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Measuring bedload transport rates usually involves measuring the flux of sediment or collecting sediment
during a certain interval of time Δt. Because bedload transport rates exhibit significant non‐Gaussian
fluctuations, their time‐averaged rates depend a great deal on Δt. We begin by exploring this issue
theoretically within the framework of Markov processes. We define the bedload transport rate either as the
particle flux through a control surface or as a quantity related to the number of moving particles and their
velocities in a control volume. These quantities are double averaged; that is, we calculate their ensemble
and time averages. Both definitions lead to the same expression for the double‐averagedmean rate and to the
same scaling for the variance's dependence on the length of the sampling duration Δt. These findings lead us
to propose a protocol for measuring double‐averaged transport rates. We apply this protocol to an
experiment we ran in a narrow flume using steady‐state conditions (constant water discharge and sediment
feed rates), in which the time variations in the particle flux, the number of moving particles, and their
velocities were measured using high‐speed cameras. The data agree well with the previously defined
theoretical relationships. Lastly, we apply our experimental protocol to other flow conditions (a long
laboratory flume and a gravel‐bed river) to show its potential across various contexts.

1. Introduction
1.1. Bedload Transport Rate and Fluctuations

Whether measuring bedload transport rates in the field or the laboratory, we are faced with a three‐part pro-
blem. First, there is no universally accepted definition of the bedload transport rate Qs, and various defini-
tions have been used depending on the context (Ballio et al., 2014, 2018; Furbish et al., 2017). For
instance, in the laboratory, it has long been common to collect the sediment transported to the flume outlet
over a given time interval and weigh it to deduce a time‐averaged value of Qs. Today, techniques based on
impact plates, acoustic sensors and image processing enable high‐frequencymeasurements ofQs (Geay et al.,
2017; Gray et al., 2010; Mendes et al., 2016; Rickenmann et al., 2014; Singh et al., 2009; Tsakiris et al., 2014).
In both cases,Qs is defined as the particle flux through a surface. Alternatively, in the field, using tagged par-
ticles (tracers) has long been the simplest way of measuring transport rates (Wilcock, 1997), with Qs reflect-
ing the complex history of the particles entrained by the flow and subsequently deposited (or possibly
buried) on the streambed (Einstein, 1950). Second, measuring sediment transport rates (i.e., the displace-
ments and velocities of sediment, and the number of moving particles) remains an enormous technical chal-
lenge. Geophones and seismic sensors can only provide proxy calculation methods, which can be related to
Qs after signal processing (Gray et al., 2010). Discriminating between the various processes (multiple
impacts, differently sized sediment, rolling or saltating sediment) is fraught with difficulty (Dhont et al.,
2017; Dietze et al., 2019; Wyss et al., 2016). Third, recorded transport rates exhibit very significant
non‐Gaussian fluctuations even under steady‐state flow conditions (Ancey & Heyman, 2014; Ancey et al.,
2008). When both the sediment feed rate and water discharge vary over time, it becomes extremely difficult
to separate the various random particle movement and bedformmigration components of fluctuation and to
disentangle the time scales associated with each process (Dhont & Ancey, 2018).

Although the existence of wide fluctuations in bedload transport rates—and their influence on their mean
rate estimates—has long been known (Bunte & Abt, 2005; Gomez, 1991; Recking et al., 2012; Singh et al.,
2009), some scientists show little awareness of the crucial influence of measurement protocols, particularly
the definition of sampling duration, when estimating mean transport rates and their associated uncertain-
ties. Very few experimental papers have specified how accurate their bedload transport rate measurement
was. In many cases, authors mentioned that because they had achieved steady‐state conditions, collecting
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sediment at the flume outlet over durations of 1 min or so was sufficient to obtain the mean transport rate.
Setting an arbitrary sampling duration is, however, seldom satisfactory. Figure 1 provides a typical example

of how sensitive the time‐averaged particle flux Φs is to sampling durations (see the caption of Figure 1 or

Equation 1 for the definition of Φs ). The mean particle flux was measured in the middle of the flume
using image processing (see sections 3 and 4 for further information). Although the feed rate Qin was
constant at the flume inlet (set to 10.3 grains/s), the instantaneous particle flux exhibited fluctuations as

large as 5Qin, causing the time‐averaged particle flux Φs to deviate substantially from its steady‐state value
Qin. Convergence toward the steady‐state value Qin was quite slow: sampling durations should exceed
20 min to get the mean particle flux to within 5%; with other flumes and experimental conditions, we had
to wait 100 hr (Dhont & Ancey, 2018). Thus, although it has often been overlooked in research papers to
date (Ancey, 2020), we believe that proper estimation of the uncertainties associated with bedload
transport measurements should be a central issue in any experimental protocol.

The uncertainty principles in physics (e.g., Heisenberg's principle) and signal processing (e.g., Gabor's prin-
ciple) set limits to the precision with which certain physical properties can bemeasured simultaneously. One
can intuitively understand that calculating bedload transport also involves a trade‐off between the level of
noise and the representativeness of time‐averaging: if a short sampling duration is selected, the

time‐averaged fluxΦs is representative of the mean local bedload transport rate, but it is also associated with

a lot of noise (Φs variance is large). On the contrary, if a long sampling duration is selected, the variance ofΦs

is small, but Φs may be biased, especially under time‐dependent flow conditions (Ballio et al., 2014).

1.2. Objectives

The present paper proposes a method for estimating the average and variance of a particle transport rate Qs

when aQs time series is available. We consider two definitions of bedload transport rate (see section 2): first,
measuring a particle flux through a control surface (e.g., using geophones or image processing) or second,
measuring particle displacements and velocities in a control window (e.g., using a high‐speed camera or
an acoustic Doppler velocimetry profiler). We are aware that these definitions may not cover all conditions
and measurement techniques, but at least they correspond to techniques commonly in use today. The the-
oretical underpinnings are based on the stochastic bedload transport model developed by Ancey et al.

Figure 1. Variation in the time‐averaged particle flux (solid line) Φs ¼ ðΔtÞ−1∫Δt0 ΦsðtÞdt with sampling duration Δt. The
instantaneous particle flux Φs(t) was measured by counting the number of particles crossing a control surface located at
the flume outlet during a time interval δt = 4 ms. The flume was 2.5 m long and tilted at 1.55° to the horizontal (see
section 3 for further information on the experiment). The horizontal dashed black line shows the feed rate
Qin = 10.3 grains/s. The inset shows the time variations in the instantaneous particle flux Φs. The red dots show the
mean particle fluxes computed using our proposed protocol based on the bootstrap method (see section 2.7).
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(2008). When sufficient statistical information can be inferred from experimental data, an alternative to
calculating the time‐averaged particle flux is the use of renewal theory (see Appendix B). Both methods
involve high‐frequency measurement of the instantaneous transport rate (typically higher than 1 Hz).
When high acquisition frequencies are impossible, the central limit theorem provides the asymptotic
variation of the qs variance with sampling duration Δt. This method has been successfully applied to
various setups in well‐controlled laboratory experiments (see section 4). We present two other
applications to demonstrate that the proposed method can be used in various settings (see section 5).

1.3. A Toy Model

To give a foretaste of the ideas developed in this paper, we consider a virtual experiment. Particles arrive ran-
domly in a flume at a rate ν = 1 grain/s and cross a control surfaceS (see Figure 2a). By counting the number

N of particles that have crossed S during the time interval Δt, we can estimate the mean particle flux as Φs

¼N=Δt. Because bedload transport exhibits large non‐Gaussian fluctuations, even under steady‐state con-

ditions, we obtain different Φs values depending on when we start the measurement or which path is
selected. Figure 2b shows eight replicates from the same experiment: Particle arrival is described as a
Poisson process (as we will see later, this is a fair assumption when bedload transport is weak), all paths
are realizations of the Poisson process with rate ν = 1 grain/s, and thus the number of particles crossing S

over a time interval Δt varies from one run to another. If we consider the specific run whose endpoint is B

(at time t = 20 s) in Figure 2b, we find that N = 4 for Δt = 10 s (point A), and thus Φs ¼ 4=10¼ 0:4 grains/
s, a value 60% off the mean rate ν.

How can we improve accuracy? The simplest idea is to increase the time interval Δt. By taking Δt = 20 s, we

find N = 15 (point B) and thus Φs ¼ 15=20¼ 0:75 grains/s. The error has dropped to 25%. This is consistent
with what Bunte and Abt (2005) and Singh et al. (2009) showed in their field and laboratory experiments: the
sample mean and variation vary with increasing sampling durations, and the longer the sampling duration,
the lower the error. There are two problems with this approach. First, in practice, it is difficult to take long
sampling durations, especially if the flow is time dependent. Second, when computing the time‐averaged

flux Φs ¼N=Δt, we have no idea how close this estimate is to the actual rate ν. Indeed, the sample variance
is computed by using the Φs values along a particular path, and it does not tell us anything about the relative

error ϵ¼ j1 − Φs=νj . For instance, for path AB, the sample variance is σ2Φ ¼∑M
k ¼ 1ðNðtÞ−ΦstÞ2 ¼ 3:72

grains2/s2 (M is the number of sampled values), yielding a coefficient of variation σΦ=Φs ¼ 12:8%, which
is lower than the relative error ϵ = 25% by a factor 2.

