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Particles of differing sizes are notoriously prone to segregation in shear driven flows under
the action of gravity. This has important implications in many industrial processes, where
particle-size segregation can lead to flow problems and reduced product quality, as well
as longer product development and start-up times. Particle-size segregation also readily
occurs in many hazardous geophysical mass flows (such as snow avalanches, debris flows
and volcanic pyroclastic flows) and can lead to the formation of destructive bouldery
flow fronts and significantly longer runouts. Although general theories exist to model
particle-size segregation, the detailed functional dependence of the segregation flux on
the shear rate, gravity, pressure, particle concentration, grain size and grain-size ratio
is still not known. This paper describes refractive-index matched oscillatory shear-cell
experiments that shed light on the segregation velocity in the two extreme cases of (i) a
single large intruder rising up through a matrix of smaller grains, and (ii) a single small
intruder percolating down through a matrix of large particles. Despite the sometimes
markedly different time scales for segregation in these two situations, a unifying scaling
law has been found that is able to collapse all the experimental data over a wide range
of shear rates and grain-size ratios in the range [1.17, 4.17]. The resulting functional
form is easily generalizable to intermediate concentrations and can quantitatively capture
laboratory experiments and numerical simulations with a 50 : 50 mix of large and small
grains.
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1. Introduction

Shallow granular free-surface flows (or granular avalanches) are one of the most common
particle transport mechanisms in industrial bulk solids handling processes. They form in
chute flows (Savage & Hutter 1989; Gray, Wieland & Hutter 1999), as well as in thin
fluid-like layers at the free surface of heaps (Williams 1968; Baxter et al. 1998; Fan et al.
2012), silos (Bates 1997; Schulze 2008; Liu, Gonzalez & Wassgren 2019; Isner et al. 2020)
and rotating tumblers (Gray & Hutter 1997; Hill et al. 1999; Khakhar, Orpe & Hajra
2003; Schlick et al. 2015; Gilberg & Steiner 2020). These high density, gravity driven,
shear flows are highly efficient at segregating particles by size. Despite many years of
research, particle-size segregation continues to present considerable practical problems in
many industrial processes (Johanson 1978; Isner et al. 2020). Sometimes the segregation
is useful, such as in the mining industry (Wills 1979). However, in the bulk chemical,
pharmaceutical, agricultural and food industries it is the single biggest cause of product
non-uniformity (Bates 1997). This can lead to complete product batches having to be
discarded at significant cost. In addition, the evolving local particle-size distribution may
feedback on the rheology of the bulk flow and cause unexpected flow problems (Pouliquen,
Delour & Savage 1997; Pouliquen & Vallance 1999; Baker, Johnson & Gray 2016) that are
still poorly understood. Segregation-induced frictional feedback is also thought to play a
vital part in the formation of bouldery flow fronts (Pierson 1986; Denissen et al. 2019) and
static levees (Iverson & Vallance 2001; Baker et al. 2016; Rocha, Johnson & Gray 2019)
in geophysical mass flows (such as snow avalanches, debris flows and pyroclastic flows),
which can significantly enhance their run out.

In the avalanching region of these industrial and geophysical flows, small grains
percolate towards the base of the shearing layer and large grains rise towards the free
surface. Complex interactions between the shear flow and an underlying static, or slowly
moving region of grains, can lead to the development of amazing patterns in the deposit
(e.g. Williams 1968; Gray & Hutter 1997; Baxter et al. 1998; Hill et al. 1999; Barker
et al. 2021). However, for a steady-state flow on a fixed base, an inversely graded
particle-size distribution develops, with the large particles concentrated at the top of the
flow and the finer grains concentrated near the base. The segregation occurs due to the
combination of two processes; kinetic sieving (Middleton 1970) and squeeze expulsion
(Savage & Lun 1988). Essentially, as the layers of grains shear past one another they
act as random fluctuating sieves, which preferentially allow small particles to percolate
downwards into gaps that open up beneath them (known as kinetic sieving), while all
particles are squeezed upwards with equal probability (known as squeeze expulsion),
which maintains an approximately constant solid volume fraction (GDR-MiDi 2004). This
has been termed gravity driven segregation (Gray 2018) for short, to reflect the fact that
gravity is fundamental to the smaller grains falling into the gaps between the larger grains,
and therefore setting the direction for segregation. The grains also diffuse within the shear
flow, which produces a smoothly varying inversely graded particle-size distribution at
steady state (with the large grains concentrated on top of the fines) rather than being
sharply segregated.

The earliest continuum model for bidisperse particle segregation was developed
by Bridgwater, Foo & Stephens (1985). It consists of a spatially one-dimensional
time-dependent advection–diffusion equation, with a shear-rate-dependent segregation
flux that shuts off when the species concentration reaches zero and one hundred per cent.
The key elements of this theory are still present in more recent multi-dimensional models
that use either a quadratic (e.g. Savage & Lun 1988; Dolgunin & Ukolov 1995; Khakhar
et al. 2003; Gray & Thornton 2005; Gray & Chugunov 2006; Thornton, Gray & Hogg
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2006; Gray & Ancey 2011; Wiederseiner et al. 2011; Tripathi & Khakhar 2013; Gajjar
& Gray 2014; Tunuguntla, Bokhove & Thornton 2014; Gray & Ancey 2015; Schlick et al.
2015; Xiao et al. 2016; Liu et al. 2019; Gilberg & Steiner 2020) or cubic (e.g. Gajjar & Gray
2014; van der Vaart et al. 2015; Jones et al. 2018) small particle concentration dependence
in the segregation flux.

Wiederseiner et al. (2011) filmed the spatially two-dimensional steady-state segregation
of large black and small white particles through the sidewall of a chute. By using a
calibration curve, they were able to determine the local small particle concentrations
as the grains segregated from a sharply segregated normally graded inflow (with all
the small particles on top of the large grains) to a fully developed inversely graded
steady state. Wiederseiner et al. (2011) showed that by using the measured downslope
velocity, and choosing appropriate constant values for the segregation velocity magnitude
and the diffusivity, it was possible to accurately model the spatial development of the
concentration using Gray & Chugunov’s (2006) theory. Thornton et al. (2012) performed
discrete particle model (DPM) simulations in a periodic box using bidisperse mixtures
of particles with different size ratios. The final steady-state numerical results were then
compared to the exact steady-state solution of Gray & Chugunov (2006). In this solution
the length scale for the transition between high concentrations of large and small particles,
is inversely proportional to the Péclet number for segregation. This is defined as the flow
thickness times the segregation velocity magnitude divided by the diffusivity. Thornton
et al. (2012) showed that the Péclet number increased with increasing grain-size ratio and
peaked at a value close to 8 at a grain-size ratio just below two. However, Wiederseiner
et al. (2011) found experimental values of the Péclet number between 11 and 19 for similar
size ratios. This discrepancy may be due to the coupling with the bulk velocity, which was
an exponential profile in Wiederseiner et al.’s (2011) experiments, but was Bagnold-like
(Silbert et al. 2001) in Thornton et al.’s (2012) simulations, since they are not affected by
sidewall friction.

In order to better visualize the segregation in experiments, van der Vaart et al. (2015)
performed a series of refractive-index matched particle-size segregation experiments in
an oscillating shear box. This has the advantage that the shear rate is independent of
depth, and the flow field is explicitly prescribed rather than spontaneously developing
in a chute flow. The experiment was stopped after each complete oscillation and the
three-dimensional particle-size distribution was determined by scanning a laser sheet
across the cell while taking a series of photographs. From these extremely detailed data,
van der Vaart et al. (2015) showed that there was a fundamental asymmetry to particle-size
segregation. In particular, a single small intruder will percolate down through a matrix of
large grains much faster than a single large intruder will rise up through a matrix of fines.
This suggests that the segregation flux function is not quadratic, but has a more cubic-like
dependence on the small particle concentration (Bridgwater et al. 1985; Gajjar & Gray
2014; van der Vaart et al. 2015; Jones et al. 2018).

The annular shear-cell experiments of Golick & Daniels (2009) also provide important
insights into the functional dependence of the segregation flux. The experiment was driven
by a moving bottom plate, but the top plate was also free to move vertically in response to
the pressure generated during the flow. Their experiments showed that there were subtle
packing effects, as a normally graded initial configuration mixed and then segregated into
a final inversely graded steady state. The ability of the grains to pack tighter together in
a shearing bidisperse mixture caused the top plate to drop from its initial height, and
then recover as the particles segregated again. Intriguingly, Golick & Daniels (2009)
showed that when a weight was placed on the top plate the rate of segregation was
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dramatically decreased. This suggests that the segregation velocity magnitude is pressure
and/or solids volume fraction dependent. This has been investigated further by Fry et al.
(2019) using DPM simulations of a confined shear flow. Their simulations suggest that the
percolation velocity, and hence the segregation velocity magnitude, is proportional to the
reciprocal of the square root of the pressure. It follows that segregation is suppressed in
Golick & Daniels’ (2009) experiments, when a weight in applied, because the pressure
reduces the segregation rate while having no effect on the diffusion.

A definitive form for the segregation flux function that makes sense of, and hopefully
unifies, all the observations is still lacking. It is clear that it is dependent on the shear
rate (Bridgwater et al. 1985; Savage & Lun 1988; May et al. 2010; Fan et al. 2014), the
pressure (Golick & Daniels 2009; Fry et al. 2019), gravity (Vallance & Savage 2000; Gray
& Thornton 2005; Gray & Chugunov 2006; Fry et al. 2019), the mean particle size (Fry
et al. 2019; Chassagne et al. 2020) and the particle size ratio (Savage & Lun 1988; Gray &
Thornton 2005; Thornton et al. 2012; Fan et al. 2014), as well as that it has a non-quadratic
concentration dependence (Bridgwater et al. 1985; Gajjar & Gray 2014; van der Vaart et al.
2015; Jones et al. 2018). However, there may also be additional functional dependencies
on the friction of the grains (Guillard, Forterre & Pouliquen 2016; Jing, Kwok & Leung
2017) and the evolving local solids volume fraction (Golick & Daniels 2009; Gilberg &
Steiner 2020).

