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a b s t r a c t 

Natural gravity-driven flows can increase in volume by eroding the bed on which they descend. This pro- 

cess is called basal entrainment and is thought to play a key role in the bulk dynamics of geophysical 

flows. Although its study is difficult using field measurements, basal entrainment is more easily amenable 

to analysis using laboratory experiments. We studied basal entrainment by conducting dam-break exper- 

iments releasing a fixed amount of viscoplastic fluid (a Herschel–Bulkley fluid) on a sloping, erodible bed 

of fixed depth. Entrainment was observed continuously, far from the sidewalls, using cameras. Bed ma- 

terial was quickly entrained, which led to flow advancement. Although the slope inclination had clear 

effects on the entrainment mechanisms, as shown by the internal measurements, this did not translate 

into faster front progression. Instead, the depth and length of the entrainable material were the most im- 

portant controlling parameters of front velocity, as the surge scoured out the entrainable layer, pushing 

the entrainable material downstream and following the rigid bed’s geometry. Bulk measurements (front 

position and flow depth profile) were also compared with predictions from lubrication theory. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Gravity driven flows, such as snow avalanches and debris flows,

pose a threat to human activities and settlements in mountain

areas. The economic importance of these activities (e.g. mining,

forestry, electricity production, tourism, transportation) has en-

couraged research into methods for calculating the main features

of these flows (e.g. run-out distance, flow depth, impact force) [1] .

In the 1960s, the idea emerged that an analogy could be made

between avalanches and water flows, and since then the Saint–

Venant equations have been increasingly used to describe the mo-

tion of “snow floods” [2–4] , rock avalanches [5] , debris flows [6] ,

turbidity currents [7] , and submarine avalanches [8] . 

Although the analogy with water waves has been pivotal to

laying out the mass and momentum balance equations, there are

crucial differences between water and natural materials involving

mixtures of fluids and solids. A large amount of research has been

done to determine the effects of bulk composition on rheological

behaviour, flow resistance and self-organisation during flow. An-

other key difference between water and natural materials is re-

lated to mass exchanges between the flow and the bed: gravity

driven flows can grow in size by mobilising loose material lying

in their paths, or they can lose mass as a result of various pro-

cesses (e.g. levee formation, debulking due to solid particle sedi-
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entation) [9–15] . This raised the question of whether basal en-

rainment affects bulk dynamics. For instance, for powder-snow

valanches, Kulikovskiy and Svehnikova [16] developed a simple

odel which took into account the incorporation of air and snow

nd showed that basal entrainment plays an essential part in the

rowth of high-velocity avalanches. Without snow entrainment, air

ntrainment causes a dilution of the snow cloud, and thus a de-

rease in buoyancy forces [17] . Generalising the depth-averaged

aint–Venant equations to eroding flows mobilising natural mate-

ials has proved challenging to the different groups working on the

ssue. Recently, Iverson and Ouyang [18] reviewed the various at-

empts to model mass exchanges between flows and beds within

he framework of the Saint–Venant equations. They showed that

any existing models violated mass and momentum conservation

aws, mostly because the boundary conditions at the bed-flow in-

erface were incorrect. One underlying issue raised by their review

as the absence of closure equations for the entrainment and de-

osition rates. 

To shed light on basal entrainment’s effects on the behaviour of

ravity-driven flows, we investigate a problem that retains the es-

ential features of natural scenarios, while being sufficiently simple

o be manageable semi-analytically. We consider the dam-break

roblem for a viscoplastic fluid, i.e. the flow of a fixed volume of

uid suddenly released down a slope from a reservoir. The sloping

ed is a solid substrate, but at a certain distance from the reser-

oir, the flow enters into contact with an erodible stationary layer

omposed of the same fluid and starts entraining it. We sought to

http://dx.doi.org/10.1016/j.jnnfm.2017.01.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.01.009&domain=pdf
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o

etermine how basal entrainment affected the front position and

ow-depth profile over time. 

The viscoplastic dam-break problem is a typical example of

ime-dependent flow, in which the flow passes through different

hases from release to run-out. This problem has been studied

ithin the frameworks of the Saint–Venant equations [19–22] and

ubrication theory [23–30] . Based on the assumptions that the flow

s shallow (i.e. the aspect ratio ε = L/H, where L and H denote

cales of length and depth) and slow (i.e. the Reynolds flow num-

er is low), lubrication theory approximates the local momentum-

alance equation using an asymptotic expansion in ε. The decisive

dvantage of lubrication theory over the Saint–Venant equations is

hat the velocity and stress fields are calculated with no recourse

o closure equations as long as inertia plays a negligible role. 

In the present paper, we focus on a nonlinear class of viscoplas-

ic materials called Herschel–Bulkley fluids. Viscoplastic materi-

ls behave like fluids when they are sufficiently stressed, but like

olids when the stress state is below a given threshold (called the

ield stress) [31–34] . As natural materials exhibit solid- and fluid-

ike properties, the use of viscoplastic models has been proposed

n order to describe the rheological behaviour of snow [35] , mud

20] , debris mixtures [36–38] , lava [39] and submarine mud [8] .

ctual rheological behaviour exhibits complex properties—such as

wo-phase effects (pore pressure diffusion), dilatancy, particle mi-

ration and segregation [6,40–42] —which are not accounted for by

he simple constitutive equations of single-phase continua such as

he Herschel–Bulkley equation. Yet in spite of these limitations, the

erschel–Bulkley equation provides a useful approximation of var-

ous natural viscoplastic flows [20,22,24,27,28,43–47] . As viscoplas-

ic models deal with the solid-liquid transition, they also seem rel-

vant for describing basal entrainment: part of the bed may yield

nder the effects of the normal and shear stresses exerted by the

ow, and then be entrained in that flow. This is, for instance, what

s thought to happen in snow avalanches [48–50] . 

In this paper, we tackle the issue of basal entrainment using lu-

rication theory. We begin with a theoretical perspective of basal

ntrainment in shallow flows within the framework of lubrication

heory (see Section 2 ). In Section 3 , we describe the experimen-

al procedure used for measuring the flow variables and observ-

ng what happens inside eroding flows. Section 4 presents our

xperimental results and compares them with theoretical predic-

ions from lubrication theory. Section 5 concludes the paper. Three

ideos are available to accompany this paper (the acknowledge-

ents section provides the link to the data repository). 

. Dam-break wave eroding a stationary layer 

This section examines the effects of basal entrainment on the

ront motion of a viscoplastic avalanche. Let us consider that at

ime t = 0 , an avalanche made up of a Herschel–Bulkley fluid is

eleased from a reservoir. Initially the fluid material flows over a

loping solid boundary. The bottom inclination is denoted by θ . At
z

h(x, t)

stationary

fixed bottom

b
xstep

ig. 1. Configuration of the flow. A viscoplastic avalanche is released from a reservoir. It 

f the same fluid. 
ime t = t 0 , the material encounters a stationary layer made up of

he same fluid and occupying a step of length � bed (see Fig. 1 ). The

iscoplastic flow spreads across this stationary layer and entrains

art of it. The front position is denoted by x f ( t ), the flow depth

y h ( x, t ) and the velocity field by u = (u, w ) . We use a Cartesian

rame with the x -axis pointing downward and the z -axis normal to

he slope. 