Figure 2. (a) Illustration of the virtual experiment: Particles move randomly at velocity up and cross the control surface
S. (b) Time variations in the number of particles N(t) that have crossed the control surface S until time t. Here we
simulated eight paths of the Poisson process N(t) with rate ν = 1 grains/s and a sampling rate δt = 5ms (thus generating
M = 4,000 values of N for each path).
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Another approach involves replicating the initial run to refine the estimateΦs. The average of the eight runs

provides a mean rate Φs ¼ 0:95 grain/s for Δt = 10 s, and Φs ¼ 1:02 grain/s for Δt = 20 s, with the relative
error thus dropping to 2–5%. This shows that by combining time and run averages, we can reduce uncertain-

ties when measuring bedload transport. Run averaging is close to ensemble averaging ⟨Φs⟩¼ limn→∞∑n
i ¼ 1

N=Δt, which is the tool we will be using in this paper. At this stage of the example, one might doubt that
much progress has been made if, in practice, one has to reiterate measurements instead of extending the
sampling duration Δt. This is where theory comes in.

Wewill show that uncertainties (expressed here in terms of ensemble‐variancevar Φs) vary asvar Φs ¼ K=Δt
. The proportionality factor K depends on the measurement protocol and transport stage. When measuring

low transport rates, K is equal or close to the mean fluxΦs. If we go back to the example in Figure 2 and con-

sider path AB again, we measure Φs ¼ 15=20¼ 0:75 grains/s, thus deducing that the ensemble variance is

approximated by var Φs ¼Φs=Δt ¼ 0:0375 grains2/s2 and expecting the actual rate to fall within or close to

the rangeΦs ±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Φs

q
¼ ½0:56; 0:94� grains/s. The ensemble‐averaged variance var Φs thus provides a bet-

ter estimate of the uncertainties of Φs than the sample mean.

We have been able to estimate the ensemble‐averaged variance from a single path because we have taken
advantage of our knowledge of sediment transport: It behaves like a Markov process at low transport rates.
At higher transport rates, the assumption of a Markov process breaks down, but our statistical approach is

still possible. It requires more statistical information about Φs to implement renewal theory and determine
the value of K. High‐resolution data were needed for this. Admittedly, replicating measurements is usually
difficult (and often impossible), but we will see that statistical techniques such as bootstrapping allow us to
estimate the ensemble mean and variance. In the absence of high‐resolution data, applying the central limit
theorem provides an estimate of K.

2. Theory
2.1. Definitions and Notation

The present paper uses two different definitions of the bedload transport rate Qs from among the numerous
forms currently in use (Ancey, 2010; Ballio et al., 2014; Furbish et al., 2012). We have tailored these defini-
tions to the specific analysis developed in this paper (see the end of this section for how these definitions can
be generalized in real‐world applications). First, for most theoretical developments, we will express Qs in
grains/s. Second, we will consider a flow per unit width. Although many of the equations presented seem
to have been formulated for a two‐dimensional problem, the third spatial dimension should not be forgotten.

Figure 3. Notation and illustration of the exchange processes considered. The water flow transports particles. The mean
particle flux is νin. The number of moving particles N in the control volumeV varies as a result of particles entering and
leaving the volume and being entrained or deposited on the bed. Bed particles can be dislodged by the water drag (there is
a probability λdt that this occurs within a short time interval dt) or because of interactions with moving particles (as there
are N moving particles, the resulting probability of entrainment is μNdt).
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For this reason, we will refer to “control volume” even though this volume is two‐dimensional in Figure 3
(the same holds for the control surface and streambed area below).

• Flux of particles across a control surface (see Figure 3). We count the number of particles crossing the con-
trol surface S during the sampling duration Δt:

ΦsðΔtjtÞ ¼ 1
Δt
∫
tþΔt
t ϕsðτÞdτ; (1)

where φs(τ)dτ gives the number of particles intersecting the control surface S between time τ and τ+dτ.
Thereafter, we will mostly work with Markov processes that describe weak sediment transport: In such
cases, the probability of observing two particles crossing the control surface at the same time drops to zero,
and φsdτ can either be zero (no particle crossing S) or unity (one particle crossing S). The arrival of indi-
vidual particles will be described as a Poisson process in section 2.3. When this assumption breaks down at
sufficiently high transport rates, φs can take any integer value, and we describe particle arrival as a
renewal process (see Appendix B). Equation 1 is probably the most natural definition in fluid mechanics
because particle transport rates usually reflect mass fluxes. Indeed, it is equivalent to the definition used in

continuum mechanics Qs ¼ ∫SHðxÞupðx; tÞ · ndS (where H(x) is unity when point x is occupied by a par-

ticle and zero otherwise, up is the particle velocity field at x, and n is the outward‐oriented normal to S).
• Volume‐averaged particle transport rate. By averaging particle motion through a control volume, we

relate the bedload transport rate to the volume‐averaged particle velocity Up ¼∑N
i ¼ 1up;i (where up,i is

the instantaneous particle velocity) and the number of moving particles N (Ancey & Heyman, 2014):

qs ¼
N
A
Up; (2)

where N/A is called the particle activity (i.e., the number of moving particles per unit of streambed area A)
(Furbish et al., 2012). Counting the number of moving particles and determining their mean velocity leads
to the instantaneous volume‐averaged transport rate qs. We can calculate its time average:

qsðΔtjtÞ ¼
1
Δt
∫
tþΔt
t qsðτÞdτ; (3)

where Δt is the sampling duration. If we assume that particles move at a constant velocity, then computing
the bedload transport rate involves determining the number of moving particles N. Calculating the
time‐averaged bedload transport rate qs is tantamount to calculating the time integral of N(t). This is what
we will do below by using some general results for Markov processes (see Appendix A) and by applying
renewal theory (see Appendix B).

We introduce three averages:

• The ensemble average ⟨f⟩ of the random quantity f is obtained by averaging f over all possible realizations
(Drew & Passman, 1999; Herczynski & Pienkowska, 1980; Lhuillier, 1992)—the electronic supplement to
Ancey and Heyman (2014) provides a more formal introduction to this average. If f depends on time t,
then ⟨f⟩ is also a function of t. We denote the steady‐state ensemble‐averaged value of f by ⟨f⟩ss, which
is the value reached by ⟨f⟩ at sufficiently long time intervals for the initial condition's influence to be
negligible.

• The time average f is defined as the time integral over the sampling duration Δt:

f ðΔtjtÞ ¼ 1
Δt
∫
tþΔt
t f ðτÞdτ: (4)

• Wecancombineboth averages toproduce thedouble‐averaged (time‐ andensemble‐averaged) quantity⟨f ⟩.

To keep the notation less cluttered, we did not introduce any special symbol to refer to the volume average
underpinning the derivation of Equation 2. When sediment transport involves grains of the same size, we
can readily convert transport rates expressed in grains/s into rates expressed in kg/s or m3/s. When consid-
ering grains of different sizes, the definitions (1) and Equation 3 can be generalized by partitioning the grain
size distribution into classes and computing particle transport rates for each class.
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2.2. Assumptions

We consider a one‐dimensional system under steady‐state conditions, corresponding to a narrow, tilted
flume with a constant feed rate at its inlet (the flow geometry that will be investigated experimentally in
section 4). Under these flow conditions, particles move in the same direction as the water flow, and
cross‐stream diffusion—observed in wider flumes (Seizilles et al., 2014)—can be neglected. The influence
of bedforms on flow dynamics and bedload transport is supposed to be negligible, and thus the bed is in equi-
librium with no significant elevation variation along its interface with the flow (neither aggradation nor
degradation). Particles move at velocity up, which may fluctuate over time. The mean particle velocity is
denoted byūp. Velocity fluctuations are assumed to be Gaussian, with standard deviation σu. The probability
Pu of observing a given value w for the particle velocity is thus

PuðwÞ ¼ prob ðu¼wÞ ¼ 1ffiffiffiffiffiffi
2π

p
σu

exp −
ðw−ūpÞ2

2σu

 !
: (5)

This assumption has been validated experimentally (Ancey & Heyman, 2014; Heyman et al., 2016; Martin
et al., 2012), but not systematically; authors have observed an exponential velocity distribution instead
(Lajeunesse et al., 2010; Roseberry et al., 2012). The exact form is not crucial to the rest of the
developments.

The central element of our theoretical development is the calculation of the numberN of particles crossing a
control surface or contained in a control volume. To that end, we use the stochastic bedload transport model
proposed by Ancey et al. (2008). The number of moving particles N varies with time as a result of (i) deposi-
tion and (ii) entrainment. Particles come to rest at a rate σ [1/s]. The deposition rate D is thusD = σN [grains/
s]. We introduce two forms of entrainment:

• Individual entrainment at a rate λ [grains/s], which reflects the classic mechanism of entrainment by the
water flow.

• Collective entrainment at a rate μ [1/s], which takes particle–particle interactions into account.

The number of particles entrained per unit time is thus E = λ+μN, where E is the entrainment rate [grains/s].
To accurately count particles, the system's dimensions must be specified. We consider a control windowVof
length L. The window's downstream (or equivalently, upstream) face is the control surfaceS (see Figure 3).

We assume that the particle flux can be described as a Markovian process. This implies that the probability
of observing Nmoving particles depends only on recent flux history (there is no memory effect). Differently
put, the probability P that one particle crosses the control surface S during the time interval [t,t+δt] is
P = νinδt (where νin is the feed rate), and thus that probability depends solely on the time interval δt.
When δt is infinitesimally small, then only one particle can cross the control surface (Markovian process
theory cannot deal with multiple events). Equivalently, it can be shown that the waiting time τ between
two particle‐arrivals is exponentially distributed, with parameter Λ = νin [grains/s] (or equivalent with a
mean waiting time tw ¼ ν−1in ):

PτðτÞ ¼Λexpð−ΛτÞ: (6)

2.3. Time‐Averaged Particle Flux

With these assumptions, we deduce immediately that the number of particles that have crossed the control
surfaceS up to time t is a Poisson process (Cox &Miller, 1965; Gillespie, 1992). It is straightforward to show
that the ensemble average and variance are (Gillespie, 1992)

⟨N⟩¼Λt and var N ¼Λt: (7)

Using Equation 1, we then deduce that the mean (double‐averaged) flux is

⟨Φs⟩ðΔtjtÞ ¼ ⟨N⟩ðt þ ΔtÞ−⟨N⟩ðtÞ
Δt

¼Λ; (8)

regardless of Δt, whereas the variance is
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var ΦsðΔtjtÞ ¼ Λ
Δt
: (9)

Interestingly, we note that according to the Poisson process, the fluctuation strength varies linearly with
the mean particle flux Λ and is inversely proportional to the sampling duration Δt.

