b 
(x i , t) − y num 

b 
(x i , t) 

)2 

∑ M 

i =1 

(
y exp 

b 
(x i , t) − y exp 

b 
(x i , 0) 

)2 
, (17) 

where superscripts num and exp refer to numerical result and experimental measurement, respectively, and M is the total

number of experiments. The scores are reported in Table 2 . Taking diffusion into account led to a BSS close to 1 throughout

the numerical simulation. Such values were considered excellent by El kadi Abderrezzak and Paquier [17] . In the absence
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Table 2 

Root Mean Square Error (RMSE) and Brier Skill Score (BSS) defined by Eq. (17) for the simulation of the bed elevation y b in Newton’s experiment. Quali- 

fication ranges for BSS are [17,67] : excellent ( 1 − 0 . 8 ), good ( 0 . 8 − 0 . 6 ), fair ( 0 . 6 − 0 . 3 ), and poor ( < 0.3). For the sake of comparison with existing results, 

we also report BSS achieved by non-equilibrium sediment transport simulations run by El kadi Abderrezzak and Paquier [17] , Davies et al. [65] , and Zhang 

et al. [15] . 

Time (h) 1 2.17 4 12 27 

Current model with diffusion BSS 0 .9124 0 .9940 0 .9967 0 .9995 0 .9969 

RMSE (m) 0 .0020 0 .0011 0 .0013 0 .0 0 07 0 .0022 

Current model without diffusion BSS 0 .9542 0 .8903 0 .8880 0 .9045 0 .9678 

RMSE (m) 0 .0014 0 .0049 0 .0075 0 .0105 0 .0072 

El kadi Abderrezzak and Paquier [17] BSS 0 .81 0 .96 0 .97 0 .94 0 .98 

RMSE (m) 0 .0029 0 .0015 0 .0014 0 .0020 0 .0018 

CCHE1D [65,66] BSS 0 .8169 0 .9872 0 .9927 0 .9947 0 .9980 

RMSE (m) 0 .0026 0 .0015 0 .0018 0 .0023 0 .0017 

Zhang et al. [15] BSS 0 .9324 0 .9628 0 .9690 0 .9996 0 .9974 

RMSE (m) 0 .0016 0 .0029 0 .0040 0 .0 0 09 0 .0021 

Fig. 3. (a) Advection and diffusion sediment transport rates ( ̄q c,s and q̄ d,s , respectively) in Newton’s experiments at the same time points as Fig. 2 (a). 

Panel (b) shows the streamwise profiles of the mean particle activity 〈 γ 〉 ( x ). Note that the particle activity tends to the steady-state value ( 〈 γ 〉 = 〈 γ 〉 ss ) 

and that the diffusive sediment transport rate vanishes ( ̄q d,s ≈ 0 ) near the end of the flume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of diffusion, the BSS tended to 0.8 at t = 4 h (considered good by El kadi Abderrezzak and Paquier [17] ). After long periods

( t = 27 h), the agreement between the simulation and the experiment is better using D u = 1 . 05 m 

2 s −1 than D u = 0 . Fig. 2 (c)

shows the predicted scour depths at x = 3 . 66 m: for D u = 0 , these are too small, but for D u > 0, they match the experimental

values quite well. Fig. 2 (d) shows the sediment transport rate at the outlet. As expected, the non-diffusive solution overlaps

the diffusive solution because the flume is long enough for the flow to become uniform at the outlet. Both numerical

solutions capture the experimental trend at this position. Next, we show that this can be better understood by taking a

closer look at how convection and diffusion contribute to bedload transport. 

Numerical simulations allow us to evaluate the relative importance of the convective and diffusive sediment transport

rates. Fig. 3 (a) shows these transport rates at the same time points as Fig. 2 (a): the solid and dashed lines represent the

convective sediment transport rate q̄ c,s = ū s 〈 γ 〉 and the diffusive rate q̄ d,s = −∂ x D u 〈 γ 〉 , respectively. The convective term q̄ c,s
is positive as particles move downwards. The diffusive sediment transport rate q̄ d,s is negative because the particle activity

〈 γ 〉 increases monotonically from the flume inlet to the outlet; see Fig. 3 (b). Since we have ∂ x ̄q c,s > 0 and ∂ x ̄q d,s > 0 , both

advection and diffusion contribute to eroding the bed. This explains why the water phase erodes more sediment when

diffusion is taken into account. Furthermore, Fig. 2 (a) and (b) show that bedload transport is out of equilibrium in the upper

part of the flume, for x < 3 � c,d . This is reflected by the strength of the diffusive component of bedload transport and the

variation of the ensemble-averaged particle activity 〈 γ 〉 with increasing x . Near the flume outlet, sediment transport reaches

equilibrium, with 〈 γ 〉 ≈ 〈 γ 〉 ss and q̄ d,s ≈ 0 . This explains why, in Fig. 2 (d), the sediment transport rate is independent of

diffusivity. 

3.3. The development of anti-dunes in the gravel bed stream 

In gravel bed streams, initially planar beds may become unstable even under steady uniform flow conditions, and in that

case, anti-dunes may develop. Here, we show that the SVE Eqs. (1) –(3) and (7) successfully reproduce anti-dune instability.

Mathematically, within the framework of linear stability analysis, this is revealed by the existence of saddle points in the

wavenumber space, which make the flow absolutely unstable. Furthermore, Eqs. (1) –(3) and (7) catch the most unstable
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Fig. 4. (a) Snapshots of the bed and free-surface elevations together at t = 0 and at t = 200 s: dashed lines show the uniform base flow at t = 0 ; solid lines 

show the anti-dune train in the numerical simulation at t = 200 s. The gray and black lines correspond to the free surface and bed elevation, respectively. 