To solve this problem, we use lubrication theory. Within the

ramework of this theory, the momentum balance equations are

implified by neglecting inertia terms and the streamwise gradient

f the normal stress. This makes it possible to deduce the pressure

nd shear stress distributions to the leading order. Making use of

he constitutive equation then leads to the velocity profile and, fi-

ally, the depth-averaged mass conservation provides the evolution

quation for the flow depth h ( x, t ). There is a large body of work

pplying this theory to viscoplastic flows [23,26,27,30,51] ; it is suc-

inctly summarised in the next section. 

.1. Solution for rigid bottoms 

In the limit of low Reynolds number and small aspect ratio

umbers, motion is dictated by the balance between the stream-

ise gradient of the pressure ∂ x p , gravitational forces and the

ross-stream gradient of the shear stress ∂ y τ . To the first order, the

ressure p adopts a hydrostatic distribution, while the shear stress

follows a linear distribution whose coefficient is controlled by

he bed slope and free surface gradient: 

p = �g(h − z) cos θ and τ = �g sin θ (h − z) 

(
1 − cos θ

∂h 

∂x 

)
. (1)

hese expressions hold regardless of the constitutive equation. 

We now consider the constitutive equation for simple Herschel–

ulkley materials 

˙ γ = 0 if τ < τc , 

τ = τc + κ| ̇ γ | n if τ ≥ τc , 
(2) 

here τ c denotes the yield stress, ˙ γ = d u/ d z the shear rate, n the

hear-thinning index (as in most cases n ≤ 1) and κ the consis-

ency. These materials flow when the basal-shear stress exceeds

he yield stress τ c . When this condition is satisfied, there exists a

urface z = Y (x, t) where the shear stress equals the yield stress: 

 = h − τc 

�g sin θ
∣∣1 − cot θ ∂h 

∂x 

∣∣ . (3) 

elow this surface, the fluid is sheared and above this surface it

oves like a plug. Equations (2) and (1) lead to the following ex-

ression for the streamwise velocity component u ( x, z, t ) 

 (x, z, t) = 

n 

n + 1 

A 

(
1 − S 

∂h 

∂x 

)1 /n (
Y 1+1 /n − ( Y − z ) 

1+1 /n 
)

for 

0 ≤ z ≤ Y, (4) 
x

δhlayer

ed

flows over a sloping rigid bed until it gets in contact with a stationary layer made 
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with 

A = (�g sin θ/κ) 1 /n and S = cot θ . (5)

For z > Y , the velocity is constant and equal to the plug velocity

u p = u (x, z = Y, t) . 

Integration of the continuity equation leads to the bulk mass

conservation equation 

∂h 

∂t 
+ 

∂h ̄u 

∂x 
= 0 , (6)

with ū the depth-averaged velocity obtained by integration of the

velocity field (4) 

ū = 

1 

h 

∫ h 

0 

u (x, z, t)d z = 

A 

h 

nY 1+1 /n 

(2 n + 1)(n + 1) 

(
1 − S 

∂h 

∂x 

)1 /n 

× (n (h − Y ) + (n + 1) h ) . (7)

2.2. Extension to erodible bottoms 

At time t = t 0 , the flow front is about to enter the erodible do-

main, where a layer of fluid is held initially at rest behind a back-

wards step (see Fig. 1 ). The stationary fluid lies between z = 0 and

z = b(x ) ≤ 0 , defining a rigid base below which entrainment is im-

possible. 

The problem of basal entrainment can be greatly simplified by

considering that the transmission of stress into the bed occurs very

quickly, almost instantaneously, and from the outset, the velocity

between the overriding avalanche and the bed is continuous. Ve-

locities ar assumed to extend down to the rigid base as soon as Y

> 0 (for both eroding and non-eroding flows). Analysis of Stokes’

problems— which study how a fluid layer responds to a sudden

solicitation [52–54] —shows that fluidisation occurs nearly instanta-

neously in shallow viscoplastic layers. Eq. (6) can then be extended

to varying bottoms (see Appendix A ) 

∂h 

∂t 
+ A 

∂ 

∂x 

(
n (Y − b) 1+1 /n 

(1 + n )(1 + 2 n ) 

×
(

1 − S 
∂h 

∂x 

)1 /n 

(n (h − Y ) + (n + 1)(h − b)) 

) 

= 0 . (8)

2.3. Numerical solution 

We consider a viscoplastic dam-break wave eroding a layer of

viscoplastic fluid of thickness δh and length � bed (see Fig. 1 ). We

solve Eq. (8) , which is a nonlinear, parabolic, partial differential

equation, for determining the front position x f and the flow depth

profile h ( x, t ). We used the inbuilt MatLab solver pdepe to do

this (the script we used is available from a data repository, see

acknowledgements). Note that the Galerkin method [55] used in

this solver is unable to cope with shocks. We therefore smoothed

the discontinuities in the topography at each end of the step

by approximating the step as b(x ) = −δh/ 2( tanh (a (x − x step )) −
tanh (a (x − x step − � bed ))) where a is a free parameter. In practice,

setting a = 10 3 provided good results (for mesh size �x = 0 . 5 mm,

the thickness of the regularised step was 4 mm, i.e. 8 �x ). Using

no-flux boundary conditions at each end, we solved the governing

Eq. (8) for the flow depth. 

Fig. 2 (a) shows the flow depth evolution for a viscoplastic

avalanche released from a reservoir of length � res = 30 cm and vol-

ume (per unit width) V 0 = 0 . 05 m 

2 , in the absence of entrainment

( δh = 0 ). Figs. 2 (a-b) show how basal entrainment alters the flow

depth profile. The depth of the stationary layer is either δh = 1 cm

or δh = 2 cm, and its length is the same ( � bed = 20 cm). When the

material flows over the stationary layer, it accelerates, which is re-

flected by a decrease in the flow depth. The material decelerates as
oon as it reaches the fixed bottom. When the front lies over the

rodible bed, the flow depth profile is blunter. Fig. 2 (d) shows the

ront position with time: the acceleration produced by the station-

ry layer is clearly visible whereas its deceleration is less marked.

he deeper the stationary layer, the more vigorously the front ac-

elerates. 

In a previous paper [56] devoted to Newtonian fluids, we inves-

igated the same problem as that presented here. The main differ-

nce between viscoplastic and Newtonian fluids is that basal en-

rainment produces a noticeable increase in the front position in

he long run for viscoplastic materials whereas for Newtonian flu-

ds there is little difference between solutions with and without

asal entrainment. Indeed, as soon as the front has passed the sta-

ionary layer, it undergoes a vigorous deceleration and in the end,

here is no difference in the front position between flows with or

ithout basal entrainment. This deceleration is not seen for vis-

oplastic materials. 