This paper aims to shed further light on the functional form of the segregation
flux by using refractive-index matched shear-cell experiments and dimensional analysis.
Section 2 reviews the governing equations and explains the rationale behind studying the
extreme end states of a single large, and a single small, intruder. Section 3 describes
the experimental shear box and the refractive-index matching technique. Section 4 uses
dimensional analysis and a series of key observations to motivate a simple functional form
for the flux. Sections 5 and 6 compare the theoretical large and small intruder trajectories
to those measured in experiment, for a wide range of shear rates and size ratios, and show
that the data can be collapsed using the same non-dimensional coefficients. Section 7
shows that the theory quantitatively matches van der Vaart et al.’s (2015) shear box
experiments with a 50 : 50 mix of particles using the same non-dimensional coefficients
and the simplest possible function to map between the size-ratio dependence of the large
and small intruders. Section 8 introduces the concept of increased packing efficiency as
the grain-size ratio becomes large and discusses how this is able to moderate the overall
segregation. Section 9 then concludes and makes some interesting observations about the
functional form of the segregation flux that is implied by the theory.

2. Bidisperse particle-size segregation

2.1. Governing equations
Consider a mixture of large and small particles whose pore space is occupied by an
interstitial fluid. Each of the constituents occupies a volume fraction Φν ∈ [0, 1] per unit
mixture volume, where the constituent letters ν = l, s and f , refer to large particles, small
particles and fluid, respectively. It is also possible to define volume fractions of large and
small particles per unit granular volume

φl = Φ l

Φ l + Φs , φs = Φs

Φ l + Φs . (2.1a,b)

This is useful, because in many situations of practical interest the solids volume fraction
Φ = Φ l + Φs does not change very much (Silbert et al. 2001; GDR-MiDi 2004) and can
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therefore be scaled out of the equations (Thornton et al. 2006). In this situation, the general
form of the bidisperse segregation equations for the volume fractions (concentrations) of
the large and small particles (see e.g. Gray 2018) are

∂φl

∂t
+ ∇ · (φlu) − ∇ ·

(
fslφ

lφs g
|g|
)

= ∇ · (Dsl∇φl), (2.2)

∂φs

∂t
+ ∇ · (φsu) + ∇ ·

(
fslφ

sφl g
|g|
)

= ∇ · (Dsl∇φs), (2.3)

respectively, where u is the bulk granular velocity field, fsl is the segregation velocity
magnitude, g is the gravitational acceleration vector and Dsl is the diffusivity of the large
and small particles. Since by definition the concentration of large and small particles sum
to unity

φl + φs = 1, (2.4)

the sum of (2.2) and (2.3) implies that the bulk velocity field is incompressible

∇ · u = 0. (2.5)

This is reasonable leading-order approximation that is made in the incompressible
μ(I)-rheology (GDR-MiDi 2004; Jop, Forterre & Pouliquen 2006; Barker & Gray 2017)
for example (where μ is the friction and I is the inertial number). It should be noted,
however, that in reality there is some compressibility and indeed compressibility is needed
to make the rheology thermodynamically consistent (Goddard & Lee 2018) and well posed
(Barker et al. 2017; Schaeffer et al. 2019). In this paper, however, the solids volume fraction
is assumed to be equal to a constant uniform value of Φ = 0.6.

2.2. Segregation fluxes and velocities
In (2.2) and (2.3) the large and small particle segregation fluxes are

F l = −fslφ
lφs g

|g| , (2.6)

F s = +fslφ
sφl g

|g| , (2.7)

respectively. These are aligned with the direction of gravitational acceleration g to reflect
the fact that the downward percolation of small particles due to kinetic sieving is a gravity
driven process. In order to maintain bulk incompressibility there is a net reverse flow of
large particles towards the surface due to squeeze expulsion. In the absence of diffusion
the segregation velocity of the large and small particles relative to the bulk flow are

ûl = ul − u = −fslφ
s g
|g| , (2.8)

ûs = us − u = +fslφ
l g
|g| , (2.9)

respectively. The summation constraint (2.4) implies that the segregation fluxes (2.6)–(2.7)
are zero when either of the particle species is in a pure phase. If fsl is independent of φs

and φl then (2.4) implies that the large particle segregation flux is quadratic in φs and is
symmetric about φs = 1/2. Equation (2.8) shows that the corresponding large particle
segregation velocity is linear in φs and hence implies that the maximum segregation
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ŵs
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(a)

(c) (d) (e)

(b)

Figure 1. (a) Segregation flux functions and (b) the large and small particle segregation velocities as a function
of the small particle concentration φs (adapted from Gajjar & Gray 2014; Gray 2018). These assume that
fsl = Aχ (1 − χφs), where χ ∈ [0, 1] and Aχ is a normalization factor giving all the flux functions the same
amplitude as the quadratic flux when χ = 0 (red lines). The blue lines show the cubic flux model of Bridgwater
et al. (1985) for χ = 1 and the green lines show the intermediate cases when χ = 0.2, 0.4, 0.6, 0.8. For
χ ∈ [1/2, 1] these develop an inflection point at φs

inf = (1 + χ)/(3χ) (circular markers a) and a group of large
particles rise fastest at φs

crit = 1/(2χ) (circular markers b). Sketches showing (c) the rapid percolation of a
single small intruder in a matrix of large grains, (d) the slow rise of a single large particle in a matrix of fine
and (e) the faster rise of a group of large particles at intermediate concentrations for a sufficiently skewed flux
function.

velocity is equal to fsl and is attained when there is a single large grain at concentration
φs = 1− (note the superscript minus is used to show that the concentration is not 100 %
small particles, i.e. there is a large intruder, but it does not significantly change the local
concentration from unity). Similarly, the small particle segregation velocity is linear in
φl and the maximum segregation velocity equals −fsl and is attained when there is a
single small grain at concentration φs = 0+. The quadratic large particle segregation flux
function and the associated linear segregation velocities are plotted in figure 1(a,b).

Using shear box experiments van der Vaart et al. (2015) showed that there was
an underlying asymmetry to the particle-size segregation, i.e. a single small particle

916 A55-6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 8
5.

21
8.

39
.6

9,
 o

n 
20

 A
pr

 2
02

1 
at

 1
6:

11
:4

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.227


An experimental scaling law for particle-size segregation

percolating down through a matrix of large particles moves much faster than a single large
particle being squeezed up through a matrix of fines. This is illustrated schematically in
figure 1(c,d) and is not captured in the simple quadratic flux model. Gajjar & Gray (2014)
showed that this asymmetry could, however, be captured by skewing the peak segregation
flux towards smaller concentrations of fine grains, as illustrated for a cubic flux function
in figure 1(a). As the peak of the large particle segregation flux moves to the left, the
maximum downward small particle segregation velocity (at φs = 0+) is progressively
increased even though the maximum amplitude of the flux function stays the same. As the
cubic flux curves become skewed, the large particle segregation velocity at concentration
φs = 1− is progressively diminished below that of the quadratic flux model. Moreover,
as the skewness parameter χ rises above one half, an inflection point develops in the
flux function and the maximum segregation velocity of large particles no longer occurs
at φs = 1−, but at an intermediate concentration φs within the range [1/2, 1]. As a result
a group of large particles will rise faster than an individual large intruder as illustrated
schematically in figure 1(d,e).

The theory shows that studying (i) a large intruder being squeezed up through a matrix
of fine particles and (ii) a small intruder percolating down through a matrix of large grains
can yield a considerable amount of information about the shape of the segregation flux
function. A series of single-intruder refractive-index matched shear box experiments have
therefore been performed in this paper.

3. Refractive-index matched shear box experiments

3.1. Experimental apparatus
The shear box apparatus is shown in figure 2(a). It consists of two polyvinyl chloride
(PVC) rough lateral side plates that are able to pivot about two transverse steel rods, that
are located at their centres and bolted to glass panes at the front and back of the shear box.
The top ends of the PVC plates are attached to a steel bar that keeps the plates parallel and
connects them to a horizontally moving plunger driven by a rotational motor. The bottom
of the sheared domain consists of another rough PVC plate of length L = 4.5 cm, which
sets the distance between the two rotating walls, and is free to move horizontally within
slotted grooves in the transparent front and back walls. As the top of the PVC side plates
are driven backwards and forwards the plates pivot about their centres and push the base
plate from side to side as shown in figure 2(b). To try to prevent the formation of crystalline
particle structures the three PVC plates have a random stepped roughness profile, whose
average length and depth are of the scale of the background particles. For instance, in the
experiment shown in figure 2 the average profile length and depth are 4 mm and 2 mm,
respectively, and the background medium size is ds = 6 mm. To give structural stability
the four corners of the glass panes were screwed to steel spacer tubes to maintain the
transverse separation width W = 7 cm of the shear cell. The volume between the three
PVC plates is filled to a height h = 12 cm with a mixture of large and small borosilicate
glass beads of diameter dl and ds, respectively. The whole cell is then submerged in a
refractive-index matched fluid to make the semi-opaque intruder easy to identify and track.
All the materials used to make the box were selected to be compliant with the refractive
index matching technique. The dimensions of the shear cell have been selected to impose
a slightly dilated bulk shearing motion on all the grains in the cell. Earlier prototypes had
a larger separation distance between the pivoting walls that allowed crystalline particle
packings to develop in regions of the flow, which is undesired. A relatively small spacing
between the two rotating walls appears to prevent such effects.
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Plunger Motor

Crank

Power supply

h

z

θ

(a)

(b)

Figure 2. (a) A photograph of the experimental apparatus showing the power supply, motor, crank and plunger
that drive the upper end of the pivoted parallel PVC plates from side to side. The two pivot points are located
in the middle of the sidewalls and one of them is indicated on the photo. The base plate sits in a notched groove
and is able to move freely from side to side in response to the driving motion. The volume between the pivoted
PVC plates is filled with a granular material of thickness h that is composed of large and small borosilicate
glass beads with diameters dl and ds, respectively. The whole system is submersed in a refractive index matched
fluid, consisting of benzyl alcohol and ethanol, which makes the majority of particles transparent and allows
the position of the semi-opaque red intruder to be easily identified. (b) An image sequence showing the rise
of a large red intruder of diameter dl = 25 mm through a background medium of small particles of diameter
ds = 6 mm over a number of oscillatory cycles. The small grains are just visible so it is possible to see the
free surface. A supplementary movie available at https://doi.org/10.1017/jfm.2021.227 showing the operation
of experimental apparatus is available online.