(b) Evolution of the maximum perturbation in the bed elevation. (c) Convection contribution to the bedload transport rate in the plane { x, t } scaled by the 

uniform background flow’s steady-state transport rate q̄ ss . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wavelength. In the following, we first illustrate the development of upstream migrating anti-dunes in the simulations of

shallow water flows over sloping erodible gravel beds. We then use spatiotemporal stability analysis [68,69] to show the

absolute nature of the instability. This allows us to predict the most unstable wavelength theoretically. In contrast, when

the Saint-Venant Eqs. (1) and (2) are coupled with the standard Exner equation, the bed is unconditionally stable for Fr < 2

[70] and, consequently, the anti-dune diagram cannot be computed. 

The flow parameters used in the simulations corresponded to the dimensionless numbers F r = 1 . 2 and δ2 = 0 . 4 , which

came close to the experimental conditions imposed by Cao [45] , Bathurst et al. [46] , Recking et al. [47] , and Mettra [48] .

The length and width of the channel were similar to those used in Mettra’s [48] experiments: L = 1 . 5 m and B = 8 cm.

Without a loss of generality, we set the critical Shields number to Sh cr = 0 . 03 (this corresponds to fine/medium gravel [71] ),

whereas the Darcy–Weisbach friction factor f was evaluated from Eq. (4) with k s = 1 . The slope angle, Shields number, and

sediment-to-water velocity ratio associated with this set of values were computed from Eqs. (10) and (11) , which yielded

θ = 2 . 75 ◦, Sh = 0 . 073 ( i.e. , we had Sh / Sh cr > 2), and β = 1 under uniform flow conditions. Other model parameters were kept

constant during the numerical simulation: d = 5 . 74 mm, μ = 0 , κ = 5 . 31 s −1 , ζb = 0 . 36 , and D u = 0 . 1 m 

2 s −1 . Substituting

these values into Eqs. (B.2) , (15) and (16) , we obtained the steady-state bedload transport rate q̄ ss = 1 . 07 × 10 −4 m 

2 s −1 

(86.49 part. s −1 ), the adaptation lengths � c,d = 18 . 6 cm, � c = 8 . 5 cm, and � d = 13 . 7 cm, and the Péclet number Pe = 0 . 617 for

the uniform base flow h = 1 . 43 cm and v̄ = 0 . 45 m s −1 . The steady-state bedload transport rate q̄ ss was used to establish

the importance of sediment advection relative to diffusion in the presence of anti-dunes under unsteady non-uniform flow

conditions. 

As in the previous simulations, the eddy viscosity was approximated by ν ≈ νt h ̄v 
√ 

f/ 8 with νt = 10 . The computational

domain 0 ≤ x ≤ 1.5 m was divided into 10 0 0 cells. As the flow was supercritical at the inlet at all times during the numerical

simulation, we imposed the boundary conditions summarized in Table 1 . At the inlet, the water depth and the flow depth-

averaged velocity were set to H = 1 . 43 cm and V = 45 cm s −1 , respectively, and the particle activity took its steady-state

value. At the outlet, the characteristic variable extrapolation method (CVE) was employed for computing the three Riemann

invariants that travel outwards. In addition, a fairly good sponge layer was added in the outlet reach x > 1 m to ensure

absorbing boundary conditions [72] . The initial conditions used in our computations were h = H, v̄ = V, 〈 γ 〉 = 〈 γ 〉 ss , and

y b = −x tan θ + ε(x ) where ε( x ) is a random perturbation with amplitude 10 −4 m. Below, we report on the results in the

reach 0 ≤ x ≤ 1 m, which is not affected by the sponge layer. 

Fig. 4 (a) shows the initial condition for the bed (black dashed line) and free-surface (gray dashed line) elevations.

The initial perturbation introduced in the bed elevation cannot be observed because of its small amplitude. After a first
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Fig. 5. (a) Diffusion contribution to the sediment transport rate in the plane { x, t } scaled by the uniform background flow’s steady-state value q̄ ss . (b) Com- 

parison between the diffusive (dotted-dashed line), convective (dashed line), and total (solid line) sediment transport rates with respect to the steady-state 

sediment transport q̄ ss (dotted line) at x = 24 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stage in which the numerical solution self-selects a well-defined wavelength (for t ≤ 50 s), the bed perturbation grows as

�y b (t) = max (| y b (x, t) − y b (x, 0) | ) = exp (0 . 068 t) , until time t ≈ 100 s when the maximum amplitude of the bed perturba-

tion saturates, as shown in Fig. 4 (b). The numerical solution at later time points (solid lines) exhibits a train of anti-dunes

with amplitudes as high as the initial water depth and a similar wavelength 0.2 ≤ � ≤ 0.3 m. The wavelength is slightly

coarser upstream than downstream, which could be attributed to a nonlinear coarsening mechanism during the growth and

propagation of anti-dunes from the reach outlet to the inlet. The water surface y s and the bed elevation y b are no longer

planar as a result of bedform development. The free surface curvature is marked above the anti-dune’s lee side whereas

above the stoss side, the free surface remains nearly parallel to the initial bed. Obviously, the flow velocity v̄ and Shields

number are non-uniform in the perturbed state, which induces spatiotemporal variations in the sediment transport rate q̄ s . 

The fluctuations in the sediment transport rate can be seen in Figs. 4 (c) and 5 (a), where the convective and diffu-

sive rates, q̄ c,s and q̄ d,s , have been compared to the steady-state sediment transport rate q̄ ss . The fluctuations in the con-

vective transport rate reach ± 60% of its steady-state value. The diffusive transport rate is even higher – approximately

−q̄ ss ≤ q̄ d,s ≤ 1 . 1 q̄ ss . The sediment transport rate’s maximum deviation from its steady-state value is reached at x ≈ 0.24 m.

A detail from the evolution of each sediment transport component is shown in Fig. 5 (b). The bedload transport rate ex-

hibited large temporal fluctuations relative to its the mean value q̄ ss for t ≥ 150 s, after the first transient stage. Note that

the diffusive transport rate (dotted-dashed line) is as high as the steady-state value (dotted line), which highlights the im-

portance of particle diffusion in sediment transport. There was a time lag in the convective and diffusive transport rate

fluctuations, but they did not counterbalance each other. Hence, the total sediment transport also exhibited large fluctua-

tions with a well-defined frequency. Overall, the diffusive component is expected to be dominant in any shallow-water flow

developing bedforms, such as dunes and anti-dunes, when their heights are comparable to the flow depth under uniform

flow conditions. Otherwise, as happens for ripples and dunes in deep water, when the free surface does not interact with the

bedforms, flow is uniform; consequently, diffusive transport dies out or, at least, becomes negligible compared to advective

transport. 