The evolution Eq. (8) exhibits various flow regimes, depend-

ng on the relative strength of gravitational forces and yield stress.

wo limiting flow-regimes can usually be delineated [27] . The

iffusive regime occurs over shallow slopes. It refers to flows

or which the pressure gradient is counterbalanced by viscous

orces (acting in the cross-stream direction). The velocity scale is

 = (�g cos θ/κ) 1 /n H 

1+2 /n /L 1 /n . The slope-dominated regime corre-

ponds to the limiting flow conditions where the pressure gradi-

nt (in the downstream direction) becomes negligible compared

o gravitational and viscous forces. The flow then reaches a near-

quilibrium regime, where viscous forces balance gravitational

orces. The velocity scale is then U = (�g sin θ/κ) 1 /n H 

1+1 /n . The

resent paper mainly explores the slope-dominated regime. 

. Experimental procedure 

.1. Flume 

We used a 3.5 m long, 10 cm wide, inclinable flume made of

 poly(methyl methacrylate) (PMMA), with a 50 cm-long viewing

indow on each side (see Fig. 3 ). A mobile pneumatic lock-gate

as added in order to release the fluid at the appropriate distance

rom the viewing window. Two thin sheets of PMMA were placed

long the length of the flume, with a gap between the two pieces

lled with fluid. In this way, the dam-break wave initially flowed

ver a rigid base, then over a finite layer of loose material, be-

ore continuing over a rigid base again. The distance from the back

all of the reservoir to the erodible layer was denoted by x step .

he dimensions of the erodible layer were δh deep by � bed long.

he holding reservoir’s length was fixed at 30 cm. The flume was

lmed using three cameras (see Fig. 3 and Sections 3.4 and 3.5 ). 

.2. Fluid 

We used a viscoplastic gel called Carbopol Ultrez 10 (supplied

y Lubrizol), prepared as follows: first, powder was added to the

equired amount of deionised water at 60 °C and left until it sank

o the bottom, for a few hours or overnight; then it was stirred

or around two hours and left to settle for a few hours more; fi-

ally, an aqueous solution of NaOH was prepared and mixed with

he Carbopol—water solution, in order to neutralise it. It was dur-

ng this final step that the mixture took on its viscoplastic gel-like

ppearance. Once prepared, bubbles had to be removed by stirring

t a constant, low speed for around one hour. 

The Carbopol concentration was set at 0.3% by weight. The

heological properties were determined using a Bohlin Gemini

otational rheometer. Striated parallel plates, with diameters of

0 mm and 25 mm, were chosen to reduce slip due to wall deple-

ion effects; gap size was 1 mm. A Herschel–Bulkley constitutive
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Fig. 2. Viscoplastic avalanche over a stationary layer of length � bed = 20 cm. (a–c) Flow depth profiles at times t = 0 , 6 s, 60 s, 600 s and 60 0 0 s. (a) Bed depth δh = 0 

(no entrainment). (b) δh = 1 cm. (c) δh = 2 cm. (d) Front position with time for different heights δh of the stationary layer: solid line δh = 0 (no entrainment), dotted 

line δh = 0 . 5 cm, dashed line δh = 1 cm, dot-dash line δh = 2 cm. The grey area indicates the stationary layer. Computations for a Herschel–Bulkley fluid of index n = 1 / 3 , 

consistency κ = 50 Pa s 1/ n , yield stress τc = 100 Pa. The initial volume (per unit width) is V 0 = 0 . 05 m 

2 and the slope is θ = 30 ◦ . 

Fig. 3. Experimental set-up including reservoir, lock-gate, step and bed, as well as the location of the laser sheet. The flume was tilted at slope angle θ and the bed 

dimensions were � bed long by δh deep. 
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Table 1 

Experiments performed to obtain internal velocity measurements (Carbopol-seeded 

for particle image velocimetry). Slope θ , bed thickness δh , mass released M , position 

of the step x step , length of the step � bed , fluid temperature T . 

run name θ [ °] δh [mm] M [kg] x step [cm] � bed [cm] T [ °C] 

12-0a 12 0 3 70 – 20.0 

12-6Ra 12 6 3 70 30 20.35 

12-6Ca 12 6 3 70 30 20.25 

16-0a 16 0 3 70 – 20.0 

16-0b 16 0 3 90 – 19.8 

16-6Ra 16 6 3 70 30 19.9 

16-6Ca 16 6 3 70 30 19.65 

16-6Cb 16 6 3 90 30 19.7 

20-0a 20 0 3 90 – 19.7 

20-6Ra 20 6 3 90 30 20.15 

20-6Ca 20 6 3 90 30 20.0 

24-0a 24 0 3 90 – 19.6 

24-6Ra 24 6 3 90 30 19.6 

24-6Ca 24 6 3 90 30 19.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Bulk experiments performed (Carbopol dyed with methylene blue). 

Run name Slope, ° d , mm M , kg l step , cm l bed , cm temp, °C 

12-0a 12 – 3 70 – 19.2 

12-6Ra 12 6 3 70 30 19.2 

12-6Ca 12 6 3 70 30 19.3 

16-0c 16 0 3 70 – 19.5 

16-3Rd 16 3 3 70 30 19.9 

16-3Cc 16 3 3 70 30 19.85 

16-3Re 16 3 3 80 20 19.9 

16-3Cd 16 3 3 80 20 19.9 

16-6Rc 16 6 3 70 30 19.7 

16-6Cc 16 6 3 70 30 19.5 

16-9Ra 16 9 3 70 30 20 

16-9Ca 16 9 3 70 30 20 

16-6Rd 16 6 3 90 30 19.9 

16-6Cd 16 6 3 90 30 19.65 

16-6Cf 16 6 3 90 20 19.9 

16-6Cg 16 6 3 90 15 19.5 

16-0e 16 0 3 90 – 19.6 

20-0a 20 0 3 90 – 19.45 

20-6Ra 20 6 3 90 30 19.95 

20-6Ca 20 6 3 90 30 20.1 

20-6Rb 20 6 3 90 20 20 

20-6Cb 20 6 3 90 20 19.8 

20-6Rc 20 6 3 90 10 19.5 

20-6Cc 20 6 3 90 10 19.65 

20-6Cd 20 6 3 110 10 19.65 

20-6Rd 20 6 3 110 10 19.9 

20-6Ce 20 6 3 100 20 19.95 

20-6Re 20 6 3 100 20 19.6 

20-3Ra 20 3 3 90 30 19.55 

20-3Ca 20 3 3 90 30 19.95 

24-0a 24 – 3 90 – 19.45 

24-3Ra 24 3 3 90 30 19.5 

24-3Ca 24 3 3 90 30 19.4 

24-6Ra 24 6 3 90 30 19.2 

24-6Ca 24 6 3 90 30 19.2 

a  

c  

fi  

i  

v  

p  

h  

s  

a  

m

Fig. 4. A material surface, called the “contact discontinuity”, separates the surge 

from the bed material. Experimentally, this interface can be tracked by using flu- 

ids of different colours. The front (point F) is the point of furthest reach, at which 

the flow depth drops to zero. The intersection of the contact discontinuity and free 

surfaces is represented by point K (where the flow depth profile displays a kink). 
Eq. (2) was fitted to the rheometrical data. The fluid was found

to have the rheological parameters κ = 35 Pa s n , n = 0 . 33 and

τc = 58 Pa. The bulk density was � = 997 . 45 kg m 

−3 . Analysing the

spread of the rheometric measurements using a 95% confidence in-

terval gave an error of around 5% for κ and n , and around 3% for

τ c . 