2.4. Volume‐Averaged Bedload Transport Rate for σu= 0

Let us first consider the simplest case, in which the particle velocity fluctuations are negligible relative to
their mean velocityūp (i.e., we assume that σu = 0). The numberN of moving particles in the control window
V can be described as a birth‐death immigration‐emigration Markov process (Cox & Miller, 1965): entrain-
ment and deposition correspond to birth and death, respectively, whereas immigration and emigration
reflect the arrival and departure of particles. The immigration rate is νin, and the emigration rate is

νout ¼ ūp
L
; (10)

where L is the length of the control window. Under steady‐state conditions, the probability of observing N
particles in the control volumeV can be calculated analytically. Here we summarize the main results and
refer the reader to an earlier publication for the proofs (Ancey et al., 2008).

When the collective entrainment rate μ is nonzero, this probability is the negative binomial distribution:

PnðnÞ ¼ prob ðN ¼ nÞ ¼ qþ n − 1

q − 1

� �
pqð1−pÞn (11)

with parameters p and q:

q¼ λþ νin
μ

and p¼ 1 −
μ

νout þ σ − μ
(12)

The autocorrelation function of the time series N(t) is

ρðτjtÞ ¼ cov ðNðtÞ; Nðt þ τÞÞ
var NðtÞ ¼ e−τ=tc ; (13)

where tc = 1/(νout+σ−μ) is the autocorrelation time. Under steady‐state conditions, the ensemble average
and mean of N are thus

⟨N⟩ss ¼
λþ νin

νout þ σ − μ
and varss N ¼ ðλþ νinÞðνout þ σÞ

ðνoutþσ−μÞ2 : (14)

The instantaneous bedload transport in the control volumeV is given by Equation 2. As we assume that par-
ticles move at constant velocity ūp, then all the qs fluctuations result solely from the time variations in the
number of moving particles N. Combining Equations 2 and 14, we find that under steady‐state conditions,
the ensemble‐averaged bed transport rate is

⟨qs⟩ss ¼
ūp
L
⟨N⟩ss ¼

λþ νin
νout þ σ − μ

ūp
L
: (15)

Because under steady‐state conditions we have ūp⟨N⟩ss=L¼ νin ¼Λ, the steady‐state mean transport rate
(15) matches the mean particle flux (8). The variance takes a more complicated form:

varss qs ¼
ū2p
L2
varss N ¼ ū2p

L2
ðλþ νinÞðνout þ σÞ

ðνoutþσ−μÞ2 : (16)

Calculating the double‐averaged bedload transport rate ⟨qs⟩ requires more work. First, we can derive the

governing equation specific for ⟨N(t)⟩, its higher moments, and its time integral ∫tNðtÞdt (see Appendix A
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for the mathematical detail). By using Equation A19 and assuming that particles were initially still
(N0 = N(t = 0) = 0) in the control volume, we find that

⟨qs⟩ðΔtjtÞ ¼
ūp
L

λþ νin
νout þ σ − μ

1 −
tc
Δt
ð1 − e−Δt=tcÞ

� �
; (17)

which tends to ⟨qs⟩ss when the sampling duration Δt is sufficiently long relative to the autocorrelation
duration tc. Asymptotically, the variance is deduced by taking the limit Δt≫tc in Equation A22:

var qsðΔtjtÞ ¼
ū2p
L2Δt

ðλþ νinÞðνout þ σÞ
ðνoutþσ−μÞ3 ¼ ū2p

L2
varss N

tc
Δt
: (18)

Contrary to the average (17), the double‐averaged variance does not converge to the steady‐state ensemble‐
averaged variance (16) when Δt ≫ tc. We also note that, contrary to the particle flux, the fluctuation
strength depends on many parameters and does not seem to be trivially related to the mean bedload trans-
port rate. The particle flux, however, is inversely proportional to the sampling duration. We can intuitively

estimate that the proportionality factor ū2pvarss Ntc=L2 in Equation 18 should be close to Λ. As shown in

section 4, this link between ū2pvarssNtc=L2 and Λ was observed experimentally, but we have no theoretical

argument with which to rigorously demonstrate it.

2.5. Volume‐Averaged Bedload Transport Rate for σu>0

Calculations become more involved when considering velocity fluctuations, but they are still tractable ana-
lytically. We assume that the number of moving particles is distributed according to a negative binomial dis-
tribution (11), whose parameters are given by Equation 12. We also assume that the instantaneous particle
velocity up,i is normally distributed (see Equation 5). We assume that the two marginal probabilities Pn and
Pu fully describe the process or, to put it differently, there is no correlation between N and up,i. We define U
as the sum of the particle velocities:

U ¼ ∑
N

i
up;i: (19)

As the volume‐averaged particle transport rate in the control window V is qs = U/L, the probability den-
sity function of qs is related to that of U:

Pqs ¼ LPUðLqsÞ: (20)

The probability PU of U is obtained by summing the elementary probabilities of observing k particles, in
the control window, whose velocity sum equals U:

PU ¼ ∑
∞

k ¼ 1
PnðkÞPkðUÞ; (21)

where Pk denotes the probability of observing that the velocity sum is equal to U. As the sum of normally
distributed random variables is also normally distributed, Pk is the normal distribution N, with mean kūp
and standard deviation

ffiffiffi
k

p
σu. We then deduce

Pqs ¼ LPUðLqsÞ ¼ L ∑
∞

k ¼ 1
PnðkÞPkðLqsÞ

¼ ∑
∞

k ¼ 1
L

qþ n − 1

q − 1

 !
pqð1−pÞnNðkūp=L;

ffiffiffi
k

p
σu=LÞðLqsÞ:

(22)

It is then straightforward to infer themean and variance of qs even though there is no closed‐form expression
for the probability Pqs :
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⟨qs⟩¼ ∫RqsPqsdqs ¼
Nss

L
ūp; (23)

var qs ¼ ∫Rðqs−⟨qs⟩Þ2Pqsdqs ¼ varssN
ū2p þ pσ2u

L2
: (24)

When σu = 0, we retrieve the variance given by Equation 18. In Appendix C, we show that if we select an
exponential distribution for the particle velocities, then there is no change in the ensemble average and
only a slight change in the ensemble variance.

If we assume that events (particle velocity and particle number) are independent, then we can generalize the
variance Equation 18 to take velocity fluctuations into account in the double‐averaged variance by following
the same reasoning as that used for deriving Equation 18:

var qsðΔtjtÞ ¼
ū2p þ p var u

L2Δt
ðλþ νinÞðνout þ σÞ

ðνoutþσ−μÞ3 ¼ varss N
ū2p þ p var u

L2
tc
Δt
: (25)

2.6. Summary of Results

When we considered that a steady‐state system in which the particle flux across a vertical control surfaceS
was a Poisson process with rate Λ, we found that the double‐averaged particle flux (8) was Λ, independently
of the sampling duration Δt. Under steady‐state conditions, mass conservation imposes that νin = νout⟨N⟩ss
in the control windowV. Using Equation 10, we then deduced that the double‐averaged bedload transport
rate (15) or (23) was also Λ in the limit Δt≫ tc. We thus concluded that, on average, both transport rate defi-
nitions provided identical results:

⟨qs⟩¼ ⟨Φs⟩: (26)

These results, however, differed with regard to the variance of qs or Φs: the variance of the double‐averaged

flux ⟨Φs⟩ varied as Λ/Δt, whereas the variance of the double‐averaged transport rate ⟨qs⟩ varied like ν2outvarss
Ntc=Δt given by Equation 18 (or like Equation 25 if velocity fluctuations were taken into account). The fact
that the variance varied like 1/Δt comes as no surprise because the central limit theorem states that the
scaled sum Sn of n independent and identically distributed random variables Yi (with finite mean μy and stan-
dard deviation σy) converges in distribution to a normal distribution with mean 0 and variance 1 (Grimmett
& Stirzaker, 2008):

Sn − nμyffiffiffi
n

p
σy

→
d
Nð0; 1Þ: (27)

If we apply the central limit theorem to a long time series (ti = iδt, yi), where 1≤ i≤ n and where δt
denotes the time interval between two measurements, with yi ¼Qi the transport rate at time ti, then the

time‐averaged bedload transport rate is qsðtnÞ ¼ Snδt=Δt. Furthermore, when n is large, we have: Sn→n

μy and var Sn→nσ2
y, thusQs→μy and var Qs→σ2yδt=Δt because n∝Δt/δt. Asymptotically, for any sample that

satisfies the application conditions of the central limit theorem, then the relation var qs ∝ Δt−1 also holds
true. The difference between this scaling and Equations 18 and 9 is that in the Markovian case, the varia-

tion var qs ∝ Δt−1 holds exactly for any sampling duration Δt. Furthermore, in the case of a Poisson pro-
cess, the steady‐state variance in Equation 9 is entirely controlled by the mean particle flux Λ, and there is
no need to introduce another parameter σy to find its value.