The spatial wavelength (and the temporal frequency) observed numerically in the nonlinear cycle at later time points ( t

≥ 150 s ) can be predicted using a spatiotemporal linear stability analysis. Here we follow the procedure presented in an

earlier publication [40] : (i) we define the dimensionless variables z = y b /H, φ = 〈 γ 〉 / 〈 γ 〉 ss , η = h/H, u = v̄ /V, ˆ x = x tan θ/H,

and 

ˆ t = t V tan θ/H; (ii) we linearize the dimensionless SVE equations around a uniform base flow by setting (z, φ, η, u ) =
(− ˆ x , 1 , 1 , 1) + ε (z ′ , φ′ , η′ , u ′ ) and retain only the terms of order O ( ε), which leads to the linear perturbation equation with

an exponential solution (see Appendix D ); and (iii) we determine the saddle and cusp points of the eigenvalue problem.

The first and second steps of this procedure are detailed in Sections 3.1 and 3.2 in [40] , and thus are not repeated here. The

focus is on determining the saddle points. 

Substituting the set of values used for the numerical simulation of anti-dunes in (D.2) , we get k e = 0 . 0864 , k d = 4 . 52 ,

u ∗ = 0 . 64 , V = 0 . 125 , D = 0 . 745 , and β = 1 . The dimensionless wavenumber associated with the natural wavelength grow-

ing in the simulation ( � = 0 . 2 m that grows spontaneously in the simulation) is k = 2 πH/ (� tan θ ) = 9 . 36 at the flume’s

downstream reach. Its corresponding temporal frequency in the linear stability analysis is obtained from the solution to

the dispersion relation D (k, ω) ≡ | A | = 0 [see Eq. (D.1) ], which yields ω i = 0 . 044 ( ω i V tan θ/H = 0 . 0674 s −1 ). This value is in

close agreement with the numerical growth rate 0.068 s −1 obtained in Fig. 4 (a). Furthermore, the dispersion relation is in-

strumental to finding the saddle points, whose existence explains why a well-defined wavelength emerges in the numerical

simulations [68,69] . 

In our model, for the current set of dimensionless parameters, multiple saddle points exist at k = −i 1 . 197 [ ω = i 0 . 0112 ,

see Fig. 6 (a)] and k = 6 . 4 + i 0 . 6 [ ω = 0 . 18 + i 0 . 054 , see Fig. 6 (b)], with branches k + and k − originating from distinct halves

of the k -plane. The self-selected wavenumber is defined as the point of intersection between the path connecting two saddle

points and the real axis k = 0 . This point corresponds to the maximum growth rate in the temporal stability analysis. Here
i 
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Fig. 6. The black dots show the location k 0 pinch points in the complex wavenumber plane { k r , k i } using Briggs’ method (isocontours of ω r ( k ) and ω i ( k )) 

for the parameter values in the numerical simulation of anti-dunes. The saddle points k = −i 1 . 197 (a) and k = 6 . 4 + i 0 . 6 (b) are pinched between branches 

k + (half-plane k i > 0) and k − (half-plane k i < 0) issuing from distinct halves of the k -plane. Spatial branches k ±( ω) with ω i = 0 are colored in white. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we find k = 6 . 24 and ω = 0 . 18 + i 0 . 0536 . The point of intersection lies close to the saddle point in Fig. 6 (b) because the

latter approaches the real axis. Consequently, the second saddle point that lies on the imaginary axis controls bed instability

[see Fig. 6 (a)]. The dimensional wavenumber in the numerical simulation satisfies 6.24 ≤ 2 π H / � tan θ ≤ 9.3, and this is

consistent with the theoretical result k = 6 . 24 . There is therefore a close agreement between linear stability theory and

numerical simulations. 

4. Discussion. Comparison with existing approaches to bedload transport 

Different approaches to bedload transport have been used in numerical models: incorporation of an empirical bedload

transport equation q̄ ss (Sh ) into the standard Exner Eq. (18) , the flux relaxation equation for quasi-steady, non-diffusive sed-

iment transport [7,8] , and non-equilibrium bedload transport equations [1] (also referred to as unsteady flux relaxation

equations). We show that all of these approaches are special examples of the SVE Eqs. (1) –(7) . 

The bedload transport rate q̄ s reaches its steady-state value q̄ ss (Sh ) under steady, uniform flow conditions, i.e. , when

∂ x ̄q s = ∂ t 〈 γ 〉 = 0 . Thus, E = D according to the mass balance condition (7) , and there is no aggradation or degradation of the

bed, i.e. , ∂ t y b = 0 . The equilibrium transport approach assumes that the relation q̄ s = q̄ ss (Sh ) also holds under non-uniform

flow conditions. The Exner Eq. (3) is cast in the following form: 

(1 − ζb ) 
∂y b 
∂t 

+ 

∂ ̄q ss 

∂x 
= 0 . (18) 

Formally, this approximation is valid under slowly varying flow conditions (when ∂ t 〈 γ 〉 � λ) and in the absence of a strong

gradient in the sediment transport rate ( ∂ x ̄q ss � λ). 

The flux relaxation equation holds for quasi-steady, non-diffusive sediment transport [7,8] . By setting D u = 0 ( i.e. , q̄ s =
ū s 〈 γ 〉 ), neglecting the temporal variation ∂ t 〈 γ 〉 , and substituting Eqs. (7) and (9) into Eq. (3) , we end up with the standard

version of the Exner equation [73] : 

(1 − ζb ) 
∂y b 
∂t 

+ 

∂ ̄q s 
∂x 

= 0 . (19) 

In this case, the bedload transport rate q̄ s is derived from Eqs. (7) and (9) . We thus obtain the flux relaxation equation : 

∂ 

∂x 
(β v̄ 〈 γ 〉 ) = λ − κ 〈 γ 〉 or 

∂ ̄q s 
∂x 

= − 1 

� c 
( ̄q s − q̄ ss ) , (20) 

where the adaptation length is � c = ū s /κ . 