Throughout, care was taken to remove the bubbles from the

fluid and to perform all the experiments as close to 20 °C as pos-

sible. Furthermore, precautions were taken to minimise slip on

the PMMA base—any ionic reaction would increase wall depletion,

leading to excess lubrication on the base. Coating the flume with

Carbopol and letting it dry was found to reduce this effect signifi-

cantly [57] (at least for non-eroding flows). 

3.3. Experimental protocol 

The mass released, the Carbopol concentration and the slopes

used were all chosen so that the surge released from the reser-

voir flowed easily, while the erodible but stationary layer of fluid in

the step stayed still. The bed location was then chosen in order to

guarantee that viscous forces were greater than inertial forces, τ L

∼ κLU 

n / H 

n � ϱVL / T 2 , where L, H , and U are the scales for length,

height and velocity, respectively: T = L/U and V = LH. Then, bal-

ancing gravity against viscous forces, U 

n = �g sin θH 

n +1 /κ, so that

L � (�V (g sin θ ) 1 −n/ 2 /κ) 2 / (3 n +2) . For this reason, the bed began at

least 70 cm downstream for slopes at 12 ° and 16 °, but at least

90 cm downstream for slopes at 20 ° and 24 °. In these experi-

ments, the Bingham number, defined as Bi = τc / (�gH sin θ ) (with

H ≈ 0.03 m), was never greater than 1. In this regime, the slope

effects dominated yield stress effects and thus the shear layer at

the base of the flow was significant. This was in comparison with

yield-stress dominated flows, in which the pseudo-plug extended

almost to the base [27] . 

Two sets of experiments were carried out. In one set, particle

image velocimetry experiments were conducted to identify any in-

ternal changes due to entrainment. Table 1 shows the main fea-

tures of this set. In the other set, the fluid was stained with methy-

lene blue so that the flow front could be tracked down the length

of the flume and surface height measurements could be made.

Table 2 shows the main features of this campaign. 

Three types of experimental run were performed, denoted as 0,

R or C in Tables 1 and 2 . The 0 runs corresponded to cases with no

entrainment base, where the dam-break flowed over a rigid base

all the way down the channel. The R (reservoir) runs involved fluid

stained with methylene, or seeded with rhodamine-tagged parti-

cles, and released from the reservoir, whereas the entrainable bed

was made of clear fluid (unseeded, unstained): this configuration
llowed us to study the surge/bed interface. The C (combined) runs

ontained rhodamine-tagged seeds everywhere so that the velocity

eld could be obtained in the bed and the surge. Examples of the

mages obtained in the C and R runs are shown in Fig. 5 . These

arious runs made it possible to determine the positions of key

oints: point F (front position x f at which the flow depth satisfies

 (x f ) = 0 ) and point K (lying at the intersection between the free

urface and the “contact discontinuity”, which is the interface sep-

rating the incoming and stationary fluids). We refer to d max as the

aximum penetration depth of the incoming fluid (see Fig. 4 ). 
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Fig. 5. Images from Camera 1 (side views). These images show the fluid seeded with rhodamine. The step marking the transition from rigid base to entrainable bed is clearly 

visible in the bottom left-hand corner of the images. The dashed line highlights the free surface (as the image was taken from below as shown in Fig. 8 , part of the free 

surface behind the laser sheet is visible). Top image: “C”, or combined run, with seeding in both the surge and the entrainable material. Bottom image: “R”, or reservoir run, 

in which only the dam-break was seeded. In this high-contrast image, it is difficult to identify the position of the free surface, but this is easier in the raw images. Points K 

and F are also marked. 

Fig. 6. Images from camera 2 (top) and camera 3 (bottom). Camera 2 took plan views of the flow during entrainment, whereas camera 3 took side views. Combined 

experiment 20-6Ca, at 20 ° with entrainable bed dimensions of 6 mm deep by 30 cm long. 
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.4. Bulk measurements 

To obtain bulk measurements, methylene blue-stained Carbopol

as used against a white background and a back-lit side panel,

s shown in Fig. 6 . Camera 2 (a Basler A403k) filmed from above

o show the progression of the flow front. Camera 3 (a Basler

cA20 0 0-165um) filmed through the observation panel on the side

f the flume to obtain the flow depth profile and front position

uring entrainment. An LED panel provided backlighting. Three

onfigurations were used: 0, R and C, as described above and indi-

ated in Table 2 . 

Using the calibration grids, the resolutions of cameras 2 and 3

ere roughly 2 and 3 pixels per mm, respectively. Thus, measure-

ents from these two cameras (surface height and flow front po-

ition) can be estimated to be accurate to within 0.5 mm, taking

nto account effects such as shadows on camera 2 and surface cur-

ature on camera 3. 

In the experiments detailed in Table 2 , camera 2 filmed a bird’s

ye or plan view of the flows down the length of the flume, and

rom these images it was possible to isolate the front position x f .

ig. 7 shows time–space plots of the flow, created by sampling a

entral line of pixels in the image at each time step. When the

ront was outside the erodible bed, the front position was deduced

rom this time–space plot using image processing techniques in

atLab. Over the erodible bed, the front position was determined

sing camera3’s images. 
.5. Internal measurements 

Particle image velocimetry (PIV) was performed on images ob-

ained at a vertical laser sheet parallel to the flow direction. The

mages were obtained by using a 2 W Diode-Pumped Solid State

d:YAG laser with a 532 nm wavelength in the optical set-up

hown in Fig. 8 . This laser created the vertical laser sheet in the

bservation zone, which illuminated rhodamine-stained seeds in

he flow. The seeds used in this study were 20 μm PMMA beads

agged with rhodamine 6G, a stain which was fluorescent in green

ight. In this way, only the particles in the central laser sheet were

lluminated and only they were filmed. The concentration of these

articles was very small, with less than a level teaspoon of parti-

les for 3 kg Carbopol. 