2.7. Protocol for Measuring the Sediment Transport Rate and Its Variance

In Equations 8 and 15, the transport rates ⟨Φs⟩ and ⟨qs⟩ are based on ensemble averages. The problem is that
it is difficult to calculate ensemble averages directly in experiments (unless many runs of the same experi-
ment can be made). There is, however, a fairly simple technique that mimics the ensemble average and
makes it possible to deduce the sample mean and variance with high precision: the bootstrap method
(Davison & Hinkley, 1997). Like the jackknife, this is a resampling technique, which involves repeatedly
drawing random subsamples from a single original sample and generating new samples with similar
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statistical properties to those exhibited by the original one (Davison &
Hinkley, 1997). We assume a time series (ti = iδt, yi) (1≤ i≤ n), where
the variables yi are independent and identically distributed random values
drawn from an underlying distribution F. We assume that we do not know

F, but we can get an empirical estimate F̂ by using the sample (y1, y2,…, yn).

We can then drawM samples of n values from F̂ . We use theseM samples
to compute the sample mean and variance.

Thus, the key point is starting with a sample of independent and identi-
cally distributed data. The tests are detailed in section 4. Here, we would
like to highlight a simple test of stationarity, which turns out to be robust
and useful in a variety of settings. Because of the existence of fluctuations
in the qs time series, it may be difficult to distinguish between stationarity,
weak stationarity, and absence of stationarity. Below, we plot the cumula-

tive amount of sediment Sn ¼∑n
i ¼ 1yiΔt (here yi denotes the particle flux

Φs or volume‐averaged transport rate qs) as a function of time (see Figure 4

for an example). If the steps (tn, Sn) come close to a straight line of slope Λ̂,

then the process is probably stationary: The mean flux will be close to Λ̂.
Should only some groups of intervals (tn, Sn) form segments of the line,
then the process is weakly stationary. These groups can then be used to
identify the periods during which the process was reasonably close to a
stationary process. If there is no good match between these groups and
the line representing steady state, the protocol cannot be applied.

Our protocol for defining the mean bedload transport rate and its variance
is the following:

• If we can acquire data at a sufficiently high frequency, then we resolve
the times at which particles cross the control surface S or move within
the controlwindowV.We can then determine thewaiting time between
particle arrivals or measure particle velocity. This is the ideal case
against which we will test the theory outlined in this section.
Although an emphasis is placed on Markovian processes, particles
may behave differently; notably, many particles cross the control sur-
faceSwithin a short time‐interval (“many”heremeans that the number
of particles crossing the surface cannot be described using the Poisson
law). Appendix B shows how renewal theory can be used in these cases.

• In the opposite case, when the data acquisition rate is low (typically
below 1 Hz), we can still apply the protocol, but it will be difficult to verify whether the theory described
above captures the flux behavior well. The central limit theorem is, however, sufficient to deduce the key
information of the bedload transport rate's mean and variance. There is, of course, no free lunch. The
price paid for low‐frequency measurements is that the fluctuation strength is independent of the mean
particle flux. Naturally, this does not cause trouble when working under steady‐state conditions (one
can estimate σy), but it becomes more problematic under time‐dependent flow conditions.

The steps are the following:

1. Plot the cumulated amount of sediment on a graph (tn, Sn ¼ δt∑n
i ¼ 1yi) and identify the periods T during

which the steps are close to a straight line of slope Λ̂ , that is, the period during which the process was

stationary or quasi‐stationary. The slope Λ̂ represents the mean transport rate over time T, and Sn is a

time discretization of ∫yðtÞdt.
2. From this period T, we can extract a sample (ti, yi) involving nT∼T/δt values. Because we need to handle

independent and identically distributed random variables yi, we must check that this assumption is satis-
fied. In practice, if one measures volume‐averaged transport rates qi, the assumption of independent and
identically distributed data implies that the time interval δt should be larger than the autocorrelation

Figure 4. (a) Variation over time of the cumulative number of particles
crossing the control surface ∑t

0φsðτÞδt. The red line represents the

cumulative number of particles ∑φsδt¼ Λ̂t with Λ̂ ¼ νin ¼ 9:98 grains/s.
(b) Waiting times for the flux at the control window's downstream end S.
The solid red line represents the exponential distribution (6) with rateeΛ ¼ 9:77 s−1 adjusted on the waiting time sample using the method of
moments. The dashed black line represents the hyperexponential
distribution (33) fitted to the data using the method of moments. The dotted
blue line represents the hyperexponential distribution (35) adjusted on the
flume inlet's data. The light blue dots show the empirical probabilities.
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time, otherwise neighboring values would be correlated. The “training” sample ðti; yiÞ1≤i≤nT is used to
generate random samples, using the bootstrap resampling technique (Davison & Hinkley, 1997).

3. We can estimate the variance of ⟨y⟩ðΔtÞ by generatingM samples (typicallyM = 100 is recommended) of
size nr = Δt/δt from the training sample (e.g., see Davison & Hinkley, 1997) on how to use the bootstrap
method) and estimating the variance var ŷ of this group.

4. When plotted as a function of Δt, the empirical variance var ŷ should lie on the curve Λ̂=Δt, by virtue of
Equation 18 or 9, if the data were collected at a sufficiently high frequency. If they were not, we can use
the central limit theorem (27), and the data should be close to the curve σyδt/Δt.

5. The empirical variance curve var ŷðΔtÞmakes it possible to specify the accuracy associated with the mea-
surement of the double‐averaged transport rate over the duration Δt or, reciprocally, to select the value of
Δt that corresponds to the desired accuracy (i.e., the prescribed σy).

3. Experimental Procedure
3.1. Experimental Setup

The flume used was 2.5 m long, 40mm wide, and tilted at an angle of 1.55° from the horizontal. Water dis-
charge at the flume inlet was set to Qw = 0.2 L/s, and flow depth was 1.1 cm (the hydraulic radius was
Rh = 71mm). The flow was supercritical (with a Froude number of 1.1). This choice of the flow regime
was driven by our desire to approach the flow conditions found in mountain streams (the subject of our
research) and to limit the effects of sidewall friction on flow turbulence. Well‐sorted gravel (mean diameter
d50 = 3mm, density ϱp = 2,550 kg/m3) was layered along the flume bottom to a thickness of 4 cm, and the
same gravel was used to feed the flume at a feed rate of 10.3±0.5 grains/s. The Shields number was
Θ = ϱh/((ϱp−ϱ)d50 = 0.043 (if we use the empirical equation for gravel beds proposed by Recking (2013),
we obtain Θ = 0.045). We designed a specific system to feed the flume with sediment (see supportinginfor-
mation for photographs), bounded by two constraints: The feed rate had to be low (a few grains per second),
and the particle flux had to be as close to a Poisson process as possible. Gravel was initially contained in a
hopper whose opening controlled the inflow rate. The particles fell onto a slowly rotating cylinder
(Ω = 0.4 rad/s) whose surface was covered with sandpaper. A vertical brush prevented grains from stacking
and generating avalanches. After the cylinder had rotated by a certain angle, any grain stuck to the rough
cylinder exterior was dislodged and fell into the flume. The grains fell onto a smooth white board, slipped
down it while being filmed by a high‐speed camera, and then arrived at the flume inlet, where they were
entrained by the flow. Although the match was not perfect, the particle flux at the flume inlet was very close
to a Poisson process.

3.2. Image Processing and Tracking

Images were collected at 250 frames per second using a high‐speed Basler A504k camera equipped with a
Nikkor‐S 1:1.4 f = 50mm lens, at a resolution of 624×300 pixels (with the scale 1 px = 0.133 mm). A 35‐
cm‐long transparent plastic plate was placed above the water surface to prevent reflections and image distor-
tion created by free surface waves. Images were taken from vertically above this plate. This setup caused a
local flow disturbance whose effects were negligible on the flow portion under the plate, although we pre-
sume that it exacerbated bedforms downstream of the plate. Three LED spotlights illuminated the control
window homogeneously. The experimental run lasted 22 min, and initial images were removed to extract
a sequence of 20 min.

The raw images were processed by subtracting their background image, defined as the median of the 20 pre-
vious frames. This preliminary step enabled us to highlight moving particles and discard jiggling particles
which were not being transported by the flow. Particle tracking was based on a procedure available from
the TrackMate‐ImageJ numerical framework (Tinevez et al., 2017). First, spot detection was carried out
using a Laplacian of the Gaussian detector and considering an estimate of the mean grain size in the images
as the detector size parameter. Second, in the particle linking step, we modified and used the Linear
Assignment Problem (LAP) tracker initially proposed by Jaqaman et al. (2008): we modified the linking cost
function so that it accounted for the preferential direction of particle displacement (downstream in our case).
The gap closing option was allowed over two time steps. Moreover, spots and trajectories were filtered to
reduce tracking errors, mostly caused by moving bubbles trapped at the interface between the transparent
plate and the water flow. After the spot detection step, we filtered spots by considering their properties,
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which enabled us to identify spots associated with moving bubbles. We rejected spots characterized by
an estimated diameter smaller than 7 px and/or by a maximum pixel intensity higher than 160 (over 255).
Among the trajectories reconstructed using the particle linking procedure, we discarded those
composed of fewer than four spots in order to remove short tracklets caused by bubbles and improper par-
ticle linking. A validation test of this tracking method was conducted, and it is presented in the supporting
information.

Finally, the resulting tracks were analyzed to calculate the variables of interest for the present study:
We emphasized the time series (ti, N(ti)) of the number of moving particles, the distribution of the particle
velocity up (averaged over all particle paths for each image), and the time series of the particle fluxes in
the downstream section of the control window Φs(t). We considered three control windows of different
streamwise lengths (L = 17.5, 35, and 70mm), all located in the same section and starting 1.32 m from the
flume inlet (x = 0). We present only results obtained with the longest window L = 70mm. See the supporting
information for further data on L's influence on the results (which was found to be small, on average).