There is a mathematical similarity between the non-equilibrium bedload transport equations [1] and the ensemble-

averaged SVE Eqs. (1) –(3) and (7) . Indeed, by neglecting sediment diffusion ( i.e. , D u = 0 ) and using the definition of the

local bedload transport equation q̄ s = ū s 〈 γ 〉 , we can recast Eqs. (3) and (7) in the following forms: 

(1 − ζb ) 
∂y b 
∂t 

= − 1 

� c 
( ̄q ss − q̄ s ) , (21) 

∂ 

∂t 

(
q̄ s 

ū s 

)
+ 

∂ ̄q s 
∂x 

= − 1 

� c 
( ̄q s − q̄ ss ) . (22) 

In the limiting case where | ∂ x ̄q s | � λ, the leading-order solution to the flux relaxation Eq. (20) is 〈 γ 〉 = 〈 γ 〉 ss or q̄ s =
q̄ ss , which shows that our model is consistent with the Exner equation based on the algebraic bedload transport equation
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Fig. 7. Sensitivity analysis of the anti-dune wavelength as a function of the particle diffusivity D u and the dimensionless eddy viscosity νt (the rest of the 

parameters are constant, see Section 3.3 ). (a) Numerical results at t = 200 s for D u = 0 . 01 m 

2 s −1 , 0.02 m 

2 s −1 , and 0.1 m 

2 s −1 . (b) The most unstable 

wavelength in the temporal stability analysis (continuous line). The dashed line shows the adaptation length � c,d (15) . The thicker line corresponds to the 

value νt = 10 used in the numerical simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q̄ ss (18) . By defining the adaptation length as � c = ū s /κ, we also retrieve the flux relaxation equation obtained by Charru

[59] . It is worth mentioning that El kadi Abderrezzak and Paquier [17] successfully computed several problems of practical

relevance using Eqs. (19) and (20) , and Li and Qi [74] built analytical solutions related to bed degradation under slowly

varying flow conditions by using a constant adaptation length � c . These examples provide evidence that our variant of the

Exner Eq. (20) (or Eq. (7) ) performs better than the classic Exner Eq. (18) . Note also that Eqs. (21) and (22) are similar to the

non-equilibrium bedload equations [1,15] . Some authors prefer to express them in terms of an equivalent depth-averaged

volumetric concentration of sediment [12,75] , whereas others keep the mean particle activity 〈 γ 〉 (instead of q̄ s ) as the

unknown to be determined [9,76] . This shows that most (if not all) sediment transport equations ignore particle diffusion

in the calculation of the mean particle activity or mean sediment transport rate. 

Each approach cited above performs differently depending on the test scenario. For the degradation of a sloping bed

presented in Section 3.2, Table 2 shows the BSS and the RMSE scores obtained by numerical models based on the quasi-

steady flux relaxation equation [17] and the non-equilibrium flux relaxation equation [15,65] at five different time points

( t = 1 , 2.17, 4, 12, and 27 h). According to the BSS qualification suggested by Davies et al. [67] , all three approaches achieve

excellent marks. There are, however, quantitative differences that allow us to establish that the most complex model is also

the most accurate. The BSS is at all times larger than 0.9 for the SVE equations with diffusion and for the zero-diffusion

non-equilibrium model by Zhang et al. [15] . Nearly perfect marks (BSS > 0.98) at t > 1 h are achieved with the diffusive SVE

equations and the non-equilibrium model implemented in the CCHE1D software [65,66] . Our model (BSS = 0.91) outper-

forms CCHE1D (BSS = 0.81) at t = 1 h. In contrast, assuming steadiness in Eq. (20) leads to a slight error in the numerical

outputs, which is reflected by lower BSS and RMSE scores. A comparison with the equilibrium transport theory (18) was not

possible because existing solutions ( e.g. , see [77] ) correspond to experimental conditions that differ from those studied in

this paper. 

A more sensitive test scenario is the numerical simulation of anti-dune migration on a sloping gravel bed (see

Section 3.3 ), and so it can be considered an excellent benchmark for approaches to bedload transport. The key parame-

ter is particle diffusivity, because: (i) it increases the order of the characteristic polynomial to O ( k 2 ) [see Eq. (D.1) ] when D u

> 0; (ii) it controls the existence of mathematical solutions to the Briggs–Bers condition; and (iii) it causes absolute insta-

bility (or wavelength selection). This last point is corroborated by the nonlinear numerical simulations shown in Fig. 7 (a)

for the same parameters as in Fig. 4 with D u = 0 . 01 m 

2 s −1 (thin solid line) and 0.02 m 

2 s −1 (thick solid line). For the

sake of comparison, the solution for D u = 0 . 1 m 

2 s −1 (dashed line) is also shown. The anti-dune wavelength is shorter as

D u decreases from 0.1 m 

2 s −1 to 0.02 m 

2 s −1 , which is consistent with the linear stability results. The most unstable wave-

length � in the temporal stability analysis increases monotonously as particle diffusivity increases [see thick solid line in

Fig. 7 (b)]. At low values of D u , � sharply decreases, and bedform instabilities develop only for D u > 0.0114 m 

2 s −1 . This

explains why the bed remains flat in the numerical simulation using D u = 0 . 01 m 

2 s −1 , consistent with the linear stability

results. It also explains why the SVE equations based on zero-diffusion, non-equilibrium (or equilibrium) bedload transport

theory alter bedform development. Similar results are obtained when the dimensionless eddy viscosity νt is raised from 9

to 15. Fig. 7 (b) shows the analytical solution (15) for the adaptation length � c,d (dashed line). Both the adaptation length

and the bedform wavelength are independent of each other because they represent distinct physical processes and thus are

solutions to different mathematical problems. 