Figure 2(b) and the first supplementary movie show how, over a series of cycles, the
large red intruder is progressively squeezed upwards until it reaches the top of the cell.
To analyse this motion it is useful to define a coordinate system Oxyz with the horizontal
x-axis orientated in the direction of shear, the horizontal y axis across the cell and the z
axis pointing vertically upwards. Assuming that the PVC plates are pivoted at a height
z = zpivot their imposed horizontal displacement field is

x = (z − zpivot) sin(ωt) tan θmax, (3.1)

where ω is the frequency and θmax is the maximum angle of displacement of the sidewalls
measured from the vertical axis. Typically θmax ranges between 22.5◦ and 25◦ in the
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An experimental scaling law for particle-size segregation

experiments presented here. Assuming that the resulting velocity u within the granular
material is spatially uniform in each (x, y)-plane, the resulting velocity components are

u = (z − zpivot)ω cos(ωt) tan θmax, v = 0, w = 0, (3.2)

respectively. The shear rate γ̇ = 2‖D‖ where ‖D‖ =
√

1
2 tr(D2) is the second invariant of

the strain-rate tensor D = (∇u + (∇u)T)/2. For the imposed bulk velocity field (3.2) it
follows that the shear rate

γ̇ =
∣∣∣∣du
dz

∣∣∣∣ = ω| cos(ωt)| tan θmax. (3.3)

This varies in time, but is spatially uniform throughout the shear cell. The average shear
rate over one complete cycle is

γ̇m = ω

2π

∫ 2π/ω

0
γ̇ dt = 2ω

π
tan θmax. (3.4)

The motor which drives the oscillatory shear cell has a variable voltage input, so the
applied shear rate depends directly on the voltage and the amplitude of the crank
connected to the plunger. Monodisperse experiments with four 6 mm opaque tracers
in a 6 mm translucent media sheared at γ̇m = 1.1 s−1 have been performed to check
that the segregation is not caused by secondary convection in the underlying flow. A
supplementary movie showing this is available online.

3.2. Refractive-index matching, image acquisition and particle tracking
The experiments rely on the refractive-index matching (RIM) technique to make the
intruder visible. This is achieved by using transparent borosilicate glass beads for the
background media and submerging them in a mixture of benzyl alcohol and ethanol.
A summary of the material properties is given in table 1. A calibration procedure was
required to get the right index match. An Atago RX 5000 α refractometer was therefore
used to measure samples of the interstitial fluid. The initial mixture was based on the
measurement tables of Chen, Lin & Tu (2012). Further adjustments to obtain the desired
value of nr = 1.4726 were done by adding small quantities of either ethanol or benzyl
alcohol. A value of nr in between 1.471 and 1.472 were acceptable to clearly observe the
intruder, a condition that improved for a period of time due to the faster evaporation of
ethanol. For the same reason, values over 1.473 were undesirable despite an initially good
match. The effect of the RIM is shown in figure 3(b) where a large red intruder can clearly
be seen in the submersed lower two thirds of the image, but is completely obscured by the
small particles in the dry upper third of the image.

The RIM technique allows the intruder to be clearly seen throughout the experiment
(figure 2b). Image acquisition was performed with a Basler acA2000-165uc camera
positioned in front of the shear box. Different frame rates were used for each experiment,
but for most experiments recording was done at 10 frames per second. Particle
identification was done using the imfindcircles routine implemented in Matlab. The
single-intruder tracking was performed using the code of Crocker & Grier (1996). As
well as tracking the opaque intruder this code also helped to identify, and exclude, false
intruders, which could occur when the intruder size was close to that of the background
medium (figure 3c). Figure 4 shows two space–time plots constructed by taking the vertical
line of pixels through the centre of the intruder at each frame and plotting them adjacent to
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(a)

(b) (c)

Figure 3. (a) Close-up photograph to show how the random profile structure of the pivoting and sliding walls
helps to prevent the formation of crystalline structures in the particles surrounding the intruder. (b) Image
showing the contrast between dry and wet conditions using the RIM technique with transparent borosilicate
glass beads and a mixture of benzyl alcohol and ethanol. (c) Semi-opaque red intruder identified with the
image analysis code.

Material nr ρ∗ (g cm−3) η (cP) Supplier

Borosilicate glass 1.4726 2.2 NA Schäffer Glas
Benzyl alcohol 1.5396 1.044 5.474 Acros Organics
Ethanol 1.3656 0.789 1.2 Fisher Scientific

Table 1. Refractive indices nr , intrinsic densities ρ∗, viscosities η and suppliers for the materials used in the
refractive-index matched experiments.
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Figure 4. (a) Space–time plot of a large intruder of diameter dl = 19 mm segregating upwards in a medium
of small particles of diameter ds = 6 mm subject to an average shear rate γ̇m = 0.26 s−1 (taken from set 2
in table 2). The space–time plot is made by plotting the vertical line of pixels that passes through the centre
of the large particle at each time. The intruder therefore appears as a band of red, while the index matched
interstitial fluid and the background medium of small particles appear green. The trajectory of the centre of the
large intruder as a function of time is shown with the white dashed line. (b) Space–time plot of small intruder
particle of diameter ds = 6 mm percolating down through a matrix of large particles of diameter dl = 14 mm
at a shear rate γ̇m = 0.34 s−1 (taken from set 4 in table 2). In this experiment the background medium appears
black while the intruder is orange. The intruder centre as a function of time is shown with a white dashed line.

one another. It is striking that for comparable size ratios and shear rates the large intruder
takes much longer to be squeezed up to the free surface than the small intruder takes to
percolate down to the base. It is also very significant that the trajectories of the intruder
centres are both curved.

3.3. Experimental data sets
A series of five sets of experiments were performed in order to understand the functional
dependence of the segregation velocity magnitude fsl. Sets 1 and 2 correspond to
experiments with a single large intruder rising through a medium of small particles. In set
1 the diameter of the large and small particles are held constant and the shear rate is varied,
while in set 2 the diameter of the small particles and the shear rate are held constant and
the diameter of the large intruder is changed. These sets represent experimental conditions
where φ = 1−. Sets 3, 4 and 5 all relate to a small intruder segregating through a matrix of
large grains, when φ = 0+. In sets 3 and 4 the shear rate is varied for two different small
intruder diameters, while in set 5 the shear rate is held constant and the small intruder
diameter is changed. The experimental conditions of all the sets are summarized in table 2.

4. Preliminary interpretation of the data

4.1. Dimensional analysis
The experimental data are complex and contain a number of functional dependencies that
are hard to interpret without a clear initial hypothesis. It is therefore useful to consider what
dimensional analysis can say about the functional behaviour of the segregation velocity
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Set Intruder dl (mm) ds (mm) R = dl/ds γ̇m (s−1)

1 Large 19 6 3.17 0.26
19 6 3.17 0.42
19 6 3.17 0.59
19 6 3.17 0.77

2 Large 10 6 1.67 0.26
12 6 2 0.26
19 6 3.17 0.26
25 6 4.17 0.26

3 Small 14 8 1.75 0.34
14 8 1.75 1.10
14 8 1.75 2.30

4 Small 14 6 2.33 0.34
14 6 2.33 0.63
14 6 2.33 0.87

5 Small 14 12 1.17 0.34
14 10 1.4 0.34
14 8 1.75 0.34
14 6 2.33 0.34
14 4 3.5 0.34

Table 2. Diameters of the large particles dl, small particles ds, the size ratio R = dl/ds and average shear rates
γ̇m for each experimental set 1–5. Sets 1–2 correspond to a single large intruder rising through a matrix of
small particles, whereas sets 3–5 correspond to a single small particle percolating down through a matrix of
large grains.

magnitude fsl before presenting the results. For a dry bidisperse mixture of large and small
particles, fsl is considered to be an output of the system. The inputs are the particle sizes
dl and ds, the intrinsic density of the grains ρ∗, the volume fraction of small particles
φs = 1 − φl per unit granular volume, the solids volume fraction Φ, the bulk shear stress
τ , the pressure p, gravity g and the shear rate γ̇ . This is a total of nine variables with three
primary dimensions (mass, length and time), so dimensional analysis implies that there
are six independent non-dimensional quantities

μ = τ

p
, I = γ̇ d̄√

p/ρ∗
, Φ, P = p

ρ∗gd̄
, R = dl

ds
, φs, (4.1a–f )

where μ is the friction, I is the generalized inertial number in which d̄ is the volume
fraction weighted average particle diameter

d̄ = φldl + φsds, (4.2)

P is the non-dimensional pressure and R = dl/ds is the grain-size ratio. In this analysis, the
experimental system size and any higher gradients of the variables are implicitly assumed
not to be of importance. For a monodisperse system in the absence of gravity, only the
first three non-dimensional variables in (4.1a–f ) are relevant, and (4.2) reduces to the
monodisperse particle diameter. It was this type of dimensional analysis combined with
observations from DPM simulations and experiments that led to the development of the
incompressible μ(I)-rheology (GDR-MiDi 2004; Jop et al. 2006), which has advanced our
understanding of the rheology of monodisperse granular flows.

Dimensional analysis also provides a powerful way of interpreting the segregation
experiments in this paper. It is assumed that it is the combination of shear-induced gravity
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An experimental scaling law for particle-size segregation

driven percolation (kinetic sieving) and squeeze expulsion (Middleton 1970; Bridgwater
et al. 1985; Savage & Lun 1988; Gray & Thornton 2005; Gray 2018) that generate the
dominant mechanism for segregation in dense granular flows. In particular, dimensional
analysis implies that the segregation velocity magnitude should scale as

fsl ∼ γ̇ d̄ G(μ, I, Φ, P, R, φs), (4.3)
where γ̇ d̄ is chosen as a reference scale and G is an arbitrary function of the six
non-dimensional variables defined in (4.1a–f ). The five sets of experiments detailed in
table 2 provide key observations that help to constrain the functional form of G.

4.2. Fundamental observations and resulting hypothesis
This paper makes four key assumptions based on the observations (a)–(d) below:-
(a) Experimental data sets 1, 3 and 4 imply that the segregation velocity magnitude fsl
scales linearly with the shear rate γ̇ for both large and small intruders. (b) Experimental
set 2 implies that the rise velocity of large intruders scales linearly with the particle size
ratio R, and since it necessarily shuts off when R = 1, this implies that fsl scales linearly
in R − 1 in the limit φs = 1−. (c) Set 5 shows that in the limit φs = 0+ small intruders
exhibit an approximately quadratic dependence on R − 1 for large size ratios, but have the
same linear dependence on R − 1, as the large intruders, for small size ratios in the range
[1, 1.5]. (d) All of the data sets in 1–5 show that the large and small intruders move along
curved trajectories (see e.g. figure 4), with slower percolation and rise rates deeper in the
flow, where the lithostatic pressure is higher. These trajectories are well approximated by
quadratic curves. Since the pressure is lithostatic in the shear cell, this suggests that fsl is
proportional to 1/(C + P), where the non-dimensional constant C has been introduced to
prevent a singularity when P = 0 at the free surface.