4. Results

This section addresses the following points. First, we compare the various predictions of the Markovian the-
ory developed in section 2 against high‐resolution experimental data. Second, we test the protocol proposed
in section 2.7. Third, to estimate whether this protocol has potential, we evaluate its performance under
more complicated flow conditions: Because bedforms developed downstream of the plate and thus influ-
enced the bedload transport rate, we look more closely at the data acquired at the flume outlet. Before
addressing each of these points, we adjust themodel parameters λ, μ, σ, μ, νout,ūp, and σu from the time series

(ti = iδt, Ni, ui), where δt = 4ms is the time interval between two images, and Ni is the number of moving
particles in the control volume. The inflow rate νin = 10.3 grains/s was imposed experimentally at the
flume inlet.

4.1. Parameter Estimation

Of five model parameters—entrainment parameters (λ and μ), deposition rate (σ), flux parameters (νout, and
νin)—four are unknown and νin = 9.98 grains/s was set experimentally (taking the value measured in the
control window rather than the one fixed at the flume inlet). We only need to select four relationships to
determine the unknowns, but at least five equations are available:

1. Bed equilibrium

σ⟨N⟩ss ¼ μ⟨N⟩ss þ λ: (28)

2. Flux steadiness

νin ¼ νout⟨N⟩ss: (29)

3. Condition on the average N value

⟨N⟩ss ¼
β
α
¼ λþ νin
νout þ σ − μ

: (30)

4. Condition on the N variance

var ssN ¼ ðλþ νinÞðνout þ σÞ
ðνoutþσ−μÞ2 : (31)

5. Condition on the autocorrelation time

νout þ σ − μ¼ t−1c : (32)
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The autocorrelation time was tc = 221ms (see Figure 6b). We set νout from
Equation 29: νout = νin/⟨N⟩ss = 1.88 1/s. We solved Equations 30, 31, and
32 for λ, μ and σ. We found λ = 14.77 grains/s, μ = 4.98 1/s, and σ = 7.68
1/s. Furthermore, we inferred from the processed images that the mean
particle velocity was ūp ¼ 13:41 cm/s and its standard deviation was

σu = 3.24 cm/s. Note the value νout = 1.82 1/s was 5% below the theoreti-
cal value νout ¼ ūp=L¼ 1:91 1/s. Equation 28 was used to test whether
the fitted values were consistent with the assumption of bed equilibrium.

4.2. Particle Flux

We begin our analysis with the particle flux across the control surface S located at the control volume's

downstream end. Grains crossed the control surface at a mean rate Λ̂ ¼N tot=Texp ¼ νin ¼ 9:98 grains/s

(Ntot = 11,974 was the total number of grains to have crossed S over the run duration Texp ¼ 1;200 s). As

shown by Figure 4a, the particle flux was almost stationary, even though the time variations in Φs exhibited
wide fluctuations over short time scales (see Figure 8). The mean number of particles crossing the control

surfaceSwithin δt = 4ms wasN ¼ 0:04127, whereas the variance was varN = 0.04130. The 0.07% deviation
between these two values shows that the assumption of a Poisson process was realistic. Table 1 shows that
the Poisson model properly predicts the number of particles crossing the window per time interval δt. The
error for k = 3 particles is likely to have resulted from the sample's finite size (only three occurrences in
1,200 s). The partial autocorrelation function was close to 1 for a lag of 1, then vanishingly small for lags lar-
ger than 1, as expected for a Poisson process.

Stationary jump processes are fully characterized by the probability of observing the process in a given state
and by the waiting times τ between two jumps (Gillespie, 1992). Although Table 1 and Figure 4a support the
idea of a Poisson process, examining the waiting‐time distribution tells us a different story: Figure 4b shows
the empirical probability density function of waiting times and their exponential distribution (6) (with rateeΛ ¼ 9:77 s−1 adjusted on the waiting time sample using the method of moments). Over short periods, there
was a fairly good match between the empirical and theoretical distributions, but for periods longer than 400
ms, deviation from the exponential distribution was marked. The sample's coefficient of variation was στ=τ
¼ 1:21 (standard deviationστ ¼

ffiffiffiffiffiffiffiffiffiffi
var τ

p ¼ 124ms, mean τ ¼ 102ms), thus higher than unity. This confirmed
that waiting times were not strictly exponentially distributed. To better describe the probability distribution
of waiting times, we can adjust a two‐parameter hyperexponential distribution, whose density function is

pðτÞ ¼ α1λ1expð−λ1τÞþα2λ2expð−λ2τÞ; (33)

where α1 and α2 are mixture parameters satisfying α1+α2 = 1, whereas λ1 and λ2 are two rates. Using the
method of maximum likelihood, we found

α1 ¼ 0:13; λ1 ¼ 4:33 s−1; α2 ¼ 0:87; and λ2 ¼ 12:04 s−1; (34)

which was associated with slightly (20%) higher rates than those fitted at the flume inlet:

α1 ¼ 0:19; λ1 ¼ 5:8 s−1; α2 ¼ 0:81; and λ2 ¼ 15:2 s−1: (35)

To compute the sample mean and variance for the time series (ti, ni), we used the bootstrap method and gen-
erated M = 100 samples from the experimental data set (see section 2.7). If the process was stationary and
Poissonian with rate Λ, then we would expect that

⟨Φs⟩→Λ and var ΦsðΔtÞ→Λ
Δt

; (36)

as seen in section 2.3. The parameter Λ was estimated by fitting an exponential distribution to the waiting

times between two positive jumps (i.e., events for which ni>0) in the time series (ti, ni). We found ~Λ ¼ 9:77
s−1. Note the slight difference (2%) in the mean transport rate calculated using the assumption of a Poisson

process (Φss ¼Λ¼ 9:77 grains/s) and the one obtained empirically by setting Φss ¼ Λ̂ ¼N tot=Texp ¼ 9:98

Table 1
Empirical and Theoretical Probabilities of Observing k Particles Crossing
the Control Surface S Within the Time Interval δt = 4ms

k Empirical value Poisson prediction Relative error

k = 0 0.959587 0.959567 0.002%
k = 1 0.039559 0.039604 –0.112%
k = 2 8.4×10−4 0.00081 3.59%
k = 3 6.7×10−6 11.1×10−6 –40.71%
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grains/s. As shown in Figure 4b, the process was not a genuine
Poisson process, and this led to small errors. This explains why
the empirical means computed using the bootstrap method were

close to the mean flux value Φss ¼ Λ̂ ¼ 9:98 grains/s (see

Figure 5a), and 2% higher than the rate eΛ deduced from the
waiting‐time distribution. For the variance varΦs(Δt), Figure 5b
shows the excellent agreement between the variances computed
using the bootstrap method and the theoretical prediction (36).

We also used renewal theory for computing the particle flux (see
Appendix B). Here, we used the hyperexponential distribution to esti-
mate the waiting time between two events. The number of particles
which could arrive at the same time was estimated using the
binomial‐like distribution (B1). From the experimental data, we
deduced that there was a probability of p = 11,473/11,989 = 0.979
that a single particle crossedSwithin δt, and of 1−p that two particles
crossed it at the same time. This resulted in a flux average (B11) that

closely matched the feed rate Λ̂ ¼ 9:98 grains/s, as shown in
Figure 5a. This confirmed that the slight discrepancy between theory
and experiment was likely due to the existence of much longer wait-
ing times than predicted by the exponential distribution. For the var-
iance, our renewal model provided only the asymptotic scaling (B12):
varΦs≈15.2/Δt grains

2/s2, which resulted in the right trend
(varΦs∝(Δt)

−1, but overpredicted variance by 50%. This may seem
surprising—because the renewal model performed better than the
Markovian model at predicting the sample mean in Figure 5a—but
it should be remembered that Equation B12 is an asymptotic expres-
sion that holds for sufficiently long times Δt. Further simulations (not
shown here) of the renewal process, presented in Appendix B, con-
firmed the sample variance's sensitivity to sample size.

4.3. Volume‐Averaged Transport Rate

We recorded the number N of moving particles in each frame. The

time‐averaged number of moving particles was N ¼ 5:47, whereas
the variance was varN = 11.5. Figure 6a shows that the negative
binomial model closely matched the statistical distribution of the
number of particles moving in the window during time interval δt.

The error was usually less than 6%, except at n = 0 where it reached 30%. The time series shows large fluc-

tuations in N, with peaks as large as 5N . Figure 6b shows that the exponential autocorrelation function (13)
fitted the empirical autocorrelation function if we set tc = 221ms. The particles moved at a mean velocity
ūp ¼ 13:45 cm/s (standard deviation σu = 3.76 cm/s). The Gauss‐Laplace distribution offered a rough

description of particle velocity fluctuations (see Figure 6d). The stationarity test confirmed that the (ti, qi)
was a stationary process, with a mean rate q̂ss ¼ 10:27 grains/s.

We used the bootstrap method to evaluate how the sample mean ⟨qs⟩ and variance var qswere dependent on
sampling duration Δt. As the autocorrelation time tc = 221ms was fairly long compared to the acquisition
time δt = 4ms (tc/δt∼50), we had to resample the raw data series (ti,Ni) at a frequency of 1/(50δt) = 5 Hz
to obtain a sample of independent and identically distributed data. Figure 7a shows that the mean computed
using the bootstrap method was close to 10.25 grains/s, a slightly (2%) higher value than the time‐averaged

flux ⟨Φs⟩ss ¼ 9:98 grains/s. Figure 7b shows the excellent agreement between the sample variances and their
theoretical prediction (18). Because the velocity fluctuations here were small compared to their mean, taking
velocity fluctuations into account did not lead to better results. This confirmed the observation, made by a
number of authors (Ancey et al., 2008; Campagnol et al., 2012; Cudden &Hoey, 2003; Singh et al., 2009), that

Figure 5. (a) Influence of sampling duration on the computation of the sample
mean. The solid red line is the theoretical mean value given by Equation 36,
while the dashed red lines show the uncertainty domain ⟨Φs⟩ss ± var Φss. The
dotted blue line is the empirical mean flux

Φs ¼ Λ̂ ¼N tot=Texp ¼ 11;974=1;200¼ 9:98 grains/s. (b) Influence of sampling
duration on the sample variance. For both plots, the blue dots were obtained
using the bootstrap method. The solid red line shows the theoretical variance (9)

with Λ¼ Λ̂ ¼ 9:98 grains/s, whereas the dashed blue curve shows the variance
(B12) derived from the renewal model.
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bedload transport fluctuations originate primarily from variations in the number of moving particles rather
than from their velocities.