Our ensemble-averaged SVE equations have limitations that arise from our working assumptions. Two limiting cases

are worthy of discussion. For Shields numbers close to the threshold of incipient motion, the particle activity γ exhibits

wide fluctuations, which may be much larger than the mean value 〈 γ 〉 [39,78] . This has prompted the development of

statistical tools for describing sediment transport. In our approach, the deterministic advection–diffusion Eq. (7) can be re-

placed with the stochastic Langevin Eq. (A.1) . Recall that we ended up with Eq. (7) by taking the ensemble average of the

Langevin Eq. (A.1) . In a recent paper [40] , we showed that coupling the stochastic Langevin Eq. (A.1) and the deterministic

Saint-Venant–Exner Eqs. (1) –(3) was straightforward, from a numerical point of view, regardless of the order of accuracy of

the scheme adopted in the finite volume method (first-order upwind, second-order TVD, or fifth-order WENO scheme). At
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low Shields numbers, sandy beds also develop ripples and dunes that migrate downstream. Preliminary results (which will

be reported in a forthcoming paper) indicate that a phase lag in the friction factor f is needed to allow for downstream

migrating bedforms when we use the SVE equations, and this is consistent with Kennedy’s [79] theory. At high Shields

numbers, however, bedforms are washed out by the flow and the transition to an upper-stage plane bed, sheet flow, and

suspended sediment transport may occur. More elaborate models are then needed for modeling bedload transport. Typical

examples include models based on mixture theory and the two-phase flow equations presented in [10–12,14,15] . Note that

the birth–death Markov process theory that underpins the derivation of the Langevin Eq. (A.1) is not consistent when mul-

tiple events occur at the same time [39,52] , and so we expect that at larger Shields numbers, the parameterization we used

in the SVE Eqs. (1) –(3) and (7) no longer holds. 

5. Concluding remarks 

In this article, we investigated the problem of bedload transport in shallow water flows over erodible beds by using

the ensemble-averaged version, (1) –(3) and (7) , of the stochastic Saint-Venant–Exner equations presented in an earlier pub-

lication [40] . The bulk sediment transport rate q̄ s = q̄ s,c + q̄ s,d defined by Eq. (9) is split into the advective transport rate

reflecting the driving action of water ( ̄q s,c = ū s 〈 γ 〉 = β v̄ 〈 γ 〉 ) and the diffusive rate due to the spatial gradient of the mean

particle activity ( ̄q s,d = −D u ∂ x 〈 γ 〉 ) [37] . However, in contrast to classic theories, we take diffusion into account. The diffusive

term −D u ∂ xx 〈 γ 〉 in Eq. (7) results from the ensemble average of the stochastic Langevin Eq. (A.1) [38] . 

The relative importance of the diffusive and advective transport rates was studied numerically by considering two test

scenarios: (i) the degradation of a sloping bed and (ii) the non-uniform flow that results from the development and mi-

gration of anti-dunes in gravel bed streams on a steep slope. In test scenario (i), the diffusive transport rate was dominant

in the upstream reach of the flume in the early stage of the scouring process; it died out in the downstream reach of the

channel where the flow was almost uniform. There was an excellent agreement between the numerical results and ex-

perimental measurements taken by Newton [44] (see Fig. 2 ). This encouraging result substantiated our approach and its

numerical implementation. Test scenario (ii) provided evidence that the ensemble-averaged SVE Eqs. (3) –(7) can simulate

upstream migrating bedforms and predict the anti-dune wavelengths. Our numerical results were qualitatively consistent 

with the phenomenological description in the seminal experimental work done by Kennedy [80] (pp. 104–114), who stated

that “it was impossible to prevent large disturbances at the inlet (...) the disturbance at the downstream end of the flume

caused a train of waves to form.” Indeed, we observed wide fluctuations in bed elevation and the sediment transport rate

next to the flume inlet as anti-dunes migrated from the outlet to the inlet [see Figs. 4 –5 ]. 

The strong analogy that exists between the ensemble-averaged SVE Eqs. (3) –(7) and the non-equilibrium sediment trans-

port Eqs. (21) and (22) (also referred to as unsteady flux relaxation equations) was emphasized in Section 4 . We firmly

believe that embedding diffusion into deterministic non-equilibrium sediment transport equations is key to improving the

predictive capability of existing numerical models. On the whole, we found that the advective and diffusive transport rates

had the same order of magnitude at certain stages of bedload transport (typically under non-uniform flow conditions). En-

trainment, deposition, convection, and diffusion mechanisms compete with each other depending on the value of the Péclet

number Pe = l c /l d = ( ̄u 2 s /D u κ) 1 / 2 . The prevalent sediment transport mechanism is convection when Pe 
 1, a limiting state

in which the adaptation length l c,d tends to l c = ū s /κ; it is diffusion when Pe � 1 and l c,d ≈ l d = 

√ 

D u /κ . 

To conclude, we would again like to highlight that the versatile numerical framework described in this paper – and

in [40] – makes it possible to use either deterministic or stochastic formulations of bedload transport within the same

numerical framework. 
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Appendix A. Derivation of the advection–diffusion equation 

In this appendix, we explain how the advection–diffusion Eq. (7) was derived. This equation is the ensemble average of

a stochastic partial differential equation with a colored noise term; it was derived in [38,39] : 

∂b 

∂t 
+ 

∂ 

∂x 
( ̄u s b) − ∂ 2 

∂x 2 
(D u b) = E ′ − D 

′ + 

√ 

2 μb ξb , (A.1) 

where b is the Poisson density [part. m 

–1 ], γ is the particle activity [m], μ [s –1 ] is an entrainment parameter called the

collective entrainment coefficient , and ξ b [(m s) –1/2 ] is a Gaussian noise term. We also introduced the entrainment and depo-

sition rates per unit streambed area, E ′ [part. s –1 m 

–1 ] and D 

′ [part. s –1 m 

–1 ], respectively. The stochastic and deterministic

entrainment and deposition rates are related by 〈 E ′ 〉 = E B/V p and 〈 D 

′ 〉 = D B/V p , where V p = πd 3 / 6 is the typical particle
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volume. Eq. (A.1) is a stochastic (Langevin) partial differential equation [38,39,52] . Itô’s convention is used for defining and

interpreting stochastic integration [81] . 