The four key experimental observations (a–d) above suggest that the segregation
velocity magnitude can be written as

fsl = B γ̇ d̄
F(R, φs)

C + P
, (4.4)

where B and C are non-dimensional constants and F is a function of R and φs. The particle
size-ratio dependence is encapsulated in F , which satisfies the limits

F(R, 1−) = R − 1, (4.5)

F(R, 0+) = R − 1 + E(R − 1)2, (4.6)
where E is another non-dimensional constant. A simple functional form that captures the
single large and small intruder cases (4.5) and (4.6) is

F = (R − 1) + EΛ(φs)(R − 1)2, (4.7)
where the function Λ satisfies the constraints

Λ(0) = 1, and Λ(1) = 0. (4.8a,b)
A very simple linear function for Λ will be investigated further in § 7.

Substituting for the non-dimensional pressure P from the scaling (4.1a–f ) the
segregation velocity magnitude can be written as

fsl = B ρ∗gγ̇ d̄2

Cρ∗gd̄ + p
F(R, φs). (4.9)

This formula captures the key processes of gravity, shear and pressure that drive kinetic
sieving and squeeze expulsion during the segregation of particles of different sizes and
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size ratios. The local small particle concentration φs = 1 − φl enters through the average
grain size (4.2) and the nonlinear size-ratio dependence (4.7), and automatically generates
asymmetry in the segregation flux functions. Equation (4.9) neglects any dependence on
the friction of the particles μ and the solids volume fraction Φ. Such dependencies may
exist (see Golick & Daniels 2009; Guillard et al. 2016; Jing et al. 2017), but they add an
extra level of complexity that goes beyond the scope of this paper. Since I = γ̇ d̄/

√
p/ρ∗

is linear in the shear rate γ̇ , (4.9) can be reformulated to have a linear inertial number
dependence instead of a linear shear-rate dependence. Importantly the experimental
observation (a), above, implies that there is either a linear shear-rate dependence or a
linear inertial number dependence, but to leading order, at least, other shear rate or inertial
number dependencies are not permitted.

4.3. Effect of the interstitial fluid
Equations (4.4) and (4.9) take no account of the interstitial fluid present in the experiments
in § 3. Thornton et al. (2006) used a three phase mixture theory, composed of large grains,
small grains and an interstitial fluid, to show that the segregation velocity magnitude fsl
was moderated by the relative density difference

ρ̂ = ρ∗ − ρ
f
∗

ρ∗
, (4.10)

where ρ
f
∗ is the density of the fluid. If this multiplicative factor is included then fsl = 0

when ρ
f
∗ = ρ∗, and the particles do not segregate. This is consistent with the fluid density

matched bidisperse experiment of Vallance & Savage (2000) in which no significant
segregation was observed. Vallance & Savage (2000) also made the rather counterintuitive
observation that the segregation was slightly weaker in water than in a water–ethanol
mixture that was 3.7 times more viscous. The viscosity therefore does not suppress
segregation as Vallance & Savage (2000) had hypothesized, but, instead, it is the relative
density difference ρ̂ that explains their results (Thornton et al. 2006). All the experiments
in this paper are performed with the same interstitial fluid, and for simplicity the factor ρ̂

is not explicitly included throughout most of the paper. However, in § 8 the dry DPM
simulations of Thornton et al. (2012) are considered, and to compare the theory it is
necessary to correct the experimentally measured value of B to account for the absence of
interstitial fluid.

4.4. Intruder trajectories
In the shear box the gravitational acceleration vector g points downwards parallel to the z
axis, i.e. g = −gk, where k is the unit vector in the z-direction. For the bulk velocity field
defined in (3.2) it follows from (2.8) that, in the absence of diffusion, the vertical velocity
of the large particles satisfies

wl = dzl

dt
= fslφ

s, (4.11)

where fsl is given by (4.9). For the case of a single large intruder, φs = 1−, and hence the
average particle size d̄ = ds. The large particle trajectory therefore satisfies the ordinary
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differential equation (ODE)

dzl

dt
= B ρ∗gγ̇ d2

s

Cρ∗gds + p
F(R, 1−). (4.12)

Substituting for F(R, 1−) from (4.5) and assuming that the pressure in the grains is
lithostatic

p = ρ∗gΦ(h − z), (4.13)

the ODE (4.12) reduces to
dzl

dt
= B γ̇ d2

s (R − 1)

Cds + Φ(h − zl)
. (4.14)

This is separable and can be integrated, subject to the initial condition that zl = zl
0 at t = 0,

to show that time is a quadratic function Z l of the vertical coordinate zl, i.e.

Klt = Cds(zl − zl
0) + Φ

2
[(h − zl

0)
2 − (h − zl)2] = Z l(zl), (4.15)

where the constant
Kl = B γ̇ d2

s (R − 1), (4.16)

is different for each individual experiment. Note that ds and Φ, which arise in the definition
of Z l in (4.15), are the same for all the experiments in sets 1 and 2. The quadratic equation
(4.15) can be solved to give an explicit formula for the trajectory of the large intruder

zl = 1
Φ

[
Cds + Φh −

√
C2d2

s + 2CdsΦ(h − zl
0) + Φ2(h − zl

0)
2 − 2ΦKlt

]
. (4.17)

An exactly analogous argument implies that at φs = 0+ the trajectory of a small intruder
satisfies the ODE

dzs

dt
= −B γ̇ d2

l [(R − 1) + E(R − 1)2]
Cdl + Φ(h − zs)

. (4.18)

This is also separable and can be integrated, subject to the initial condition that zs = zs
0 at

t = 0, to show that time is a quadratic function Zs of the vertical coordinate zs,

Kst = −Cdl(zs − zs
0) − Φ

2
[(h − zs

0)
2 − (h − zs)2] = Zs(zs), (4.19)

where the constant
Ks = B γ̇ d2

l [(R − 1) + E(R − 1)2], (4.20)

changes between experiments. In all the experiments in sets 3–5 the values of dl and Φ in
the definition of Zs are the same. The quadratic equation (4.19) can be solved to give an
explicit formula for the small intruder trajectory

zs = 1
Φ

[
Cdl + Φh −

√
C2d2

l + 2CdlΦ(h − zs
0) + Φ2(h − zs

0)
2 + 2ΦKst

]
. (4.21)

A key test of this scaling argument and the fundamental assumptions (a)–(d) in § 4.2 is
whether the intruder trajectories (4.17) and (4.21) are able to collapse all of the data with
the same choices of the non-dimensional constants B, C and E .
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4.5. The role of particle diffusion
It is important to note that the intruder trajectories calculated in § 4.4 implicitly assume that
there is no diffusion. In fact, experimental observations suggest that there is a significant
amount of self-diffusion that leads to the intruders performing random walks around the
mean path. Utter & Behringer (2004) used a two-dimensional Couette cell to make detailed
experimental measurements of the self-diffusion in a monodisperse system of disks. They
concluded that the diffusion was anisotropic, but that to leading order the diffusivity was
proportional to γ̇ d2, where d was the particle diameter. The natural generalization of this
result to polydisperse systems is to replace the particle diameter with the mean particle
diameter (4.2) to give

Dsl = Aγ̇ d̄2, (4.22)

where A is a non-dimensional constant. Figure 9(b) in Utter & Behringer’s (2004) paper
shows that the tangential diffusivity implies A = 0.223, whereas the radial diffusivity
implies A = 0.108. The simulations in § 7 adopt the lower value of A, because it is based
on measurements of the diffusivity made normal to the direction of shear, which is also the
predominant direction for diffusion and segregation in the shear box experiments. Note,
that since d̄ = ds for a large intruder and d̄ = dl for a small intruder equation (4.22) implies
that there will be much more diffusion, and hence variability, for the small intruder paths
than for the large intruders.

5. Large intruder experiments

The segregation of a single large intruder is stable and robust, especially when the size
ratio is large. This is a reflection of the fact that, according to the diffusion scaling (4.22),
the underlying self-diffusion within the small particle matrix is lower than for a large
particle matrix. Larger size ratio intruders also have a lot of contacts with the surrounding
small grains, which provides another mechanism for averaging the natural fluctuations.
As a result the large intruders only occasionally migrate to the PVC side plates, where
they can become stuck when the particle size ratio R is close to unity. To determine the
values of B and C a global least squares fit is made to all the large intruder trajectories in
experimental sets 1 and 2. This suggests that

B = 0.3744, and C = 0.2712. (5.1a,b)

In practice, the constant C only changes the gradient of the trajectory close to the free
surface, and this is least well constrained because the experimental free surface is not
clearly defined at the particle scale. Good fits to the data can also be obtained by assuming
C = 0, in which case B = 0.3615. This is only a 3.45 % difference. Setting C = 0 does,
however, introduce a pressure singularity at p = 0, which implies that the segregation
velocity becomes infinite at the free surface. This singularity is not only unphysical, but
causes difficulties in numerical methods, so in the sections that follow C is assumed to
take its global value defined in (5.1a,b).

5.1. Variable shear rate for the large intruders
The experimentally measured position of a large 19 mm intruder in a matrix of small
6 mm particles as a function of time is shown in figure 5, for four different shear rates.
These experiments correspond to set 1 in table 2. The intruder struggles to segregate
upwards when it is close to the bottom of the cell, but once it moves past a few layers
it segregates faster and faster towards the surface. As a result the intruder trajectories all
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Figure 5. Experimentally measured position of a 19 mm large intruder segregating through a 6 mm matrix of
small particles as a function of time, for four different imposed shear rates γ̇m = 0.26, 0.42, 0.59 and 0.77 s−1.
Darker red lines correspond to higher shear rates. These data correspond to set 1 in table 2. For each case,
(4.15) is fitted to the experimental data to determine the constant Kl assuming that the depth h = 12 cm and
C = 0.2712 is given by the global best fit to all the large intruder data. The fitted intruder trajectory in time
(4.17) is then plotted for each γ̇m with dashed lines for comparison. The coefficient of determination ranges
between 0.96 and 0.97 for the proposed fits. The inset shows the fitting constants Kl as a function of γ̇m. These
points are closely approximated by the global best fit straight (red dashed) line that passes through the origin
(5.2), implying that fsl has a linear shear-rate dependence.

show a pronounced curvature in time that are well fitted by the quadratic curves derived
in § 4.4 using the global value of C defined in (5.1a,b). For each individual trajectory,
(4.15) is fitted to the experimental data by determining the constant Kl that gives the best
approximation. Typically the fits were extremely good, with a coefficient of determination
lying in the range 0.96–0.97. As the shear-rate γ̇m is increased the large intruder segregates
to the surface faster and therefore the time to reach the surface decreases, while the fitting
constant increases. The four values of Kl are plotted as a function of γ̇m in the inset plot
in figure 5, together with the theoretical straight line passing through the origin defined in
(4.16), i.e.