Camera 1 (a Basler A403k) filmed the illuminated internal sec-

ion of the flow through an orange filter. This resulted in the im-

ges shown in Fig. 5 in which the seeds glow as bright dots against

 black background. The camera was placed below the flume and

lmed through the transparent base and a prism, using a tilted

ens in accordance with the Scheimpflug principle in order to ob-

ain clear images from a focal plane which was non-parallel to the

mage plane [58] . Usually, PIV is performed by filming from the

ide, but the flow front in many of these experiments was signif-

cantly curved in the cross-stream direction, and so images were

cquired through the base in order to avoid distortion at the flow

ront. Camera 1 was calibrated for each experiment using a grid
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Fig. 7. Time–space plots from camera 2, showing front progression for experiment 16-3Cc. A central row of pixels (in yellow) has been sampled at each time step and 

repeated vertically to create these plots. The front position was found using a series of image processing functions. For x step ≤ x ≤ x step + � bed , this method failed (it could 

only provide the position of point K); in this case, front position was determined from images taken using camera 3. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Sketch of the measurement system for the velocity profiles within the mov- 

ing fluid. Because of the fluid–air interface and the three-dimensional nature of the 

flows, we were forced to film the flow from below. When shooting images with a 

camera whose sensor is not parallel with the object one can use the Scheimpflug 

principle, which involves tilting the camera until the image plane (on the CCD), the 

lens plane and the object plane (lit by the laser sheet) have a common line of in- 

tersection. Taken from [57] . 
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immersed in the fluid in the flume. PIV measurements were taken

in a 6.5 cm-long central stream-wise section in the entrainment

zone. 

Velocity fields were calculated using PIV between two images

set an appropriate time-step apart. The PIV software used was the

MatPIV open-source package [59] . The velocity field was then fil-

tered to remove vectors with a signal-to-noise ratio below 1.3—this

ratio is an output from MatPIV, giving a measure of signal reliabil-

ity in each interrogation window. Then, an in-built local filter was
sed to remove velocity vectors deviating from their neighbours’

edian velocity vectors by more than the recommended factor of

.7 times the neighbours’ standard deviation. Finally, all the vec-

ors removed were interpolated linearly. All measurements were

orrected for perspective using a calibration grid. Error quantifica-

ion in PIV remains difficult, but it is known that strong velocity

radients reduce measurement accuracy [60] , so steps were taken

o minimise errors, such as choosing the optimum seeding density

nd correlation window size. 

. Experiments 

We begin by analysing the experiments performed to inves-

igate the bulk dynamics of entraining viscoplastic surges (see

able 2 ): the flow front position x f ( t ) and the flow depth profile

 ( x, t ) are studied and compared with the numerical solutions to

he evolution Eq. (8) . Then, we present the internal measurements

o understand the mechanisms underlying basal entrainment in

iscoplastic flows. 

.1. Bulk measurements 

Fig. 9 (a) shows the effects of the entrainable bed thickness

n front propagation for runs 16-0c, 16-3Cc, 16-6Cc and 16-9Ca.

learly, the entrainable layer’s depth is an important controlling

arameter as the flow front travels further over an entrainable bed

han over the rigid base, and this effect increases significantly with

he depth of entrainable material. This contrasts with what we ob-

erved with Newtonian flows in a similar experimental configura-

ion [56] . 

A longer entrainable bed also causes the flow-front position to

e further advanced compared to non-eroding flows, in a roughly

inear way. For example, in Fig. 9 (b) the flow fronts are approxi-

ately 2 cm, 5 cm and 8 cm further advanced for bed lengths of

0 cm, 20 cm and 30 cm respectively. In some experiments, the

osition x step of the entrainable bed was varied but these compar-

sons provided no clear conclusion. 

Fig. 10 compares measured and computed front positions for

uns 12-6Ca and 16-6Cc. Eq. (8) was solved numerically using the

uilt-in Matlab pdepe function. As described in earlier publica-

ions [61,62] , lubrication theory overestimates front position over

ime. Several processes can explain the systematic deviation be-

ween theory and experiment: increased flow resistance due to

idewalls, lubrication theory’s poor performance at describing the
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Fig. 9. (a) Front position with time for flows over entrainable beds of increasing 

depth: θ = 16 ◦ slope, � bed = 30 cm (the entrainable layer is indicated by the grey 

area). (b) Front position with time for flows over entrainable beds of increasing 

lengths with δh = 6 mm and θ = 20 ◦ . 

Fig. 10. Front position with time for flows for θ = 16 ◦ (Run 16-6Cd) and θ = 

20 ◦ (Run 20-6Ca). Parameters: x step = 90 cm, δh = 6 mm and � bed = 30 cm. The 

black solid lines show the front position measured experimentally. The dotted-and- 

dashed line shows the numerical solution for θ = 16 ◦, while the dashed line shows 

the numerical solution θ = 20 ◦ . The inset shows the numerical and experimental 

data after shifting the observed front positions by +25 cm. 
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nertial phase when the gate lifts up and the material is released,

nd the specific behaviour of the leading edge—theory predicts

hat the yield surface terminates at the front (as a first approxi-

ation), whereas experiments show that the tip region is entirely

heared [61,62] . There is a systematic shift, with the numerical

olution 25 cm ahead of the experimental curve. Apart from this

hift, the numerical data roughly captured the experimental trend,

s shown by the inset of Fig. 10 , although it did not capture all the

etails. 
This systematic deviation between theory and experiment—

ven in the absence of entrainment—makes it difficult to assess

ow good lubrication theory is at describing the effect of basal

ntrainment. We expected that by making the flow variables di-

ensionless, we could compare experimental results more easily,

ut this was not the case: the curves of front position against time

id not collapse as the dimensionless flow-front travelled faster on

teeper slopes. Thus, in order to examine the effect of flume in-

lination on entrainment, we plotted the flow-front position of an

ntraining flow as a function of its equivalent non-entraining flow

ront denoted by x f , 0 ( t ). This gave a direct measurement of the ef-

ects of the entrainable material. Fig. 11 (a) shows clearly that the

ffects of entrainment on the surge are similar at each inclination.

or each slope, the curves show that the flow front has advanced

urther due to entrainment, and they all collapse neatly on top of

ach other. 

Fig. 11 (b) shows how the front position varies as a function of

 f , 0 in the numerical solutions to the governing Eq. (8) . Similarly to

he experiments, the curves x f ( x f , 0 ) computed for slopes from 12 °
o 24 ° almost collapse on the same master curve. The agreement

etween plots Fig. 11 (a) and (b) is surprisingly good (given the dis-

repancies shown in Fig. 10 ). To facilitate comparison, we report

oint A (with coordinates (0.94, 1) m) in both figures. This point

arks the end of the entrainable layer. Numerical solutions show

hat the front position of eroding flows is 6 cm ahead of the front

osition in the absence of entrainment, and this is in agreement

ith the value found experimentally. Although this is not clearly

isible in the figures, the curves do not collapse completely on a

ingle master curve. This reflects the influence of flume inclina-

ion, but as this effect is barely visible we can conclude that slope

nfluence is negligible. Further experiments confirm this behaviour

see Fig. 12 ). 