4.4. Influence of the Sampling Duration on the Time Series

When comparing the means and variances of the particle flux (section 4.2) and volume‐averaged transport
rate (section 4.3), we found that the two definitions led to similar values (to within a few percent) and the
same dependence on the sampling duration Δt. Although this finding made sense intuitively, it was not easy
to anticipate it from the theoretical results in section 2.

This similarity holds only on average. As shown by Figure 8, time series aspects depend a great deal on the
definition of qs and the sampling duration. Using short sampling durations, the particle flux showed wide
fluctuations as there was no time correlation between the two measurements. On the contrary, the bedload
transport rates were correlated because the acquisition frequency was much higher than 1/tc∼5 Hz. Using
longer sampling durations (typically for Δt≥ 1 s), the two time‐averaged time series look generally similar.

For Δt = 1 s, instantaneous differences ϵ¼ qs=Φs − 1 exceeding 100% were observed (see Figure 8b), and,
on average, the mean difference ϵ reached 7%. For Δt = 10 s, the relative differences were usually less than
20%, whereas the mean difference between the two time series dropped below 3%.

4.5. The Influence of Bedforms

Bedforms developed along the bed downstream of the observation plate covering the free surface. Forms
were likely exacerbated by the plate as we observed a clear difference in behavior upstream and downstream
of it:

• Downstream of the plate, we observed upstream‐migrating antidunes. Their wavelength ranged from ≈8
to 15 cm, and their amplitude was close to 2d50. Their celerity was in the 1–1.5‐mm/s range, but they
moved intermittently.

Figure 6. (a) Comparison between the empirical (blue dots) and theoretical (red squares) negative binomial probability
densities (11). (b) Autocorrelation function of N(t): the black dots are the empirical function, and the solid red line shows
the theoretical exponential function (13) with tc = 221ms. (c) Stationarity tests on the (ti, qi) time series: The solid
line shows ∑iqiδt, whereas the dashed line is the cumulative mass q̂sst with q̂ss ¼ 10:27 grains/s the bedload
transport rate averaged over the run duration. (d) Particle velocity distribution: In addition to the
histogram, we have plotted the Gauss–Laplace distribution (5) fitted to the data (solid blue line).
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• Upstream of the plate, behavior was more complicated. Bed undu-
lations were observed, but their origin and nature remained uncer-
tain (perhaps they were sediment waves). Their wavelength
fluctuated widely from 4 to 8 cm, and their amplitude was approxi-
mately one grain diameter. These forms experienced cycles of
growth and decay over time scales of a few minutes, with no evi-
dence of migration (see Movie S2).

We also measured an 11% increase in the bedload transport rate: Over
20 min, a total of 13,271 particles left the flume, whereas 11,974
crossed the control surface S located in the middle of the flume.
The Φs time series was more intermittent: Pulses of intense activity
were separated by periods of lower activity, which was also reflected
in longer waiting times between particle arrivals (waiting times as
long as 6 s were measured) as shown by Figure 9a. Examining time
variations in the cumulative amount of sediment shows that during
the first 6 min, the particle flux was much higher than the feed rate
(16.3 grains/s versus 10.3 grains/s, on average, at the flume inlet)
(see Figure 9b). After a phase that lasted about 100 s (between
t = 340 and 440 s) and during which the mean particle flux dropped
to 2.7 grains/s, there was a period 440≤ t≤ 1,080 s during which the

particle flux remained almost constant (Φs ¼ 10:2 grains/s) and close
to the feed rate. We thus extracted a reduced sample between the
timepoints 440≤ t≤ 1,080 s.

Figure 9c shows that the double‐averagedmeans (estimated using the
bootstrap method) tended toward the mean particle flux

Λ̂r ¼Nr=640¼ 10:77grains/s obtained by dividing the number of par-
ticles Nr = 6,896 leaving the flume between time points t = 440 and
t = 1,080 s, by the length of time 1,080−440 = 640 s. As expected, the
bootstrapmethod provided a correct estimate of themean particleflux
for this period. As the waiting‐time distribution deviated from the
exponential distribution, the particle rate deduced from the mean

waiting time, eΛr ¼ 9:87 grains/s, underestimated the actual transport
rate by 8%. Applying the renewal model (B11) led to a mean transport

rate Φs ¼ 10:66 grains/s, which was 1% below the actual rate. The
main effect of bedforms was thus to alter the temporal distribution in the number of particles: the temporal
distribution deviated gradually from the Poisson distribution as a result of increased intermittency, that is,
alternating between periods duringwhich no transport occurred and periods duringwhichmore intense sedi-

ment transport took place. Figure 9d shows that the double‐averaged variance varied as Λ̂r=Δt, as expected.

The forms observed upstream of the plate were likely driven by alternate phases of sediment storage (over
periods spanning tens of seconds) and fast release of particle clusters. It is probable that this alternation
changed the waiting‐time distribution in the control window and created the hyperexponential tail shown
in Figure 4b. Downstream of the plate, the antidune migration period (in the 80–150‐s range) was consistent
with the time intervals between the bedload flux pulses recorded at the flume outlet (Figure 1). We believed
that the hyperexponential waitingtime distribution at the flume outlet (Figure 9) was due to antidune
migration.

5. Applications

We finish the paper by describing two potential applications for the measurement protocol outlined in
section 2.7:

• We ran long‐duration experiments under steady‐state conditions in a laboratory flume (see section 5.1).
As gravel bars and pools developed and migrated along the flume bed, the bedload transport measured

Figure 7. (a) Influence of the sampling duration Δt on the computation of the
sample mean: The black dots show the values generated using the bootstrap
method. The solid red line shows the theoretical value (15). (b) Influence of the
sampling duration on the computation of the sample variance. The solid red line
shows the theoretical prediction (18) when assuming σu = 0 (i.e., velocity
fluctuations are negligible), whereas the dashed red curve shows the theoretical
prediction (25) when σu>0. The latter curve is hardly discernable from the
former as σu ∼ 0:07ū2p.
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at the flume outlet exhibited wide fluctuations resulting from alternating phases of low and intense
transport. Bedload transport pulses were often associated with the destruction of bars, which released
large amounts of gravel (Dhont & Ancey, 2018).

• We have been monitoring a gravel‐bed river in the Swiss Alps since 2011 (see section 5.2). Contrary to
other applications in this paper, this was not a steady‐state system, but there were periods during which
it approached a steady state, which made it possible to apply our measurement protocol.

These two applications illustrate the sampling duration's significance to the estimation of bedload transport
rates. To obtain fairly high precision (10% variance or lower), one has to carefully study how the Qs variance
changes with the sampling duration Δt.

5.1. Laboratory Flume

Here, we show how the measurement protocol performed with a time series of bedload transport rates mea-
sured at the outlet of a flume 19m long, 60 cm wide, and inclined at 1.6% to the horizontal. We used gravel
whose median diameter was d50 = 5.5 mm. The water discharge was constant Qw = 15 L/s. Transport rates
were measured using impact plates and accelerometers operated at 100 Hz for a long period (Texp ¼ 155
hr). Raw data were aggregated by averaging them over time steps of δt = 1min. The reader is referred to
Dhont (2017) and Dhont and Ancey (2018) for details of this experiment.

Figure 10a shows the bedload transport rate recorded at the flume outlet: Periods of intense bedload trans-
port were usually associated with the destruction of gravel bars or the scouring of pools. Despite these pulses,
the overall bedload transport rate behaved like a quasi‐stationary process, as shown by Figure 10b. Applying
the central limit theorem enabled us to estimate how the time‐averagedmean and variance varied with sam-
pling duration Δt, whereas the bootstrap method enabled us to generate double‐averaged means and var-
iances for different Δt values (see Figures 10c and 10d). Although the central limit theorem provides only

an asymptotic expression for var Qs (var Qs ¼ σ2qδt=Δt), we found that for all Δt values, this asymptotic rela-

tion closely matched the sample generated using the bootstrap method. Figure 10d shows that for a sampling

Figure 8. (a) Time variations in the time‐averaged transport rateqs (solid red line) and particle flux (dashed black line)Φs for a sampling duration Δt = 250δt = 1 s.
(b) Relative difference between qs and Φs as a function of time t for Δt = 1 s. (c) Time variations in the time‐averaged transport rate qs(solid red line) and particle
flux (dashed black line) Φs for a sampling duration Δt = 2500δt = 10 s. Relative difference between qs and Φs as a function of time for Δt = 10 s.
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duration Δt = 1min, the variance was 4.3 g2/s2, and thus we could only determine the mean bedload

transport rate to within
ffiffiffiffiffiffi
4:3

p
=4:07 ∼ 50%. If we wanted greater precision in the determination of Qs—say

10% greater precision—we had to increase the sampling duration to 30 min, as per Figure 10d.

5.2. Gravel‐Bed River

Here, we present an application to the River Navisence (canton Valais, Switzerland), a gravel‐bed river near
Zinal monitored since 2011. Bedload transport rates are measured using geophones placed across a concrete
sill of width W = 9m (Ancey et al., 2014; Wyss et al., 2016). The mean bed slope upstream of the sill is
i = 3.2%. The median particle diameter of transported bedload was d50 = 8 cm.