Kl = Bγ̇md2
s (R − 1), (5.2)

where it is assumed that γ̇ = γ̇m and B is given by the global value in (5.1a,b). The
points all lie close to the straight line, although for this subset of data the global fit is not
quite the best fit. The data are, however, close to the global fit and is consistent with the
fundamental assumption (a) in § 4.2 that the segregation velocity magnitude is linear in the
shear rate.
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Figure 6. Experimentally measured position of a large intruder of size dl = 10, 12, 19 and 25 mm (darker red
lines correspond to larger intruders) in a matrix of 6 mm small particles as a function of time, and at the same
imposed shear rate γ̇m = 0.26 s−1. This corresponds to set 2 in table 2. For each case, (4.15) is fitted to the
experimental data to determine the constant Kl assuming that the depth h = 12 cm and C = 0.2712 is given by
the global best fit to all the large intruder data. The fitted intruder trajectory in time (4.17) is then plotted for
each size ratio R with dashed lines for comparison. The coefficient of determination ranges between 0.93 and
0.98. The inset shows the measured constants Kl as a function of R − 1. These points are well approximated
by a global best fit straight (red dashed) line that passes through the origin (5.2), implying that fsl has a linear
dependence on R − 1.

5.2. Variable size ratio for the large intruders
Figure 6 shows experimental set 2 (from table 2) in which both the shear rate γ̇m =
0.26 s−1 and the small particle diameter ds = 6 mm are held constant, while the diameter
of the large intruder dl is varied. In this limit the average particle size d̄ = ds, but the size
ratio R changes between experiments. As the size ratio is increased the particles segregate
faster and the time for a particle to rise from the bottom to the top of the cell decreases. In
each case the large intruders describe curved trajectories in time as they rise through the
cell. This implies that near the bottom of the cell the segregation rate is considerably lower
than close to the surface, where the intruder moves notably faster. The intruder trajectories
are all well approximated by the quadratic curves derived in § 4.4, although there is some
evidence that the curves become more linear at high size ratios. The curves are fitted
using a similar procedure to § 5.1, i.e. by determining the best value of the constant Kl for
each experiment using the global value of C defined in (5.1a,b). The fitted values of Kl are
plotted as a function of the size ratio R − 1 in the inset of figure 6. The points lie extremely
close to the theoretical straight line (5.2) that passes through the origin, indicating that the
segregation rate magnitude fsl is linear in R − 1 even at high size ratios, as assumed in
hypothesis (b) in § 4.2.
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5.3. Collapse of all the large intruder experiments
All the large intruder trajectory data from sets 1 and 2 can be collapsed by plotting
the quadratic function of the height Z l, defined in (4.15), as a function of scaled time
Bγ̇md2

s (R − 1)t as shown in figure 7. This collapse is based on (4.15) and (5.2), which
imply that

Z l = Bγ̇md2
s (R − 1)t. (5.3)

The mapped trajectories should therefore all lie on the 45 degree line shown in figure 7. All
the trajectories follow the right trend, but move slightly off the ideal straight line as they
rise up through the cell. Some variability is to be expected because the theoretical large
intruder trajectory completely ignores the effect of diffusion, which will generate random
walks around the average behaviour captured by the theory. Some of the variability is also
likely to be an artifact of the oscillatory shear cell, which moves through a maximum angle
θmax before reversing direction, rather than shearing in a consistent direction. This reduces
the particle rearrangements, somewhat, and creates brief interludes during which the large
intruder oscillates around a given level, before rising upwards again. As can be seen in
figure 7 these interludes create a horizontal offset in some of the shear-rate data, before
the overall rise continues along a line parallel to the 45 degree line. The inset image in
figure 7 shows the values of Kl as a function of γ̇md2

s (R − 1). All the experimental points
for variable shear rate and variable size ratio lie close to the theoretical straight line implied
by the global fit with the values of B and C from (5.1a,b). This confirms that hypotheses
(a), (b) and (d), made in § 4.2, are able to collapse all the large intruder data, with the same
constant values of B and C.

6. Small intruder experiments

The small intruders typically percolate downwards much faster than the large particles
segregate upwards (as shown in figure 4). It is also anticipated that the small intruders will
be subject to much more diffusion than the large intruders, because the average grain size
of the background medium d̄ = dl > ds in the diffusivity (4.22). These combined effects
result in the small intruders segregating much more erratically than the large intruders.
Several experimental difficulties were observed. The intruder could migrate towards the
PVC side plates and become stuck, or get stuck on top of a layer of well-packed large
particles. Experimental data where the intruder suddenly dropped down after being stuck
for a large number of cycles were not considered to be representative. To ensure consistent
data were collected, the experiments were repeated four times for R = 1.167, up to eight
times for 1.167 < R < 3.5 and six times for R = 3.5. Three representative experimental
curves were then selected, on the basis that the intruder did not contact the walls, and the
segregation times were similar.

6.1. Variable shear rate for the small intruders
Figure 8 shows the trajectories of an 8 mm small intruder in a matrix of 14 mm large
particles for three different shear rates corresponding to set 3 in table 2. The three
representative profiles are plotted for each shear rate. The theoretical small particle
trajectory is fitted to each curve using the same value of C as in (5.1a,b), and the average
value of Ks is then used to determine the overall fit. There is quite a lot of variability about
the individual fits, as anticipated, but the fitted trajectory captures the overall behaviour of
the small intruders as they percolate downwards. As the shear rate is increased the time
taken for intruder to reach the bottom of the cell decreases and Ks increases. The values
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Figure 7. The large intruder trajectories for varying shear rate γ̇m and size ratio R are collapsed onto an
approximately straight (dashed) 45 degree line by plotting the transformed height Z l, defined in (4.15), against
the scaled time Bγ̇md2

s (R − 1)t. The data correspond to all the cases in sets 1 and 2 in table 2. The inset plot
shows the best fit values of the constants Kl for each of the experiments as a function of γ̇md2

s (R − 1). The red
dashed line in the inset has gradient B = 0.3744, i.e. the global best fit value of B. The colours of the points
and the lines are the same as those used in figures 5 and 6, where the legends are defined.

of Ks are plotted in the inset graph in figure 8 and show a clear linear dependence on the
average shear rate γ̇m, consistent with the theoretical line

Ks = Bγ̇md2
l [(R − 1) + E(R − 1)2], (6.1)

implied by (4.20). The quadratic dependence on R − 1 in (6.1) suggests that the
segregation rate could be much larger for higher size ratios. To test this, and to test that
there is still a linear shear-rate dependence, figure 9 shows how a 6 mm small intruder
percolates down through a matrix of 14 mm large particles at various shear rates. This
corresponds to a size ratio R = 2.333, which is not that much larger than R = 1.75 for
the previous experiments in figure 8, but the time taken to reach the bottom of the cell
for γ̇m = 0.34 s−1 is approximately a quarter of that when the size ratio was R = 1.75.
Importantly, however, the fitted values of Ks still exhibit a linear dependence on γ̇m as
shown in the inset of figure 9. This observation suggests that the dramatic enhancement in
the segregation rate of the small intruders at large size ratios, can be modelled through an
additional quadratic size-ratio dependence in the function F = F(R, φs) defined in (4.7)
at low small particle volume fractions.

6.2. Variable size ratio for the small intruders
In order to determine the non-dimensional constant E in (6.1) a series of experiments
were performed at the same shear rate, but with variable size ratio. These correspond to
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Figure 8. Measured position of a 8 mm small intruder segregating through a 14 mm matrix of large particles
as a function of time for three different imposed shear rates γ̇m (darker turquoise lines correspond to higher
shear-rates). Three representative experimental profiles are plotted for each experiment. These data correspond
to set 3 in table 2. For each case, (4.19) is fitted to the data set and the value is then averaged over the three
realizations to determine Ks, assuming the same value of C as in (5.1a,b). The average fitted intruder trajectory
(4.21) is then plotted as a function of time for each γ̇m with dashed lines for comparison. The insets show the
fitting constant Ks as a function of γ̇m. All the points are closely approximated by a straight (dot-dashed) line
that passes through the origin, implying that fsl has a linear shear-rate dependence at moderate size ratios.

set 5 in table 2 and are shown in figure 10. Fits to the three sets of data shown for each
case were performed in the same way as in § 6.1 and the values of Ks are shown in the
inset of figure 10. For size ratios close to unity the values of Ks lie very close to the red
dashed line, corresponding to (6.1) with E = 0, using the same coefficients B and C that
were determined for the large intruders in (5.1a,b). However, as the size ratio increases
above R = 1.5 the values of Ks depart markedly from this line. The additional quadratic
dependence on R − 1 in (6.1) is, however, able to capture the dramatic increase in the
segregation velocity at large size ratios. A least squares fit to the data suggests that

E = 2.0957. (6.2)

The small intruders therefore segregate with a linear R − 1 dependence for size ratios close
to unity, but segregate with an (R − 1)2 dependence at larger size ratios. This is consistent
with the notion that small intruders find it increasingly easy to find holes in which to
percolate, as the size ratio increases towards the limit of spontaneous percolation at R � 6.
Above this threshold, spontaneous percolation implies that small particles can percolate
through a matrix of large grains even in the absence of shear (Bridgwater & Ingram 1971;
Wilkinson & Edwards 1982), so this observation makes physical sense. The result is also
backed up by recent DPM simulations of segregation at low small particle concentrations.
To see this, compare the inset in figure 10 with figure 6(b) of Chassagne et al. (2020),
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Figure 9. Measured position of a 6 mm small intruder segregating through a 14 mm matrix of large particles
as a function of time for three different imposed shear rates γ̇m (darker magenta lines correspond to higher
shear-rates). Three representative experimental profiles are plotted for each experiment. These data correspond
to set 4 in table 2. For each case, (4.19) is fitted to the data set and the value is then averaged over the three
realizations to determine Ks, assuming the same value of C as in (5.1a,b). The average fitted intruder trajectory
(4.21) is then plotted as a function of time for each γ̇m with dashed lines for comparison. The insets show the
fitting constant Ks as a function of γ̇m. All the points are closely approximated by a straight (dot-dashed) line
that passes through the origin, implying that fsl has a linear shear-rate dependence even at larger size ratios.

which also shows a linear increase in the segregation rate for R close to unity and a
nonlinear increase at larger grain-size ratios.