The shape of the surge is qualitatively well reproduced by the

volution Eq. (8) , with a hollowed-out surface above the entrain-

ble bed. Fig. 13 shows an example of this qualitative agreement:

here is a large kink in the surface near the step, the surface height

pstream of the bed decreases in agreement with the modelled

rofile and the front shape is quite well reproduced, although the

imes at which the experimental measurements are plotted do not

orrespond to those for the model and not all the experimental

bservations were reproduced. Indeed, the experimental measure-

ents showed a small, second surface kink where the contact dis-

ontinuity separated surge fluid from uplifted bed fluid in the lead-

ng edge (see also Fig. 4 , the kink corresponds to point K). This is

isible in the experimental profiles shown in Fig. 13 . Lubrication

heory provides smooth profiles with no kinks. 

.2. Internal measurements 

Experiments were performed specifically to be able to observe

nd quantify the flow’s internal velocities, concentrating precisely

n the zone just downstream of the step in order to see how the

urge interacted with the entrainable material. 

As a first step, we examined the raw images in order to infer

 qualitative impression of the flow’s progression. Fig. 14 shows

he velocity fields from run 16-6Ca, where 3 kg of Carbopol was

eleased and entrained a region of entrainable fluid 6 mm deep by

0 cm long. Velocities were made dimensionless by scaling them

ith U = (�g sin θH 

n +1 /κ) 1 /n [63] , with H kept constant at 0.03 m.

he lengths were scaled by L = 1 m. Fig. 14 shows the progression

f the viscoplastic surge as it comes into contact with the erodible

tationary layer: 

• The surge initially rolls out a short distance onto the entrain-

able bed with an immediate, but local effect on the bed ma-

terial: the bed surface is deformed slightly, moving downwards
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Fig. 11. (a) Front position for flows over entrainable beds: θ = 16 ◦ (run 16-6Cd) and θ = 12 ◦ (run 12-6Ca). The front position has been plotted as a function of the position 

x f , 0 ( t ) it occupies with no entrainment. (b) Front position for entraining flows as a function of x f , 0 (front position in the absence of entrainment). Numerical computations 

done for θ = 12 ◦, θ = 16 ◦, θ = 20 ◦ and θ = 24 ◦ . The coordinates of point A are (0.94, 1) m. 

Fig. 12. Front position for flows over entrainable beds: θ = 16 ◦ (run 16-6Cd), θ = 

20 ◦ (run 20-6Ca) and θ = 24 ◦ (run 24-6Ca). The 30 cm-long bed is indicated by the 

grey area. 

Fig. 13. A comparison of surface height profiles between an experiment and a nu- 

merical simulation. Measurements taken during the flow front’s journey across the 

bed surface. Experiment shown is run 20-6Ca: θ = 20 ◦, � bed = 30 cm, δh = 6 mm 

deep. Here, the profiles are chosen to show the similarity of the surface shape, but 

the significant lag in the modelled flow means that this comparison remains quali- 

tative only. 
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and forwards in the vicinity of the front. There is strong shear

at the surface of the entrainable bed, with almost plug-flow

above and low streamwise velocities in the bed. 
• A region of significant downward motion is established next to

the step as the bed moves under the surge’s weight. This dis-
places bed material downstream, squeezing it between flowing

material upstream and stationary material downstream. As a

result, a wedge shaped region downstream of the surge inter-

face (contact discontinuity) begins to move upwards. 
• The surge continues to drive forwards across the entrainable

bed. Its interface remains pronounced, with an indentation in

the flow surface where it meets the bed (point K). A bump ap-

pears in the bed as bed material moves upwards. 
• As time progresses, the bed surface is uplifted almost in line

with the surge interface, but the indentation here is still visible.

The bed material is in motion much further downstream of this

point. The flow front x f is much further downstream than kink

point x k due to the bed uplift, and motion occurs right down to

the rigid base. 

We did not observe a static-flowing interface (except in the

ower-left corner of the step), but instead saw a continuous ve-

ocity field in the entrainable material with a smooth variation

etween erodible-but-stationary and mobile material. In the ver-

ical direction, the material was quickly entrained down to the

igid base and the entire bed was set into motion. In the stream-

ise direction, things were less clear-cut: the streamwise veloc-

ty component u ( x, z, t ) continuously decreased to zero with in-

reasing x , but it was difficult to determine the exact position

t which u = 0 , due to the uncertainties in our PIV measure-

ents. To get around this issue, we determined the velocity con-

our lines and sought the point of furthest reach for each contour.

ig. 15 shows how distant this point is from point K for run 20-

Ca. We chose four dimensionless threshold streamwise velocities:

ˆ  = u/U = 0 . 2 × 10 −3 , 0 . 5 × 10 −3 , 10 −3 and 2 × 10 −3 . The bed was

rogressively put into motion in the streamwise direction, and the

elocity increased very gradually. At steeper slopes, the bed mate-

ial was entrained more quickly than the surge interface (point K):

he right-hand plot shows that threshold velocities were breached

urther downstream than point K at 24 ° and 16 ° than at 20 ° and

2 °, respectively. This supports the idea that a wave (called an ac-

eleration wave [64] ) propagated downstream of the contact dis-

ontinuity and was associated with bed entrainment. 

Internal dynamics are likely to vary with slope inclination.

n Fig. 16 , velocity fields are compared qualitatively for different

lopes. With the surge interface in a similar place in each plot,

ven a non-dimensionalisation in line with the slope-dominated
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Fig. 14. Dimensionless velocity fields for streamwise (on the left) and slope-normal (on the right) velocity components. 16-6Ca: 16 ° slope, 6 mm deep by 30 cm long 

entrainable bed. Plotted at times 3.75 s, 10.5 s, 24 s and 30.75 s after the surge’s entry into the entrainable region. The step is shown in bottom left-hand corner. The arrows 

point to the points K (interface of the incoming fluid) and F (front at which h = 0 ). 

Fig. 15. (a) variation in the position of the furthest downstream point x thres . (at which a velocity threshold is breached) with the kink point’s abscissa x k (point K at which 

the contact discontinuity surface connects with the free surface, see Fig. 4 ) for run 20-6Ca. The threshold point is computed for four non-dimensional threshold streamwise 

velocities: 0 . 2 × 10 −3 (threshold 1), 0 . 5 × 10 −3 (threshold 2), 10 −3 (threshold 3) and 2 × 10 −3 (threshold 4). (b) Variation in the position of the furthest downstream point 

associated with ˆ u = 0 . 2 × 10 −3 , with the kink point’s abscissa x k for all slopes. Experimental conditions: � step = 0 . 7 m for θ = 12 ◦ and 16 °, whereas � step = 0 . 9 m for θ = 20 ◦

and 24 °. 
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egime is not enough to account for the variation in velocities.