The stochastic model was built on a birth-death Markov process describing the number N of moving particles within a

set window of length �x and width B [52] . This number varies when particles enter the window, leave it, are entrained from

the bed, or are deposited on the bed. As events occur randomly, N is a discrete random variable. Jump Markov process theory

leads to a stochastic differential equation (the forward Kolmogorov equation) describing the evolution of the probability P ( N )

of observing N [38,52] . Furthermore, we assume that particles are all the same (with the same size and weight). As we work

with continuum equations, it is more convenient to handle a continuous random variable instead of the discrete variable N .

To that end, we introduce the particle activity: 

γ = 

V p 

B �x 
N . (A.2)

The stumbling block is that when taking the continuum limit �x → 0, one cannot transform the forward Kolmogorov

equation into a stochastic partial differential equation for γ (because the Kolomogov equation is a delay equation of P ( N )).

There are a number of different strategies available to overcome this hurdle [38,39,53] . Here, we use an exact analytical

technique called the Poisson representation in order to pass from the discrete variable N to the continuous random variable

b [81] . This representation can be thought of as a Laplace or Fourier transform, and it performs remarkably well for delay

equations. Taking the Poisson representation of the forward Kolmogorov equation governing N leads to the evolution Eq.

(A.1) for b . Under special conditions, ( e.g. , a homogeneous steady state), this equation can be solved exactly, however on

most occasions it has to be solved numerically. One drawback of this is that there is no formal inverse Poisson representation

that would enable us to pass from b to N . Nevertheless, an interesting feature of the Poisson representation is that one can

relate the first-order moments of b and N , therefore, Eq. (7) is derived by taking the ensemble average of Eq. (A.1) and the

continuum limit �x → 0 [39] . 

We now comment on the physical meaning of Eq. (A.1) . The Poisson density b satisfies a stochastic advection–diffusion

equation including a source term and a non-negative colored term. When the collective entrainment coefficient μ is zero,

Eq. (A.1) becomes deterministic. This means that the number of moving particles N behaves like a nonhomogeneous Poisson

process, with small fluctuations around the mean (large fluctuations are rare events). When μ > 0, the behavior of N is

non-Poissonian, with large and frequent fluctuations of N around the mean [39,52] . It can then be deduced that the collec-

tive entrainment coefficient μ plays a key role in the fluctuation dynamics. Eq. (A.1) describes how fluctuations of γ are

generated by the source terms, advected by the particles, and attenuated by diffusion. 

Appendix B. A new empirical bedload transport equation 

In this appendix, we derive an empirical equation for steady-state particle activity 〈 γ 〉 ss . This empirical equation sets the

value of the λ/ κ ratio [see Eq. (12) ] and can thus be used to calibrate the model parameters: 

λ

κ
= 〈 γ 〉 ss = 

q̄ ss (Sh ) 

ū s 
= 

q̄ ss (Sh ) 

β v̄ 
. (B.1)

The idea underpinning this derivation is that at sufficiently high Shields numbers, the sediment transport rate can be es-

timated using empirical algebraic bedload transport equations q̄ ss (Sh ) , such as the equation proposed by Fernandez Luque

and van Beek [56] : 

q̄ ss = 〈 γ 〉 ss ū s with 〈 γ 〉 ss = 

λ

κ
= 

c e V p 

c d d 
2 

(Sh − Sh cr ) , ū s = β v̄ , (B.2)

where c e /c d = 1 . 75 [56,76] and the sediment-to-water velocity function β ≤ 1 is given by Eq. (8) or any combination of

parameters that represent the particle size and the turbulent boundary layer characteristics at the bottom, e.g. , see [61] . The

steady-state particle activity 〈 γ 〉 ss can be deduced because, under steady, uniform flow conditions, the particle activity and

sediment transport rate are linearly related [see Eq. (9) ]. 

This approach is, however, not free of bias if one applies it without caution. Among other things, algebraic bedload

transport equations q̄ ss (Sh ) assume the existence of a constant critical Shields number Sh cr below which there is no sediment

transport, and they have been obtained by adjusting a power-law function q̄ ss (Sh ) ∝ (Sh − Sh cr ) 
n (with n an exponent close

to 3/2) to experimental data at sufficiently high Shields numbers. As Sh cr is notoriously difficult to define and measure [71] ,

and the algebraic equations are usually adjusted to data satisfying Sh > 2 Sh cr , these equations are inaccurate in the limit

Sh → 0. This difficulty can be overcome by applying a corrective function that connects the low and high Shields number

domains. 

Buffington [71] studied bedload transport at low Shields numbers and showed that the sediment transport rate varies

as Sh 17.5 in the limit Sh → 0, whereas at large Shields numbers, an empirical bedload transport equation, such as Eq. (B.2) ,

provides the scaling q̄ ss ∝ Sh 3 / 2 (since 〈 γ 〉 ss ∝ Sh and ū s ∝ Sh 1 / 2 ). We fitted a nonlinear function q̄ ss = F (Sh ) to Buffington’s

data, subject to the constraint F ∝ Sh 3/2 when Sh 
 Sh cr . There are different techniques for smoothly matching the low and

high Shields number domains. This can be achieved, similarly to boundary layer corrections, by rescaling the variables: 