6.3. Collapse of all the small intruder experiments
All the small intruder data from sets 3, 4 and 5 in table 2 and shown in figures 8–10
can now be collapsed onto a single curve using the same coefficients B, C and E . This is
achieved by plotting the quadratic function of the height Zs defined in (4.19) as a function
of the scaled time Bγ̇md2

l [(R − 1) + E(R − 1)2]t as shown in figure 11. This collapse is
based on (4.19) and (4.20), which imply that

Zs = Bγ̇md2
l [(R − 1) + E(R − 1)2]t. (6.3)

The mapped trajectories should therefore lie on the 45 degree line in figure 11. The collapse
for the individual trajectories is far from perfect for the reasons discussed at the beginning
of § 6, which is to be anticipated, but they do follow the right general trend for a wide
range of shear rates and particle size ratios. The collapse is much more convincing when
the individual fitted values of Ks are plotted against the theoretical line implied by (6.1),
which is shown in the inset of figure 11. All the measured points lie very close to the
theoretical straight line passing through the origin. This confirms that the small intruder
data can be collapsed using the same values of the non-dimensional constants B, C and E .
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Figure 10. Experimentally measured position of a small intruder of size dl = 12, 10, 8, 6 and 4 mm in a
matrix of 14 mm large particles as a function of time, and at the same imposed shear-rate γ̇m = 0.34 s−1. Three
representative experimental profiles are plotted for each experiment. This corresponds to set 5 in table 2. For
each case, (4.19) is fitted to the data set and the value is then averaged over the three realizations to determine
Ks, assuming the same value of C as in (5.1a,b). The average fitted intruder trajectory (4.21) is then plotted as a
function of time for each size ratio R with dashed lines for comparison. The inset shows the fitting constants Ks

as a function of R − 1. At size ratios close to unity the constants follow the same linear dependence on R − 1
as the large grains (red dashed line), but for larger size ratios the constants Ks become much larger. This is well
fitted by the quadratic size-ratio dependence in (6.1) with E = 2.0957 (dashed blue line).

Moreover, the constants B and C are exactly the same as the values used to collapse
the large intruder data in § 5. These results therefore validate our preliminary hypotheses
(a)–(d) made in § 4.2.

7. Simulation of van der Vaart et al.’s (2015) experiment

The fully index matched experiment of van der Vaart et al. (2015), which was performed in
a similar shear cell to that in this paper, provides an important constraint on the functional
form of F , since the volume fraction of small particles evolves through the complete range
of φs ∈ [0, 1].

7.1. Summary of the equations and coefficients
In order to derive the governing equations, the particle-size distribution is assumed to be
spatially uniform in the x and y directions. Substituting the gravity vector g = −gk and the
velocity field (3.2) into (2.3) implies that the small particle segregation equation reduces
to

∂φs

∂t
− ∂

∂z
( fslφ

sφl) = ∂

∂z

(
Dsl

∂φs

∂z

)
, (7.1)
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Figure 11. The small intruder trajectories for varying shear rate γ̇m and size ratio R are collapsed onto an
approximately straight (dashed) 45 degree line by plotting the transformed height Zs, defined in (4.19), against
the scaled time Bγ̇md2

l [(R − 1) + E(R − 1)2]t. The data correspond to all the cases in sets 3, 4 and 5 in table 2.
The inset plot shows the best fit values of the constants Ks for each of the experiments as a function of
γ̇md2

l F(R, 0+). The red dashed line in the inset has gradient B = 0.3744, i.e. the global best fit value of B. The
colours of the points and the lines are the same as those used in figures 8–10, where the legends are defined.

where fsl and Dsl are the segregation velocity magnitude and diffusivity, respectively.
Substituting the lithostatic pressure (4.13) into (4.9) and cancelling ρ∗g, implies that

fsl = Bγ̇ d̄2F
Cd̄ + Φ(h − z)

, (7.2)

where the size-ratio dependence is encapsulated in

F = (R − 1) + EΛ(φs)(R − 1)2. (7.3)

The function Λ = Λ(φs) satisfies the constraints that Λ(0) = 1 and Λ(1) = 0. It describes
the effect of the size ratio at intermediate concentrations, and allows F to smoothly
transition from the linear R − 1 dependence of a large intruder (4.5) to the (R − 1)2

dependence (4.6) for a small intruder. The simplest possible form for Λ is the linear law

Λ = φl = 1 − φs, (7.4)

which will be investigated here. However, much more complicated functions are possible,
so long as they satisfy the constraints (4.8a,b). As discussed in § 4.5 the diffusivity is
assumed to take the form

Dsl = Aγ̇ d̄2, (7.5)

where the non-dimensional coefficient A is determined by the experiments of Utter
& Behringer (2004). The other non-dimensional coefficients B, C and E have been
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A = 0.108, B = 0.3744, C = 0.2712, E = 2.0957

Table 3. Non-dimensional coefficients B, C, E determined from the refractive-index matched shear-cell
experiments. Note that it is anticipated that in the absence of an interstitial fluid the segregation rate will
be enhanced (see § 4.3), which increases the assumed value of B. The non-dimensional coefficient A is taken
from figure 9 of Utter & Behringer (2004).

determined by the shear box experiments in this paper and all of them are summarized
in table 3.

7.2. Non-dimensionalization and numerical method
In order to solve the system of (7.1)–(7.5) it is useful to non-dimensionalize the equations
using the same scalings as in van der Vaart et al. (2015), i.e.

t = Tt̃, z = hz̃, (7.6a,b)

where T = 13 s is the period of one cycle and h = 0.087 m is the depth of the cell. It
follows that the segregation equation (7.1) can be written in the non-dimensional form

∂φs

∂ t̃
− ∂

∂ z̃
(Srφ

sφl) = ∂

∂ z̃

(
Dr

∂φs

∂ z̃

)
, (7.7)

where the non-dimensional segregation rate and non-dimensional diffusivity are

Sr = Tfsl

h
= Bγ̇ T(d̄/h)2F

C(d̄/h) + Φ(1 − z̃)
, (7.8)

Dr = TDsl

h2 = Aγ̇ T(d̄/h)2, (7.9)

respectively. The period equals T = 2π/ω by definition. It therefore follows from (3.4)
that the average shear rate γ̇m times the period

γ̇mT = 4 tan θmax, (7.10)

where θmax = 30◦ in the experiments of van der Vaart et al. (2015). The mean value γ̇mT
is used to approximate γ̇ T in (7.8) and (7.9). The non-dimensional segregation equation
(7.7) is solved subject to no flux conditions at the surface and the base of the cell

Srφ
sφl + Dr

∂φs

∂ z̃
= 0, at z̃ = 0, 1, (7.11)

and the initial condition

φs =
{

1, z̃ > 0.5,

0, z̃ ≤ 0.5,
(7.12)

so that all the small grains are above the large particles at the start of the experiment (van
der Vaart et al. 2015). A Galerkin finite element solver (Skeel & Berzins 1990) is used to
generate the results. This method is conveniently coded in the pdepe routine in Matlab and
has been extensively tested in previous papers (Gray & Ancey 2011; Wiederseiner et al.
2011; Gray & Ancey 2015; van der Vaart et al. 2015). It should be noted, however, that this
method fails when C = 0, because in this case the segregation rate becomes unbounded at
the free surface.
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Figure 12. (a) The non-dimensional segregation flux Srφ
sφl as a function of the small particle concentration

φs, for a range of grain-size ratios R = 1.5, 2, 2.5 and 3. The flux is evaluated with h = 87 mm, T = 13 s,
θmax = 30◦, ds = 4 mm and ẑ = 1/2, using the non-dimensional coefficients summarized in table 3. The green
markers show the position of the maximum and the blue markers show the inflection point. (b) Shows the
corresponding non-dimensional large and small particle segregation velocities, w̃l and w̃s, as a function of φ.
The yellow markers show the position of the maximum large particle segregation velocity, which occurs at
intermediate concentrations.

7.3. Asymmetric segregation flux functions
It is interesting to see what the consequences the empirically derived scaling law has
for the shape of segregation flux function. The non-dimensional segregation equation
(7.7) implies that the non-dimensional segregation flux of large and small particles in the
vertical direction are

F̃l = Srφ
sφl, (7.13)

F̃s = −Srφ
sφl, (7.14)

respectively. Rather than being a non-dimensional constant (as in Gray & Thornton 2005;
Gray & Chugunov 2006), the non-dimensional segregation rate Sr is a function, whose
value varies locally in the flow, and which is given by (7.8).

Figure 12(a) shows a series of flux curves for different size ratios R, assuming that
ẑ = 1/2, ds = 4 mm and the non-dimensional coefficients in table 3. All the flux curves
are asymmetric and have an inflection point that lies to the right of the maximum.
Qualitatively they look similar to the cubic flux functions for χ > 1/2 illustrated in
figure 1. Crucially, however, these curves have been derived to quantitatively match
experimental data and contain complex functional dependencies on the shear rate, the
local small particle concentration, the average grain size, the grain-size ratio and the local
pressure. In particular, as the grain-size ratio is increased the amplitude of the flux function
increases and both the local maximum and the inflection point move to the left.
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The increasing skewness with grain-size ratio encodes the idea that small intruders
find it increasingly easy to percolate downwards as the size ratio increases, whereas the
large intruders find it harder to segregate upwards when there are more contacts with
neighbouring small particles. The flux curves have this asymmetric behaviour even when
C = 0 and E = 0, indicating that the scaling of the segregation rate on the mean particle
diameter d̄ in (4.9) is already sufficient to produce this effect. The flux curves look similar
at other heights in the flow and grow in amplitude as one approaches the free surface. When
C /= 0 there is an upper bound for the amplitude at ẑ = 1, but when C = 0 the segregation
flux becomes unbounded at the free surface, which is not desired.

7.4. Large and small particle segregation velocities
In the absence of diffusion the non-dimensional vertical velocities of the large and small
particles are given by

w̃l = Srφ
s, (7.15)

w̃s = −Srφ
l, (7.16)

respectively. These are plotted in figure 12(b) for the same size ratios and parameters as
the flux functions in figure 12(a). For a given size ratio, the downward small particle
segregation velocity is an increasing function of the large particle concentration φl =
1 − φs, and therefore the maximum speed is attained at φs = 0+. Conversely, the large
particles have a local maximum segregation velocity at an intermediate concentration
φs ∈ (0, 1), with the segregation velocity of a single large intruder at φs = 1− being at
a much reduced rate, compared to either the maximum large particle, or the maximum
small particle, segregation speed. Experimental measurements of the single intruder end
states have been specifically used in this paper to determine the scaling law for segregation,
and hence the segregation rate Sr. The particle velocities in these end states are therefore
a close match to the experimental data.