side from the magnitude of the velocity, the flows’ viscoplastic

ehaviours also differed with the slope. At 12 °, much of the flow

as a plug, with a thin region of strong streamwise shear and

ikely slip on the rigid base. However, the shear layers were thicker

t steeper slopes. The consequence was that at shallower slopes,

he surge intruded more deeply into the bed, effectively bulldoz-

ng a thick layer of bed material downstream and causing the bed

o buckle and slip along its base. This is perhaps intuitive, as on a

teeper slope the streamwise component of gravity becomes more

mportant and the component directed into the slope has less ef-

ect. At steeper slopes, this bulldozing motion was not seen; in-

tead, the bed was strongly sheared and was only uplifted very

lose to the surge interface. 
These differences due to slope were supported by the examina-

ion of the “R” experiments. Here, due to the differential seeding of

he surge and the entrainable bed, the interface between the surge

nd the mobile bed as it deformed were clear to see. The curvature

f this interface was much more pronounced at shallower slopes,

howing a deeper surge intrusion into the bed that was consis-

ent with a stronger slope-normal gravity component. In Fig. 17 ,

he maximum depth of the interface d max is plotted against the

aximum downstream extent of the overriding surge x k , show-

ng this difference clearly. At shallower slopes the surge intruded

ore deeply, and the same happened when the entrainable bed

as further downstream (thus reducing the velocity of the over-

iding flow). 
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Fig. 16. Dimensionless velocity fields for streamwise (left) and slope-normal (right) velocity components for run 12-6Ca ( θ = 12 ◦), bed at 70 cm; run 16-6Cb ( θ = 16 ◦), bed 

at 90 cm; run 20-6Ca ( θ = 20 ◦), bed at 90 cm; and run 24-6Ca ( θ = 16 ◦), bed at 90 cm. The step is shown in bottom left-hand corner. In each subplot, we report the velocity 

scale U (in m/s), used for making the velocity dimensionless. 

Fig. 17. Variation in the maximum interface depth d max with kink point x k . For θ = 

12 ◦ and 16 °, the entrainable bed was located at x step = 70 cm, whereas for θ = 20 ◦

and 24 °, the bed was located at x step = 90 cm. 
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As shown by Fig. 15 , the front (point F) moved slower than

the contact discontinuity (point K), and F’s motion has been in-

terpreted as a wave propagating downward as a result of the im-

pulse imparted by the incoming flow. To take a closer look at this

behaviour, we computed the volume averaged velocity 

〈 u 〉 = 

1 

S 

∫ x step + � step 

x step 

∫ h 

−δh 

u (x, z, t)d zd x, (9)

where S is the surface of the observation window. We computed

the volume-averaged velocity from the time at which the surge en-

tered the observation window until the moment when the surge

(i.e. point K) left this window. The procedure was repeated for

eroding and non-eroding flows. Fig. 18 shows that except for shal-

lowest slopes (12 °), entrainment caused a reduction in the mean

velocity. This figure compares the combined run (in blue) in which

both the bed and the flow were seeded, with the no-entrainment

case (in red). At the beginning of entrainment, the surge entered
he observation zone and came into contact with the entrainable

ed. At this time, the mean velocity was very low, as the aver-

ge is taken over the entire fluid shown, including the station-

ry material downstream. As the avalanche put this material into

otion, the mean velocity rose, and nearly all the bed material

as entrained by the end of the measurements. At steeper slopes,

he internal streamwise velocity was clearly slower than the non-

ntraining case. This was likely due to momentum being imparted

o the entrainable bed. At shallower slopes this was not the case:

t θ = 12 ◦, the mean velocity due to entrainment exceeded that of

he non-entraining case. This suggests that some slip occurred at

he base, which seems possible given the velocity field in Fig. 16 . 

. Concluding remarks 

The present paper describes an experimental analysis of basal

ntrainment in shallow viscoplastic flows. Viscoplastic surges were

reated by releasing a fixed volume of a Herschel–Bulkley fluid

nto a sloping bed. After travelling a certain distance from the

eservoir, the surge encountered an erodible stationary layer made

f the same fluid. The material and flume walls being transparent,

e were able to study the internal velocity field inside the flow

nd the entrainable layer. The experimental results were compared

ith the predictions from lubrication theory. Within this theory,

he momentum balance equations can be simplified by neglecting

nertia terms and making use of the flow’s shallowness [23–30] .

n evolution Eq. (8) for the flow depth can then be inferred from

he mass conservation equation. 

Comparing theory with experiment was not straightforward, as

ubrication theory overestimates front velocity at the earliest time

eriods, just after the surge release. This resulted in computed

ront positions about 25 cm ahead of the positions measured in

ur experiments. This problem was not new. In earlier publica-

ions, we reported that this might arise because of increased flow-

esistance due to flume sidewalls, the influence of inertia or the

ontrivial evolution of the yield surface within the leading edge
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Fig. 18. Variation in the dimensionless volume-averaged velocity 〈 u 〉 over time, for eroding (blue) and non-eroding (red) flows at slopes θ = 12 ◦ (run 12-6Ca), 16 ° (runs 

16-6Ca and 16-6Cb), 20 ° (run 20-6Ca) and 24 ° (run 24-6Ca). For θ = 12 ◦ and 16 °(a), the entrainable bed was located at x step = 70 cm, whereas for θ = 16 ◦(b), 20 ° and 

24 °, the bed was located at x step = 90 cm (see Table 1 ). To give an idea of the uncertainties associated with these measurements, we have plotted the confidence interval 

corresponding to ± σ , with σ 2 , the data variance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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61,62] . To get around this problem, we used the following expe-

ient: we compared the front position x f ( t ) of an entraining flow

ith the position x f , 0 ( t ) that a non-entraining flow would reach at

he same time t . In so doing, we found surprisingly good agree-

ent between theory and experiment (see Fig. 11 ). A remarkable

roperty of the diagram for x f ( x f , 0 ) is that it highlighted the irre-

ersible increase in front position due to basal entrainment. This

iffered from the Newtonian case, for which basal entrainment

aused front acceleration as long as the front was moving over

he erodible stationary layer, but once the front reached the rigid

ase, it experienced such significant deceleration that all the influ-

nces of basal entrainment were quickly dissipated. For viscoplas-

ic flows, basal entrainment caused front acceleration, but that gain

as not lost when the front moved past the entrainable layer and

nto the rigid bottom again. Another noticeable feature was the

eak influence of flume inclination on front propagation over the

ntrainable layer: when the initial volume of fluid and the en-

rainable layer’s depth were kept the same, altering the flume in-

lination did not cause any significant change in front position.

his led us to think that mass was the key factor driving front

otion. 

If we leave aside the systematic difference between computed

nd measured front positions, lubrication theory can be considered

o be a fairly good predictor of the effects of basal entrainment

n the dynamics of shallow viscoplastic flows. However, observa-

ions from the present experiments told a different story about

he mechanisms at work when a viscoplastic surge entrained an

rodible layer. The surge was observed to sink into the entrainable

ed, which forced downstream bed material to be uplifted into the

ow front. The viscoplastic nature of the fluid meant that this hap-

ened locally. The former front of the original surge was still vis-

ble upstream in the form of an indentation or kink point (point

). The surge appeared to lose momentum to the bed, with a de-

rease in internal velocities compared to the non-entraining surge,

xcept in the few cases where significant apparent basal slip oc-
urred (see Fig. 18 ). Bed excavation was studied by examining the

urge–bed interface, and it was found that the surge intruded into

he bed much more deeply at shallower slopes. The diagram in

ig. 19 summarises how basal entrainment occurred. It differs sig-

ificantly from the theoretical picture in Fig. 1 . This diagram also

xplains why flume inclination had little influence on front mo-

ion: the surge scoured out the entrainable material, closely fol-

owing the rigid geometry of the flume and leading to a concave

urface over the cavity. The entrainable material was eventually

ushed downstream as part of the flow front. This mass transfer

as weakly affected by gravitational forces. 