Figure 11a shows the time series of bedload transport rates Qs and water discharge Qw for 8 July 2012 (a day
picked randomly). Water discharge varied throughout the day under the effect of sunshine. Overnight and in
themorning, bedload transport rates were negligibly low. In the afternoon, ice melt and snowmelt increased
water discharge and thus the transport rate went up. We isolated a sequence of transport rates from 17:00 to
18:00, for which bedload transport could be considered stationary, as shown by Figure 11b.

Figure 9. (a) Waiting time distribution at the flume outlet: Dots show the empirical probabilities. The solid red line is
the exponential distribution (6) with rate eΛ ¼ 10:0 grains/s. The dashed black line shows the hyperexponential
distribution (33) fitted to the data. The dotted blue line shows the hyperexponential distribution (35) adjusted to the
flume inlet data. (b) Stationarity test: Time variation in the cumulative number of particles crossing the control

surface ∑t
0φsðτÞδt. The red line is the mean behavior Λ̂t with Λ̂ ¼ 13;271=1;200¼ 11:06 grains/s. The dashed vertical

lines show the period (from 440 to 1,080 s) over which the particle flux could be considered stationary. (c) Variations
in the double‐averaged particle flux with the sampling duration Δt. The solid red line shows the mean particle

flux Λ̂r ¼Nr=640¼ 10:77 grains/s obtained by dividing the number of particles Nr = 6,896 leaving the flume between
times t = 440 and t = 1,080 ss. The dashed red line shows the mean particle flux defined from the waiting time

distribution by adjusting the exponential distribution (6) using the reduced sample, with eΛr ¼ 9:87 grains/s. The
dashed blue line shows the mean Φs ¼ 10:66 grains/s, computed using the renewal model (B11), with p = 0.92,

λ1 = 3.59 1/s, λ2 = 14.69 1/s, α1 = 0.16, and α2 = 0.84. The blue points show the sample averages computed using the
bootstrap method and the reduced sample as the training sample. The gray points show the sample averages
when the entire time series is used as the bootstrap method's training sample. (d) Variation in the
double‐averaged variance var Φs with the sampling interval Δt. The solid red line shows the

theoretical variance (9) with Λ¼ eΛ ¼ 10:0 grains/s.
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Figures 11c and 11d show the double‐averaged means and variances computed using the bootstrap method.
As the bedload transport was stationary during the period considered, the double‐averagedmeans were close

to the mean rateQss ¼ Λ̂ ¼ 236 g/s estimated using the stationarity test (see Figure 11b). The variance curve
in Figure 11d enabled us to estimate that for Δt = δt = 60 s, the mean transport rate was accurate to within

σq=Qs ¼ 36%. Increasing Δt by a factor of 10 (Δt = 10min) decreased the uncertainty to 3.6%. As the 17:00 to
18:00 time slot corresponded to the day's peak bedload transport activity, it is tempting to consider that a

convenient sampling duration for 8 July 2012 was Δt = 10min—sufficiently long to obtain lowvar Qs values
and sufficiently short to capture the slow variations in the bedload transport rate with water discharge.

6. Conclusion

Bedload transport rates usually exhibit wide fluctuations, even under steady flow conditions. Measurements
of time‐averaged transport rates Qs representative of bedload transport at given times can thus be biased to
varying degrees, as illustrated by Figure 1, where errors exceeding 100% can be observed at certain sampling
durations.

The present paper examines how we can assess the uncertainties associated with estimating a time‐averaged

transport rate Qs. We used the birth‐death immigration‐emigration model developed by Ancey et al. (2008).

We arrive at an experimental protocol for measuring the mean particle fluxQs ¼Φs or bedload transport rate
Qs ¼ qs (see section 2.7) and estimating the uncertainties associated with that measurement. The first step is
to define a time interval over whichQsðtÞbehaves like a stationary process. Depending on the data acquisition
frequency and the relevance of the Markovian assumption (waiting times distributed exponentially or exhi-
biting a thicker tail), different models can be used to define the double‐averaged mean and variance. When
data‐acquisition frequencies are sufficiently high (typically, higher than 1 Hz) and the Markovian

Figure 10. Application to a 19–m‐long flume. (a) Time series of Φs . (b) Stationarity test. The dashed red line is the

cumulative sediment mass ∫Qsdt¼ Λ̂t with Λ̂ ¼ 4:07 g/s. (c) Variation in the double‐averaged mean with the sampling

duration Δt. The solid red line shows the mean flux Qss ¼ Λ̂ ¼ 4:07 g/s, whereas the black dots show the means
generated using the bootstrap method. (d) Variation in the double‐averaged variance with sampling duration
Δt. The black dots show the variances generated using the bootstrap method. The solid red line is the theoretical
variance var Qs ¼ σ2qδt=Δt with σ2q ¼ 4:8 g2/s2.
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assumption is realistic, then theMarkovianmodel developed by Ancey et al. (2008) can be applied.When the
Markovian assumption fails, a renewal model can be used. At low data acquisition frequencies, the central
limit theorem can be employed to find the double‐averaged variance's dependence on the sampling
duration Δt.

Markov process theory provides valuable insights into the behavior ofQs fluctuations. One remarkable result

is that the ensemble variance of Qs is controlled solely by the sampling duration Δt and mean rate Qs . As
exemplified by the toy model in section 1.3, this ensemble variance offers a better estimate of the uncertain-

ties associated with the measurement of Qs than does sample variance.

Appendix A: Integral of a Markov Process

A1. Theoretical Reminder: Master Equations and Other Definitions

We assume that the time variations in N can be described using Markov process theory (Gillespie, 1992).
Between times t and t+dt, the N variation (called the propagator)

Θðdt; n; tÞ ¼Nðt þ dtÞ−NðtÞ given that NðtÞ ¼ n; (A1)

has the following probability density function (strictly speaking, the probability mass function as N is a
discrete random variable):

Πðmjt ̣; n; tÞ ¼ prob ðΘðdt; n; tÞ ¼mÞ; (A2)

with m = 0, 1, or −1 for a birth‐death Markov process. The process can be also described by introducing

Figure 11. Application to the River Navisence. (a) Time series for 8 July 2012. The inset shows the time variations in the
water discharge Qw, while in the main graph, we have plotted the Qs time series for 8 July 2012 (Qs has been averaged
over time steps of δt = 1min (Ancey et al., 2014; Wyss et al., 2016). From this time series, we extracted a sample
from 17:00 to 18:00 (represented by the vertical dashed lines). (b) Stationarity test. The dashed red line is the
cumulative mass ∫Qsdt¼ Λ̂t with Λ̂ ¼ 236 g/s. (c) Variation in the double‐averaged mean with the sampling

duration Δt. The solid red line shows the mean flux Qss ¼ Λ̂ ¼ 236 g/s, whereas the black dots show the
means generated using the bootstrap method. (d) Variation in the double‐averaged variance with
sampling duration Δt. The black dots show the variances generated using the bootstrap method. The solid
red line is the theoretical variance var Qs ¼ σ2

qδt=Δt with σ2q ¼ 7536 g2/s2.
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the jump probability q(n, t;τ), which is the probability that N varies by ±1 at some instant between t and t
+τ. The Markovian assumption imposes that for infinitesimal time intervals, q(n, t; dt) = a(n, t)dt, where a
is a positive function of n and t. The state probability w(m|n,t) is the probability that upon jumping at time
t, N takes the new value n+m. The propagator density Π and the functions a and w are related:

Πðmjt ̣; n; tÞ ¼ aðn; tÞdtwðmjn; tÞþð1 − aðn; tÞdtÞδkðm; 0Þ; (A3)

where δk is the Kronecker delta function.

We also define the consolidated characterizing function:

Wðmjn; tÞ ¼ aðn; tÞwðmjn; tÞ; (A4)

which can be interpreted as follows: Wdt is the probability that the number of particles N(t) = n jumps
from n to n+m in the time interval dt. This function can be used in the master equation, that is, the gov-
erning equation for the probability of observing N(t):

∂
∂t
Pðn; tjn0; t0Þ ¼ ∑

m ¼ þ1

m ¼ −1
Wðmjn −m; tÞPðn −m; tjn0; t0Þ−Wð−mjn; tÞPðn; tjn0; t0Þ; (A5)

and if we define

WþðnÞ ¼Wð1jn; tÞ and W−ðnÞ ¼Wð−1jn; tÞ; (A6)

which are the probabilities of gain or loss, respectively, then the master equation A5 can also be written as

∂
∂t
Pðn; tjn0; t0Þ ¼ W−ðnþ 1ÞPðnþ 1; tjn0; t0Þ−WþðnÞPðn; tjn0; t0ÞþWþðn − 1ÞPðn − 1; tjn0; t0Þ−W−ðnÞPðn; tjn0; t0Þ:

(A7)

It can be shown that the process is entirely determined by the functions (Gillespie, 1992):

aðnÞ ¼Wþ þW− ¼ νin þ λþ ðνout þ μþ σÞn (A8)

where a(n)dt represents the probability that N varies within the time period dt, and

vðnÞ ¼Wþ −W− ¼ νin þ λþ ðμ − σ − νoutÞn: (A9)

Equivalently, we can work with the pairs of functions (W+, W−) or (a, v).