ˆ q ss = 

q̄ ss 

q̄ s ∗
and 

̂ Sh = 

Sh 

Sh ∗
, (B.3)
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Fig. B.8. Comparison between the scaling factor �( ̂  Sh ) given by Eq. (B.5) , the experimental data collected by Buffington [71] , and Cheng’s [82] equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the pair (Sh ∗, q̄ s ∗) corresponds to the lower boundary of the domain over which Fernandez Luque and van Beek [56]

interpolated their data. Fernandez Luque and van Beek [56] took Sh ∗ ≈ Sh cr + 2 × 10 −3 , but the precise value is unimportant

as long as the point (Sh ∗, q̄ s ∗) lies on the curve associated with the bedload transport Eq. (B.2) . Using nonlinear curve-fitting

methods, we get: 

q̄ ss (Sh ) = 

q̄ s ∗ Sh 

3 / 2 

Sh 

3 / 2 
∗

�

(
Sh 

Sh ∗

)
, (B.4) 

where, 

ln � = 5 . 61 − 11 . 22 

[ 
1 + exp 

−37 . 41 ln ̂  Sh / ( ln 
2 ̂ Sh −6 . 22) 

] −1 

, (B.5) 

Fig. B.8 shows Buffington’s data, �( ̂  Sh ) , and the trend q̄ ss / (V s d) = 13 Sh 3 / 2 exp (−0 . 05 Sh −3 / 2 ) as fitted by Cheng [82] (with

q̄ s ∗/ (V s d) = 10 −4 and Sh ∗ = 0 . 0376 ). As desired, the function � (B.5) tends to the constant value 273.14 when 

̂ Sh > 2 . 72 ,

and so Eq. (B.4) is consistent with the scaling q̄ ss ∝ Sh 3 / 2 for the high Shields number domain. For −0 . 5 < ln ̂

 Sh < 2 , the

function � increases rapidly with increasing Sh , and it closely describes the experimental trend. Cheng’s equation and our

Eq. (B.5) show little difference in their predictions of q̄ ss for ln ̂

 Sh > −0 . 5 . In contrast, for ln ̂

 Sh < −0 . 5 , the equations behave

quite differently since Eq. (B.5) leads to � ≈ 0.0037 in the limit ̂ Sh → 0 , whereas Cheng’s equation shows that � becomes

vanishingly small ( ln � ∝ − Sh −3 / 2 ). Because of the fair amount of scatter in Buffington’s data and the large fluctuations of

the sediment transport rate, it is difficult to decide which one performs best. 

We are now able to infer the steady-state particle activity 〈 γ 〉 ss from q̄ ss . Substituting Eq. (B.4) into Eq. (B.1) and using

the Darcy–Weisback equation v̄ = 

√ 

8 / f V s Sh 1 / 2 , we end up with: 

〈 γ 〉 ss = 

λ

κ
= 〈 γ 〉 ∗ ̂ Sh �( ̂  Sh ) , 〈 γ 〉 ∗ = 

q̄ s ∗
√ 

f 

β V s 

√ 

8 Sh ∗
, (B.6)

where 〈 γ 〉 ∗ is the ensemble-averaged particle activity for the reference point (Sh ∗, q̄ s ∗) ( ̂  Sh = 1 , � = 1 ). The sediment-to-

water velocity ratio β in Eq. (8) depends on the friction factor as β ∝ f 1/2 [40] and so, in Eq. (B.6) , 〈 γ 〉 ∗ is independent of

the flow conditions. At large Shields numbers, we find the same scaling 〈 γ 〉 ss ∝ Sh as for Eq. (B.2) . At small Shields numbers,

〈 γ 〉 ss varies nonlinearly with the Shields number. 

The scaling 〈 γ 〉 ss ∝ Sh was also obtained by Fernandez Luque and van Beek [56] , Charru [59] , and Lajeunesse et al.

[76] at sufficiently high Shields numbers. Based on high-resolution particle tracking in flume experiments, Lajeunesse et al.

[76] found c e /c d = 1 . 75 and c d = 0 . 094 ± 0 . 006 at moderate and high Shields numbers. Our Eq. (B.7) yields a constant ratio

c e / c d for Sh 
 Sh ∗, but as Sh → 0, it predicts that this ratio varies nonlinearly with 

̂ Sh : 

c e 

c d 
= 

〈 γ 〉 ∗ d 2 

Sh ∗ V p 
�( ̂  Sh ) . (B.7) 

Appendix C. Calibration of the model parameters in Newton’s experiment 

Calibration was achieved in four steps. 
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Fig. C.9. Calibration of the critical Shields number Sh cr (or critical slope angle θ cr ) and the depth at the flume outlet in Newton’s experiment. Both figures 

were constructed using available experimental data (see solid circles in Fig. 2 ) in the downstream reach of the flume ( x > 6 m ) with a constant water 

discharge Q = 0 . 0057 m 

3 s −1 under uniform flow conditions. The parameter Sh cr = 0 . 0441 is used in the numerical simulation to evaluate { β, ̄u s } and 

{ λ, 〈 γ 〉 ss } – see Eqs. (8) and (C.1) , respectively. The dimensionless erosion-to-deposition ratio c e /c d = 0 . 525 was used in the non-equilibrium numerical 

simulation. There was good agreement with the experimental results when the sediment diffusion was included in the modeling, as shown in Fig. 2 . 

Plot (b) was obtained by solving Eqs. (10) and (4) for h and by varying the slope tan θ with time as per the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The initial water depth H , bed angle θ , and water discharge Q were used to calibrate the bed roughness scaling factor

k s for the determination of the Darcy–Weisbach friction factor f , which takes the form (4) in a fully developed turbulent

flow and rough regime. On substituting Eq. (4) into Eq. (10) and solving for the scaling factor, we got k s ≈ 4, which

was kept constant during the numerical simulations. Following Bohorquez and Ancey [40] , we computed the sediment

velocity using Eq. (8) . Note that during the numerical simulations, the parameter δ2 increased due to the greater flow

depths developing at shallower slopes as time elapsed, modifying both f and β [see Eqs. (4) and (8) ]. 