Other experimental observations were also insightful. First, we

id not observe any formation of a static–flowing interface when

he surge scoured the erodible stationary layer. If we looked at

hat was happening in the direction normal to the flume bot-

om, we noted that all the bed material in contact with the surge

as quickly mobilised. In the streamwise direction, all the entrain-

ble layer was slowly deformed over its entire length. Far ahead

f the front, bed material velocities were low, but detectable us-

ng PIV. This suggests that the disturbance induced by the surge

ntering into contact with the erodible layer propagated quickly

cross that layer. Similarly to what was observed with Newtonian

uids [56] , basal entrainment did not involve the propagation of a

hock wave separating moving and stationary material, but rather

nvolved an acceleration wave (if we adopt the terminology used in

ontinuum mechanics [64] ). Second, basal entrainment associated

everal processes (i.e. wave propagation, material uplift, buckling

nd possibly slip) and thus cannot be considered a unique local

rocess. The situation differed significantly from the theoretically

deal model depicted in Fig. 1 (also see [18] for the Saint–Venant

pproach). Third, whereas the mechanisms observed were more

omplicated than initially believed, lubrication theory successfully

aptured the key features of eroding flows. This suggests that the

rrors balanced out. Our results substantiated the use of lubrica-

ion theory to model eroding viscoplastic flows. The assumption
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Fig. 19. Diagram showing the bed deformation caused by the incoming surge. Point K corresponds to the intersection between the contact discontinuity and the free surface: 

the furthest downstream point with fluid from the reservoir at that moment. Point F corresponds to the flow front, i.e. the furthest point downstream with h ( x, t ) > 0. The 

maximum excavation depth d max is also shown. 

Fig. 20. View of a wet-snow avalanche deposit. The avalanche mass eroded the snow cover before it came to a halt. The wrinkles seen on the snowpack cover suggest the 

occurrence of buckling, as in our experiments. The width of each snow tongue is approximately 50 cm, and its thickness does not exceed 20 cm. 
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used here—the sudden incorporation of the entrainable layer into

the flow—can also be applied to the Saint–Venant approach. 

How the present results might be transposed to real pro-

cesses is beyond the scope of this paper. Nevertheless, we

would like to highlight that the basal entrainment scenario that

emerges from our observations is consistent with the ploughing

mechanism proposed by Gauer and Issler [65] for dense-snow

avalanches. Whereas basal entrainment is difficult to monitor in

real avalanches, field evidence shows that a wet-snow avalanche

can “plough” the snow cover and push bed material ahead of the

front. Fig. 20 shows a small-scale example of an avalanche deposit

(larger scale deposits are similar to this picture, but it is more dif-

ficult to capture the entire scene in a single picture). The snow

tongue’s front sank into the snow cover, pushing snow ahead of

it. Snow compression led to a buckling instability, reproduced here

by the numerous wrinkles on top of the snowpack surface and the

lateral cracks. 
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ppendix A. Derivation of the extended evolution equation 

In this appendix, we derive the evolution Eq. (8) . 

In the shear-layer velocities will have the subscript S , and in

he plug layer they will have the subscript P . Applying the no-slip

oundary condition u S (x, z = b(x ) , t) = 0 on the rigid surface b ( x )

nd solving 

∂u 

∂z 

∣∣∣∣ = 

(
1 

K 

(
�g sin θ (h − z) 

(
1 − cot θ

∂h 

∂x 

)
− τc 

))1 /n 

. (A.1)

ives an equation for the velocity below the yield surface, in the

hear layer: 

 S (x, z, t) = 

nA 

n + 1 

(
1 − S 

∂h 

∂x 

)1 /n 

×
(
(Y (x, t) − b(x )) 1 /n − (Y (x, t) − z) 1+1 /n 

)
. (A.2)

n this arbitrary geometry the yield surface is now 

 (x, t) = max 

⎛ 

⎜ ⎜ ⎝ 

h − τc 

�g 

∣∣∣∣1 − S 
∂h 

∂x 

∣∣∣∣
, b(x ) 

⎞ 

⎟ ⎟ ⎠ 

. (A.3)

hen, in the plug layer, 

 P (x, t) = 

n 

n + 1 

A 

(
1 − S 

∂h 

∂x 

)1 /n (
( Y ( x, t) − b(x )) 1+1 /n 

)
. (A.4)

The mass conservation equation is then used to obtain expres-

ions for ∂ w / ∂ z and ∂ w / ∂ z . These can be integrated using the
S P 

http://dx.doi.org/10.13039/501100001711
https://figshare.com/articles/Viscoplastic_surges/3497954
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o-slip condition u S · n = 0 fixing the constant of integration be-

ow the yield surface, and the continuity of the velocity across the

ield surface fixing the constant in the pseudo-plug region. Thus: 

 S (x, z, t) = 

S ∂ 
2 h 

∂x 2 

n + 1 

(
1 − S 

∂h 

∂x 

)1 /n −1 

 

(
n 

2 n + 1 

(
( Y − z ) 

2 n +1 
n − (Y − b) 2+1 /n 

)
+ (Y − b) 1+1 /n (z − b) 

)

−
(

1 − S 
∂h 

∂x 

)1 /n 

A 

((
∂Y 

∂x 
− ∂b 

∂x 

)
(Y − b) 1 /n (z − b) 

+ 

n 

∂Y 
∂x 

n + 1 

(
( Y − z ) 

1+1 /n − (Y − b) 1+1 /n 
))

, 

 P (x, z, t) = 

S ∂ 
2 h 

∂x 2 

n + 1 

(
1 − S 

∂h 

∂x 

)1 /n −1 

 

(
(Y − b) 1+1 /n (z − b) − n (Y − b) 2+1 /n 

2 n + 1 

)

−
(

1 − S 
∂h 

∂x 

)1 /n 

 

((
∂Y 

∂x 
− ∂b 

∂x 

)
(Y − b) 1 /n (z − b) − n 

∂Y 
∂x 

(Y − b) 
1+1 /n 

n + 1 

)
. (A.5) 

Finally, Eqs. (A.2) , (A.4) and (A.5) can be linked by solving for

he kinematic boundary condition on the surface z = h (x, t) , so

hat 

∂h 

∂t 
+ u P 

∂h 

∂x 
= w P , 

iving 

∂h 

∂t 
+ A 

∂ 

∂x 

(
n (Y − b) 1+1 /n 

(1 + n )(1 + 2 n ) 

×
(

1 − S 
∂h 

∂x 

)1 /n 

(n (h − Y ) + (n + 1)(h − b)) 

) 

= 0 . (A.6) 
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