A2. Mean, Variance, and Covariance of N(t)

It can be shown that themean number of moving particles ⟨N⟩ satisfies the differential equation (see Chapter
6 in Gillespie, 1992):

d
dt
⟨N⟩¼ vð⟨N⟩Þ ¼Wþð⟨N⟩Þ−W−ð⟨N⟩Þ; (A10)

subject to the initial condition ⟨N⟩(t0) = N0. The variance of N is governed by

d
dt
var N ¼ 2 ⟨NvðNÞ⟩−⟨N⟩⟨vðNÞ⟩ð Þ þ ð⟨aðNÞ⟩Þ; (A11)

subject to varN(t0) = 0. The time covariance is

d
dt2

cov ðNðt1Þ; Nðt2ÞÞ ¼ ⟨Nðt1ÞvðNðt2ÞÞ⟩−⟨Nðt1Þ⟩⟨vðNðt2ÞÞ⟩; (A12)

for t0≤ t1≤ t2 and subject to the initial condition cov (N(t1), N(t1)) = varN(t1).
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A3. Integral S of N(t)

The time integral S of N is defined as

SðtÞ ¼ ∫
t

t0
NðtÞdt: (A13)

Its mean value is given by

d
dt
⟨S⟩¼ ⟨N⟩; (A14)

whereas the time variations in the covariance cov (S, N) = ⟨SN⟩−⟨S⟩⟨N⟩ obey the equation

d
dt
cov ðS; NÞ ¼ var N þ ⟨SvðNÞ⟩−⟨S⟩⟨vðNÞ⟩; (A15)

subject to cov (S, N) = 0 at time t = t0. The S variance is

d
dt
var S¼ 2cov ðS; NÞ; (A16)

subject to var S(t0) = 0. The covariance of S is the solution to

cov ðSðt1Þ; Sðt2ÞÞ ¼ var Sðt1Þþ2∫
t2
t1
cov ðSðt1Þ; NðτÞÞdτ (A17)

for t0≤ t1≤ t2 and where the integrand is the solution to the differential equation

d
dt2

cov ðSðt1Þ; Nðt2ÞÞ ¼ ⟨Sðt1ÞvðNðt2ÞÞ⟩−⟨Sðt1Þ⟩⟨vðNðt2ÞÞ⟩; (A18)

for t0≤ t1≤ t2. We refer the reader to Chapter 6 in Gillespie (1992) for the proofs.

A4. Moments of S

The mean time integral S is the solution to Equation A14

⟨SðtÞ⟩¼N0tcð1 − e−t=tcÞþ⟨N⟩ss t − tcð1 − e−t=tcÞ
� �

: (A19)

The solution to the covariance Equation A15

d
dt

cov ðS; NÞ ¼ var N − α cov ðS; NÞ;

takes the form

cov ðS; NÞ ¼N0γ
α2

e−2t=tc þ e−t=tcðαt − 1Þ
� �

þ βð1−e−t=tcÞ2 þ γ⟨N⟩ssð1 − 2αte−t=tc − e−2t=tcÞ
2α2

; (A20)

where γ = νout+σ+μ and α = νout+σ−μ. We find that the covariance tends to the limit

cov ssðS; NÞ ¼ βþ γ⟨N⟩ss

2α2
¼ ðλþ νinÞðνout þ σÞ

ðνoutþσ−μÞ3 : (A21)

Using Equation A16, we deduce the variance of S by integrating the covariance cov (S, N). Asymptotically,
this scales as

10.1029/2020JF005534Journal of Geophysical Research: Earth Surface

ANCEY AND PASCAL 22 of 26



var S ∝
βþ γ⟨N⟩ss

α2
t ¼ ðλþ νinÞðνout þ σÞt

ðνoutþσ−μÞ3 : (A22)

By solving Equation A17, we find that the autocorrelation function of S is

ρsðτÞ ¼ 1þ tc
τ

ðνoutþσ−μÞ3
ðλþ νinÞðνout þ σÞð1 − e−τ=tcÞ: (A23)

Appendix B: Time‐Averaged Particle Flux: Renewal Theory
The Markovian assumption imposes strict conditions on the applicability of Equation 8. These are either an
exponential distribution for the waiting times or, equivalently, a Poisson process for the number of particles
crossing the control surface. We can relax these assumptions by considering other probability distributions
and using renewal theory to compute the number of particles crossing the control surfaceS. Let us consider
that one or two particles can arrive at the same time:

prob ðN ¼ 1Þ ¼ p; (B1)

prob ðN ¼ 2Þ ¼ 1 − p; (B2)

prob ðN > 2Þ ¼ 0; (B3)

and that the waiting‐time distribution is the two‐parameter hyperexponential distribution, whose density
function is

PτðτÞ ¼ α1λ1expð−λ1τÞþα2λ2expð−λ2τÞ; (B4)

where α1 and α2 are mixture parameters satisfying α1+α2 = 1, whereas λ1 and λ2 are two rates. At time t,
M jumps have occurred (with one or two arrivals). Let us call S the sum of particles that have crossed the
control surface up to time t

SðtÞ ¼ ∑
MðtÞ

i ¼ 1
Ni (B5)

where MðtÞ ¼maxfn:Tn ≤ tg, and Tn = τ1+τ2+…+τn for n≥ 1 (T0 = 0), and τi is a sequence of waiting
times distributed from (B4). There is no analytical expression of S in (B5), but we can derive approxima-
tions in the limit of t→∞. Using Wald's equation (Grimmett & Stirzaker, 2008), we can deduce the expec-
tation of the sum S:

EðSÞ ¼ EðNÞEðMÞ; (B6)

and using the law of total variance, we get its variance:

var S¼ var NEðMÞþEðNÞ2var M: (B7)

Here we have: varN = p(1−p) and EðNÞ ¼ 2 − p. The number of jumps can be approximated as follows:

EðMÞ ¼ t
τ
þ oðtÞ; (B8)

var M ¼ tσ2τ
τ3

þ oðtÞ; (B9)

with
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τ ¼ α1
λ1

þ α2
λ2

and σ2
τ ¼ 2

α1
λ21

þ α2
λ22

� �
−

α1
λ1
þ α2
λ2

� �2

: (B10)

We then deduce:

ΦsðtÞ ¼ E
S
t

� �
¼ ð2 − pÞ λ1λ2

λ2α1 þ λ1α2
; (B11)

and

var ΦsðtÞ ¼ var
S
t

� �
¼ pð1 − pÞ

τ
þ ð2−pÞ2var τ

τ3

 !
1
t
: (B12)

Appendix C: Exponential Velocity Distribution
Let us consider that the particle velocity is distributed exponentially. We then replace the Gaussian distribu-
tion (5) with the exponential law with mean ūp

PuðwÞ ¼ probðu¼wÞ ¼ 1
ūp

expð−w=ūpÞ: (C1)

Like in section 2.5, we introduce the sum of k particle velocities

U ¼ ∑
k

i ¼ 1
up;i: (C2)

If k is fixed, then the probability Pk of observing U is the Erlang distribution with shape k and rate 1=ūp. If k
varies randomly, then the probability of observing U is

PU ¼ ∑
∞

k ¼ 1
PnðkÞPkðUÞ: (C3)

The volume‐averaged transport rate is qs = U/L. If we still assume that the probability of observing k parti-
cles is given by the negative binomial distribution with parameters p and q, the probability distribution of U
becomes

Pqs ¼ LPUðLqsÞ ¼ L ∑
∞

k ¼ 1

qþ n − 1

q − 1

� �
pqð1−pÞnðLqsÞ

k−1e−Lqs=ūp

ūkpðk − 1Þ! : (C4)

There exists a closed‐form expression for Pqs , but we just need the first two moments:

⟨qs⟩¼ ∫RþqsPqsdqs ¼
Nss

L
ūp; (C5)

var qs ¼ ∫Rþðqs−⟨qs⟩Þ
2Pqsdqs ¼

var ssN

L2
ð1þ pÞū2p: (C6)

Assuming that particle velocity and particle number are independent variables, we can generalize the var-
iance Equation 18 to take velocity fluctuations into account in the double‐averaged variance by following
the same reasoning as that used for deriving Equation 18:

var qsðΔtjtÞ ¼ varss N
ū2p
L2
ð1þ pÞ tc

Δt
; (C7)

an expression that is close to Equation 25 obtained for Gaussian velocity distributions.
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Notation

Here we provide the list of variables used in the paper, their meaning, and physical units.
D deposition rate [grains s−1]
d50 mean particle diameter [m]
E entrainment rate [grains s−1]
L control window's length [mm]
M number of samples
N, n number of moving particles
p parameter of the Bernoulli distribution
P probability density function
Pn probability density function of N
Pq probability density function of qs [s]
Pu probability density function of particle velocity [s m−1]
Pτ probability density function of waiting time [s−1]
q parameter of the negative Bernoulli distribution
qs instantaneous particle transport rate [grains s−1]
Qs instantaneous particle transport rate [g s−1]
Qw water discharge [L s−1]
S time integral of N(t)
S control surface
Sn sum of n variables
t time [s]
ti discrete time [s]
tc autocorrelation time [s]
Up volume‐averaged particle velocity [m s−1]
ūp mean particle velocity [m s−1]
V control volume
x streamwise coordinate [m]
y random variable
αi mixture coefficient
δt time interval [s]
Δt sampling duration [s]
φs particle arrival rate [grains s−1]
Φs particle flux [grains s−1]
λ entrainment rate [grains s−1]
λi Poisson rate [s−1]
Λ Poisson rate [grains s−1]
μ collective entrainment rate [s−1]
νin mean particle flux [grains s−1]
νout emigration rate [s−1]
ρ autocorrelation function
σ deposition rate [s−1]
σu particle velocity's standard deviation [m s−1]
σq standard deviation of qs [g s

−1 or grains s−1]
τ waiting time[s]

Data Availability Statement

The Mathematica scripts and data used for computing Figures 1 to 10 are available from the figshare data
repository (https://doi.org/10.6084/m9.figshare.11513073).
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