2. Then, we calibrated the critical Shields number Sh cr for the onset of sediment motion by fitting the solid discharge at the

flume outlet [circles in Fig. 2 (c)] as a function of the mean bed slope [corresponding to the experimental bed in Fig. 2 (a)],

which gave q̄ ss = 6 . 85 θ − 0 . 005 , with θ in degrees and q̄ ss in m 

2 s −1 . This step required algebraical manipulations and

iterations of the equations, which are not reported here for the sake of brevity. The critical angle of equilibrium was

thus θcr = 0 . 042 ◦. Taking into account that Newton’s experiment kept the water discharge constant, and making use of

(10), (11) , and (4) , we got the critical Shields number Sh cr = 0 . 0441 for the theoretical grain-size to water-depth ratio

δ2 = 0 . 009 . 

3. The next parameter to be calibrated was the erosion/deposition rate κ = c d 

√ 

(s − 1) g/d or, equivalently, the dimension-

less parameter c d [40] . To be consistent with previous non-equilibrium numerical simulations of Newton’s degradation

experiment [14,17] , we estimated the deposition rate from the convective adaptation length � c as κ = ū s /� c . Using the

scaling proposed by Charru [59] for turbulent flows, we obtained c d = ū s 
√ 

d / 
√ 

(s − 1) g � 2 c . Wu and Wang [14] , El kadi Ab-

derrezzak and Paquier [17] , and Zhang et al. [15] adopted � c ≈ 1 m. Surprisingly, by setting � c ∼ 1 m, we got c d ∼ O (10 −3 )

in Newton’s experiment—a much lower value than the c d = 0 . 1 proposed by Lajeunesse et al. [76] . We set c d = 1 . 6 × 10 −3

in our computations. 

4. Following Charru [59] and Bohorquez and Ancey [40] , we set the entrainment rate λ so that particle activity reached a

steady state during the simulation: 

〈 γ 〉 ss = 

λ

κ
= 

c e V p 

c d d 
2 

( Sh − Sh cr ) . (C.1)

Fig. C.9 (a) shows a comparison between the sediment transport rate in Newton’s experiments and our theoretical predic-

tion for uniform flow with c e = 8 . 4 × 10 −4 . For this value of c e , theory underestimates the experimental bedload trans-

port rate in non-equilibrium degradation experiments. This is not a shortcoming of non-equilibrium transport theory,

but rather this apparently odd behavior reflects the increase in the total sediment load transport rate due to sediment

diffusion and an unsteady flow, as described in Section 3.2 . 

Appendix D. Dispersion relation and Briggs–Bers criterion 

The solution to the linear perturbation equations in the spatio-temporal stability analysis can be written as

(z ′ , φ′ , η′ , u ′ ) = T exp [ i (k ̂  x − ω ̂

 t ) ] , where the eigenvector is denoted by T ≡ (ζ , �, �, U) , the complex wavenumber by

k = k r + i k , and the complex frequency by ω = ω r + i ω . 
i i 
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For the closure Eq. (B.2) , the eigenvalues and eigenvectors were obtained from the following generalized eigenproblem

A · T = 0 : [ 

−i ω 

( 

1 0 0 

0 1 0 

0 0 F r 2 

) 

+ i k 

⎛ ⎝ 

β 0 β
0 1 1 

i k e 
ω 1 F r 2 − i 2 k e 

ω (1 −u 2 ∗ ) 

⎞ ⎠ 

−k 2 

( −D 0 0 

0 0 0 

0 0 −V 

) 

+ 

⎛ ⎝ 

k d 0 − 2 k d 
1 −u 2 ∗

0 0 0 

0 −1 2 

⎞ ⎠ 

⎤ ⎦ ·
[ 

�
�
U 

] 

= 0 . (D.1) 

The dimension of matrix (D.1) was reduced by one using ζ = i k e �/ω − i 2 k e U/ [ ω (1 − u 2 ∗ ) ] . The solution was controlled by

the following dimensionless groups: 

k e = 

πc e (1 − u 

2 
∗ ) 

6 (1 − ζb ) δ F r 
√ 

s − 1 

, k d = 

c d (s − 1) 

δ F r tan θ
, u ∗ = 

√ 

Sh cr 

Sh 

, V = νt F r ( tan θ ) 3 / 2 , D = 

D u tan θ

H V 

. (D.2)

The dispersion relation was obtained by setting the determinant of (D.1) to zero, i.e. , D (k, ω) ≡ | A | = 0 . The dispersion

relation links the complex wavenumber k with the complex frequency ω. Note that the dimensionless particle diffusion D
increases the order of the characteristic polynomial (D.1) up to O ( k 2 ). 

For determining the saddle points, we sought solutions to D (k 0 , ω 0 ) = 0 and ∂ k D (k 0 , ω 0 ) = 0 , with ∂ kk D (k 0 , ω 0 ) � = 0 re-

sulting from a pinch point between two spatial branches k + (ω) and k −(ω) originating from distinct halves of the k -plane

with k 0, i < 0 ( i.e. , spatially growing solution) and ω 0, i > 0 ( i.e. , temporal growing solution). In doing so, we ensured the

zero group velocity condition c g = ∂ ω/∂ k = (∂ D /∂ k ) / (∂ D /∂ ω) = 0 , referred to as the Briggs–Bers or (in Soviet literature)

the Fainberg–Kurilko–Shapiro criterion [68,69] . Under this condition, the flow is absolutely unstable. Note that the increase

to O ( k 2 ) in the order of the characteristic polynomial (D.1) occurs with D > 0 and favors the existence of mathematical

solutions to the Briggs–Bers condition. In the presence of absolute instability, with just one saddle point, there are an ab-

solute frequency and an absolute growth rate that determine the system’s selective response to perturbations. The system

therefore selects a natural frequency and, consequently, a unique saddle point wavenumber for the spatial branches among

the wide range of unstable wavenumbers k . In this case, the response is dominated by the mode with zero group velocity

which grows in the same place, whereas the rest of the frequencies and wavenumbers are swept away by the flow [59] . In

the presence of multiple saddle points, Pier and Peake [83] showed that the theoretical calculation of the natural frequency 

and wavenumber is much more complicated. 
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