It is interesting to note that when C = 0, the ratio of the maximum percolation velocity
of a single small intruder to the rise velocity of a single large intruder at a given height ẑ0,
satisfies the simple relation

|w̃s(0+)|
|w̃l(1−)|

∣∣∣∣
ẑ=ẑ0

= Sr(0+)

Sr(1−)

∣∣∣∣
ẑ=ẑ0

= R2 (1 + E(R − 1)) . (7.17)

The remarkable equation relates two seemingly disparate ends of the flux curve with a
simple relation that is purely dependent on the particle size ratio R. It holds at all heights ẑ0
in the flow, which implies that the trajectories of the particles are also related. In particular,
it follows from (4.15) and (4.19) that the ratio of the time tl for a large intruder to reach the
top of the cell, and the time ts for a small intruder to percolate down to the base, satisfies
the same law

tl
ts

= R2 (1 + E(R − 1)) . (7.18)

Even when C = 0.2712, and there is some dependence on the average grain size and the
position in the flow, (7.17) and (7.18) provide good approximations to the ratio of the single
particle intruder speeds and the ratio of intruder times, respectively.

7.5. Comparison to van der Vaart’s (2015) experimental data
Van der Vaart et al. (2015) used an earlier version of the shear cell and the RIM technique
to measure the evolution of the particle-size distribution in a 50 : 50 mix of 8 mm and
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Figure 13. (a) Contour plot of van der Vaart et al.’s (2015) small particle concentration data as a function
of the non-dimensional depth z̃ = z/h and non-dimensional time t̃ = t/T , for a 50 : 50 mix of large and
small particles with h = 87 mm, T = 13 s, θmax = 30◦, ds = 4 mm and dl = 8 mm. (b) Contour plot
of the corresponding numerical results using the non-dimensional coefficients summarized in table 3. (c)
Experimental and numerical time series of the depth-averaged concentration of small particles, φ̄s = φ̄s(t).

4 mm particles that was initially in a normally graded configuration. To do this, the shear
was stopped after each complete cycle and the cell was scanned with a laser while a
series of photographs were taken. From these photos it was possible to determine the
three-dimensional particle positions after each cycle and hence to build up a picture of the
evolving particle-size distribution in time. A space–time plot of the van der Vaart et al.’s
(2015) small particle concentration data is shown in figure 13(a).

Figure 13(b) shows a contour plot of the computed small particle concentration as a
function of the non-dimensional depth and time, using the experimentally determined
non-dimensional coefficients in table 3. The simulations are in very good quantitative
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agreement with the experimental data of van der Vaart et al. (2015). In particular, they
accurately capture the time at which the first small grains reach the base of the flow, the
slightly later arrival of the first large grains at the top of the flow, as well as the overall
time scale for the solution to approach the steady state by t̃ = 120. During this evolution
the grains reverse position, with the large particles rising to the surface and the small
grains percolating down to the base, to form a slightly diffuse inversely graded particle-size
distribution. It should be emphasized that this excellent overall agreement is achieved with
the value of A determined from the experiments of Utter & Behringer (2004) and the same
non-dimensional coefficients B, C or E measured in this paper, together with the simplest
possible functional form for Λ.

The slight mismatches between the simulated and experimental concentration contours
in the expansion fan, between t̃ = 0 and 60 time units, are most likely due to experimental
error. To demonstrate this, it is useful to integrate the segregation equation (7.7) from the
base up to the free surface, and apply the surface and basal no flux boundary conditions
(7.11). Exchanging the order of integration and differentiation implies that

d
dt̃

(∫ 1

0
φs dz̃

)
= 0, (7.19)

and hence that the depth-averaged concentration of small particles is conserved, i.e.

φ̄s =
∫ 1

0
φs(z̃, t̃) dz̃ =

∫ 1

0
φs(z̃, 0) dz̃ = φ̄s

0. (7.20)

Figure 13(c) shows the depth-averaged concentration φ̄s as a function of time for the
numerical simulation and the experiment. While the simulated φ̄s is indeed constant,
and equal to the initial depth-averaged concentration of small particle φ̄s

0 = 0.5, the
experimental value of φ̄s is up to 5 % below this value in the first t̃ = 0 and 60 time
units. This is due to the error in identifying all the small particles with the refractive-index
matched fluid technique used by van der Vaart et al. (2015).

7.6. Properties of the steady-state solution
A first-order ODE for the steady-state concentration profile can be formulated by assuming
that the concentration is independent of time. Integrating the non-dimensional segregation
equation (7.7) with respect to z̃, applying the no flux condition (7.11) and cancelling the
γ̇ T(d̄/h)2 dependence yields

dφs

dz̃
= −(B/A)φsφlF(R, φs)

C(d̄/h) + Φ(1 − z̃)
. (7.21)

This equation has some interesting properties. In particular, the non-dimensional
coefficient C is included in the theory primarily to remove the singularity in the segregation
rate at the free surface in the numerical method. When C = 0, (7.21) just depends on
the particle size ratio R, and is completely independent of d̄ and h. The thickness does
enter in the non-dimensionalization (7.6a,b), so although the non-dimensional solution
will be identical for a fixed size ratio, the physical solution will be stretched vertically
proportionately to h. As a result, a flow of double the thickness will have steady-state
concentration gradients that are half as strong as the original flow for the same size ratio.
This is a highly non-intuitive consequence of the combination of the scaling law (7.2) and
the diffusivity (7.5), and is a bold prediction of the resulting theory.
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7.7. Exact steady-state solution for the case C = 0
In the case when C = 0, it is possible to derive an exact steady-state solution to (7.21).
Substituting (7.3) and (7.4) into (7.21) and writing it as an ODE for z̃ = z̃(φs) implies

−1
(1 − z̃)

dz̃
dφs = AΦ

B(R − 1)φs(1 − φs) [1 + E(1 − φs)(R − 1)]
. (7.22)

Using partial fractions the right-hand side can be integrated to give the exact solution

z̃ = 1 − K(1 − φs)−λ1(1 + E(1 − φs)(R − 1))λ2(φs)λ3, (7.23)

where K is a constant of integration and the coefficients λ1, λ2 and λ3 are

λ1 = ΦA
B(R − 1)

, λ2 = ΦAE
B(1 + E(R − 1))

, λ3 = ΦA
B(R − 1)(1 + E(R − 1))

,

(7.24a–c)

respectively. The average volume fraction of small particles in the cell is obtained by
integrating the area under the curve φs = φs(z̃) between z̃ is zero and unity. Since, this
area is exactly the same as the area under the curve z̃ = z̃(φs) > 0 in the range φs = [0, 1],
it is easy to find the constant of integration for any given average concentration of small
particles in the cell.

7.8. Steady-state comparison to van der Vaart’s (2015) experiment
Figure 14 shows the predicted steady-state exact solution for the experiment of van der
Vaart et al. (2015), where K = 0.4041 for the initial 50 : 50 mix of particles. At t̂ = 221
non-dimensional units the exact solution lies very close to the computed concentration
profile using the non-zero value of C = 0.2712 determined in this paper. In fact both the
curves lie very close to van der Vaart et al.’s (2015) experimental data between 177 and
221 cycles, when the experiment is essentially in steady state (see figure 14). Following
Wiederseiner et al. (2011) and Gray (2018), the Péclet number for segregation is defined as
the ratio of the non-dimensional segregation rate to the rate of non-dimensional diffusion,
i.e.

Pe = Sr

Dr
= B(R − 1)(1 + E(1 − φs)(R − 1))

A(C(d̄/h) + Φ(1 − z̃))
. (7.25)

It provides a measure of the strength of the segregation relative to the diffusion. As
opposed to some earlier theories (see e.g. Gray & Chugunov 2006; Wiederseiner et al.
2011), which had a constant Péclet number, the segregation model developed in this
paper produces a Péclet number that varies strongly with depth. This is due to the
changing local grain-size distribution and the decreasing lithostatic pressure distribution
with increasing height. For the computed solution (see inset figure 14) the Péclet number
starts at Pe = 5.74 at the base of the flow, rises to Pe = 18.86 at z̃ = 1/2 and then tends
to a finite, but, large, value of Pe = 430 at the top. Note that in the case when C = 0,
the Péclet number will be similar over most of the range, but the singularity in pressure
at the free-surface implies that Pe → ∞ at z̃ → 1. Since the diffuse interface separating
high concentrations of large particles from high concentrations of fines, in figure 14, lies
between z̃ = 0.4 and 0.6, the Péclet number Pe = 11.38 at the lower end of this range and
rises sharply to Pe = 37 near the top. As a result, the solution is much more rounded and
diffuse at the bottom, which is a defining feature of the current theory.
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Experimental data 177 to 221 cycles

Exact solution when C = 0
Computed solution with  C = 0.2712

z̃

z̃
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Figure 14. Plot of the computed small concentration φs at t̃ = 221 non-dimensional time units (red line)
as a function of the non-dimensional depth, for h = 87 mm, T = 13 s, θmax = 30◦, ds = 4 mm, dl = 8 mm
and using the non-dimensional coefficients summarized in table 3. The blue circles show the corresponding
experimental data of van der Vaart et al. (2015) between t̂ = 177 and 221 non-dimensional time units (cycles).
The yellow curve shows the exact steady-state solution (when C = 0) with a constant of integration K = 0.4041
for a 50 : 50 mix of particles as in van der Vaart et al.’s (2015) experiments. The inset image shows the variation
of the Péclet number with depth for the computed solution when C /= 0.

8. Predicting maximum segregation at a grain-size ratio close to two

Golick & Daniels (2009) and Thornton et al. (2012) provide experimental and DPM
simulation evidence, which strongly suggests that maximum segregation occurs close to
a grain-size ratio of two for a 50 : 50 mixture of large and small particles (see data in
figure 15). At first sight, this appears to be incompatible with the experimental shear
box results presented here, where the segregation velocity magnitude fsl increases linearly
with R − 1 for both large and small intruders, and where there is an additional (R − 1)2

dependence for the small intruders at high grain-size ratios. In short, the shear box data
show no evidence of a maximum in the segregation at a grain-size ratio of two. One may
therefore legitimately ask how these results can be compatible with one another?

In contrast to the prescribed motion and shear rate in our experiments, Golick & Daniels
(2009) and Thornton et al. (2012) consider rapid flows in which segregation, diffusion
and advection actively contribute to the evolving particle-size distribution, i.e. they are
inherently more complex coupled flows. In particular, the velocity profile u(z, t), shear rate
γ̇ (z, t) and solids volume fraction Φ(z, t) are functions of space and time. In chute flows,
Rognon et al. (2007), Tripathi & Khakhar (2011) and Barker et al. (2021) have shown that
segregation-induced frictional feedbacks are responsible for marked deviations away from
the classical monodisperse Bagnold velocity profile (Silbert et al. 2001; GDR-MiDi 2004;
Jop et al. 2006). These feedbacks will in turn change the local shear rate and hence the
time scale for particles to segregate and diffuse. In addition, mixtures of disparately sized
particles can pack more efficiently than monodisperse grains even during shear (Golick
& Daniels 2009; Thornton et al. 2012). This packing effect is so significant in Golick &
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Thornton et al. (2012) full height data

Thornton et al. (2012) dense base layer data

Packing efficiency reduced Péclet number

R

Pe

Figure 15. A comparison of the packing efficiency reduced Péclet number (8.3) as a function of the grain-size
ratio R, with the DPM simulation results of Thornton et al. (2012). The Péclet number is evaluated at z̃ = 0.5
and φs = 0.5 to approximate the position and concentration along the smooth steady-state interface between
large and small grains in a 50 : 50 mix. The transition φs

c = 0.2, so the factor Λ is zero, and for simplicity C = 0.
To account for the absence of an interstitial fluid, the constant B is divided by a buoyancy factor (4.10) using
the ρ∗ = 2.2 g cm−3 and ρ

f
∗ = 1.044 g cm−3 for the intrinsic density of the grains and the fluid, respectively

(table 1). This determines the initial linear gradient of the Péclet number at grain-size ratios close to unity.
A remarkably good fit to Thornton et al.’s (2012) DPM data is provided by setting the constant a = 9 in the
segregation reduction factor (8.2). In particular, it produces a maximum in the Péclet number at a grain-size
ratio R � 1.66.

Daniels’ (2009) annular shear-cell experiments, that they used the motion of the freely
moving top plate to infer the segregation time scale. If the solids volume fraction is locally
enhanced, then this reduces the number of gaps that particles can move into and provides a
natural mechanism for reducing both the segregation rate and the diffusivity. The observed
maximum in segregation in the vicinity of R = 2 may therefore be a consequence of
increased solids volume fraction, or frictional feedback, rather than a direct dependence
of segregation velocity magnitude fsl on the grain-size ratio R.

It is instructive to consider how packing effects may be parameterized in a simple way,
without developing a compressible theory for particle-size segregation that fully accounts
for the changes in solids volume fraction. To begin, let us assume that the (1 − R)2

enhancement of segregation, as one approaches the transition to spontaneous percolation
(Bridgwater & Ingram 1971; Wilkinson & Edwards 1982), is confined to low small particle
concentrations. This effect can be achieved by defining

Λ =
⎧⎨
⎩ 1 − φs

φs
c
, φ ≤ φs

c

0, φs > φs
c,

(8.1)
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where the transition point φs
c ∈ (0, 1). There are two key ideas that the function must

parameterize: (i) grains can only pack together more efficiently when they are mixed
together and (ii) this effect becomes progressively stronger as the grain-size ratio increases
from unity. A packing-induced segregation reduction factor might therefore take the form

R = 1 + a(R − 1)2φs(1 − φs), (8.2)

where a is a constant. This factor enters the denominator of the Péclet number (7.25) to
give a packing efficiency reduced Péclet number of the form

Pe = B(R − 1)(1 + EΛ(φs)(R − 1))

AR(φs, R)(C(d̄/h) + Φ(1 − z̃))
. (8.3)

The reduction factor R is equal to unity at φs = 0, 1, so our single-intruder results are
encapsulated unchanged in this function. However, at intermediate concentrations φs > φs

c
the Péclet number is reduced when either the grain-size ratio R is increased, or the
mixture concentration approaches φs = 0.5. Figure 15 shows that the reduction factor (8.2)
accurately captures Thornton et al.’s (2012) steady-state Péclet number dependence on R,
with a maximum segregation at a grain-size ratio R � 1.66. This is remarkably close to
the maximum at R = 1.7 in Thornton et al.’s (2012) DPM simulations, which is very
encouraging. The fact that Golick & Daniels’ (2009) annular shear-cell experiments have
a minimum segregation time at R � 2, suggests that this factor reduces the segregation
velocity magnitude, rather than the diffusion. However, it is possible that the increased
solids volume fraction in mixtures of differently sized particles also moderates the
self-diffusion, and that (8.2) is the net effect of the reduction in segregation and the
reduction or enhancement in diffusion.

Other effects such as the intermediate and reverse segregation reported by Thomas
(2000) and Thomas & D’Ortona (2019) at very large size ratios R > 4 probably require an
additional effective density effect to explain them. To see this, consider filling the volume
of a large grain with smaller particles. As they randomly pack together to fill the volume
they will introduce a significant amount of empty space. At the large particle scale, it
follows that very large intruders will appear significantly denser than an equivalent volume
of small grains, even if their intrinsic densities are the same. This apparent density increase
may thus lead to a competition between particle size and particle density segregation
(Tunuguntla et al. 2014; Gray & Ancey 2015), which combined with flow feedback and
packing efficiency effects may explain how very large intruders can find equilibria at
intermediate depths, or sink to the base of the flow.

9. Conclusions

The refractive-index matched shear box experiments performed in this paper suggest a
simple functional form (4.9) for the segregation velocity magnitudes fsl of single large
and small intruders. For grain-size ratios close to unity, a simple linear interpolation (7.4)
between these two end states is sufficient to quantitatively model the segregation of a
50 : 50 mix of large and small particles in the shear box experiments of van der Vaart et al.
(2015), when it is combined with the generalized diffusivity (4.22) (see figures 13 and 14).
At larger size ratios the annular shear-cell experiments of Golick & Daniels (2009) suggest
that mixtures of grains can pack at significantly higher solids volume fractions, even
during shear, and that this hinders the small particles ability to percolate and segregate.
By introducing a simple parametrization of this reduced segregation efficiency (8.2), it
is possible to produce a maximum Péclet number for segregation at a grain-size ratio
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R � 1.66. This is remarkably close to the maximum at R = 1.7 found in the steady-state
DPM simulations of Thornton et al. (2012). The composite small particle segregation flux
(2.7) that includes all of these effects, is then

F s =
(

ρ̂B̂ρ∗γ̇ d̄2

Cρ∗gd̄ + p

)
[(R − 1) + EΛ(φs)(R − 1)2]

R(φs, R)
φsφlg, (9.1)

where the relative density difference ρ̂ defined in (4.10) accounts for the presence of an
interstitial fluid of density ρ

f
∗ , and the correspondingly adjusted constant B̂ = B/ρ̂ �

0.7125. The remaining values of the universal constants can be found in table 3. The small
particle segregation flux is dependent of the shear rate γ̇ , the local mean particle size d̄,
the intrinsic density of the grains ρ∗, the pressure p, the size ratio R, the gravitational
acceleration vector g and the local concentration of small particles φs = 1 − φl. The
dependence on the average particle size d̄ naturally leads to increasingly asymmetric flux
functions as the size ratio R increases (Gajjar & Gray 2014; van der Vaart et al. 2015). This
leads to markedly different time scales for the rise and fall of large and small intruders, as
shown theoretically in figure 12.

Particle-size segregation usually takes place in rapidly sheared free-surface flows,
where the pressure is lithostatic. Interestingly, when the pressure distribution (4.13)
is substituted into (9.1) the intrinsic density dependence and the magnitude of the
gravitational acceleration g = |g| cancel out, to leave the segregation flux

F s =
(

ρ̂B̂γ̇ d̄2

Cd̄ + Φ(h − z)

)
[(R − 1) + EΛ(φs)(R − 1)2]

R(φs, R)
φsφlğ, (9.2)

where ğ = g/|g| is the unit vector in the direction of gravity. This implies that gravity
sets the direction for segregation, but it does not determine the time scale for particles
to segregate. This is consistent with Savage & Lun’s (1988) statistical model for kinetic
sieving and squeeze expulsion, in which the shear rate sets the time scale for segregation,
as it determines the rate at which small particles see gaps that they can percolate down
into during the kinetic sieving process. The percolation velocity of a single small intruder
has a linear dependence on R − 1 for size ratios close to unity, but develops a quadratic
dependence at higher grain-size ratios as shown in the inset in figure 10. This is probably
related to the transition to spontaneous percolation for grain-size ratios greater than six
(Bridgwater & Ingram 1971; Wilkinson & Edwards 1982). This effect may be confined to
relatively low concentrations of fine particles, since at larger concentrations the pores will
be blocked. The function Λ defined in (8.1) restricts enhanced percolation to φs ∈ [0, φs

c],
where φs

c < 1. There are, however, independent DPM simulations (Chassagne et al. 2020)
that support the linear and quadratic dependence on R − 1 proposed here.

The ability of the theory to match all the existing experiments that have been performed
in the oscillating shear cell, as well as Thornton et al.’s (2012) steady-state DPM
simulations, suggests that the empirical segregation flux (9.1) might usefully be applied to
other problems. Certainly, the theory has the right pressure dependence in the segregation
and diffusion terms to capture the suppression of segregation in Golick & Daniels’ (2009)
annular shear-cell experiments, and Fry et al.’s (2019) DPM simulations, when a weight
is added to the top plate. In addition, Barker et al. (2021) have coupled the empirical
segregation law (9.1) to the partially regularized μ(I)-rheology (Barker & Gray 2017),
and used it to compute the segregation in a square rotating drum. The results show that
the empirical law can capture the qualitative development of the segregation patterns that
form in the drum. Quantitative comparison with experiments is much more difficult than
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one might expect, because sidewall wall friction significantly influences the depth and
speed of the surface avalanche where most of the segregation occurs. For the same rotation
rate, a narrow drum produces a much thinner faster moving avalanche than a wide drum
(Jop, Forterre & Pouliquen 2005). As a result, the shear rate is higher and the pressure is
lower in a narrow drum, and both of these effects combine to increase the segregation rate
according to (9.1). It is therefore vital to include sidewall friction in numerical simulations,
in order to make a proper comparison to experimental patterns observed through the
sidewall of narrow drums.

The fully coupled simulations of Barker et al. (2021) make it clear that one of the key
advantages of the oscillatory shear cell is that the bulk motion of the grains is prescribed
rather than being free to evolve as part of the experiment. This eliminates many of the
problems posed by sidewall friction (Jop et al. 2005) as well as the more subtle feedback
of the evolving particle-size distribution on the bulk flow field (see e.g. Tripathi & Khakhar
2011; Barker et al. 2021). It is this uncoupling which makes it much easier to determine
the underlying functional dependence of the segregation rate in the shear cell.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.227.
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