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Abstract 
The calculation of the impact pressure on obstacles in granular flows is a fundamental issue of practical relevance, e.g. for 
snow avalanches impacting obstacles. Previous research shows that the load on the obstacle builds up, due to the formation of 
force chains originating from the obstacle and extending into the granular material. This leads to the formation of a mobilized 
domain, wherein the flow is influenced by the presence of the obstacle. To identify the link between the physical mobilized 
domain properties and the pressure exerted on obstacles, we simulate subcritical cohesionless and cohesive avalanches of 
soft particles past obstacles with circular, rectangular or triangular cross-section using the Discrete Element Method. Our 
results show that the impact pressure decreases non-linearly with increasing obstacle width, regardless of the obstacle’s 
cross-section. While the mobilized domain size is proportional to the obstacle width, the pressure decrease with increasing 
width originates from the jammed material inside the mobilized domain. We provide evidence that the compression inside 
the mobilized domain governs the pressure build-up for cohesionless subcritical granular flows. In the cohesive case, the 
stress transmission in the compressed mobilized domain is further enhanced, causing a pressure increase compared with the 
cohesionless case. Considering a kinetic and a gravitational contribution, we are able to calculate the impact pressure based 
on the properties of the mobilized domain. The equations used for the pressure calculation in this article may be useful in 
future predictive pressure calculations based on mobilized domain properties.
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1 Introduction

The question of how bodies and granular materials mov-
ing relative to each other interact and create interaction 
forces is of fundamental interest in fluid dynamics and for 
the rheology of granular flows [1]. The understanding of 
the interaction processes is also important for manifold 

practical applications, such as the transportation of par-
ticles [2], the impact of objects in granular beds [3], and 
the structural design of obstacles subjected to geophysi-
cal flows [4–6]. Our research is motivated by the need 
to understand the relevant processes of cohesive granular 
snow avalanches interacting with obstacles in the flow 
path. Endangered obstacles are mostly located in or close 
to settlement areas or traffic routes. When avalanches reach 
these obstacles they are often in the run-out phase and 
therefore moving relatively slowly. Hence, in our research 
we focus on a cohesionless and a cohesive granular flow 
characterized by a subcritical Froude number Fr < 1 inter-
acting with an obstacle. The Froude number is defined 
as Fr = v∕

√

g h , where v is the undisturbed velocity of 
the granular material, g is the gravitational acceleration, 
and h is the height of the undisturbed flow surface above 
the ground. For subcritical flows the force exerted on an 
obstacle by the granular flow is mostly independent of the 
flow velocity [2, 7–10].
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Previous research shows that the force acting on the 
obstacle originates from force chains forming between 
jamming particles [11, 12]. On the particle scale, the 
flow–obstacle interaction dynamics are therefore governed 
by the coexisting formation and destruction of these force 
chains extending upstream of the obstacle into the flow. 
Cohesion is known to increase the persistence of the force 
chains and the contact network density [13, 14]. On the 
macroscopic scale, the strong force chains originating 
from the obstacle form a region which is referred to as the 
mobilized domain (MD) by some authors (e.g., [15–17]). 
Hence, the MD is the region in a granular flow encounter-
ing an obstacle, which experiences a significant increase 
in the contact forces between particles. Presumably, the 
macroscopic force experienced by the obstacle is therefore 
governed by the properties of the MD [16].

To our knowledge, the MD has only been described in 
a few studies, and the authors provided little information 
on the implications for the drag force on the obstacle [8, 
16, 18]. Chehata et al. [8] suspect that the drag exerted 
on an obstacle is the result of compressive stresses act-
ing on the MD. Revisiting a large number of studies on 
the macroscopic force on obstacles, Faug [16] proposes 
a phenomenological model to calculate the force, con-
sidering a kinetic, a gravitational and an apparent weight 
contribution.

In the present study we aim to identify the relevant 
interaction processes and MD properties to physically link 
the MD and the average impact pressure on the obsta-
cle. In order to achieve this objective, we use the Discrete 
Element Method (DEM) to simulate a volume of moving 
granular material consisting of soft discrete particles. In 
our setup the moving particles interact with a static obsta-
cle, whereat we systematically identify the MD around the 
obstacle. Because we focus on subcritical flows, for which 
the impact pressure is independent of the velocity, we arbi-
trarily select a flow velocity of v = 3 m/s, corresponding 
to Fr = 0.61 . The granular flow interacts with obstacles 
with rectangular, circular and triangular cross-sections 
of widths between 0.24 m and 6.0 m. In order to assess 
the influence of the cohesion on the impact pressure, we 
simulate a cohesive and a cohesionless scenario for all 
combinations of obstacle widths and geometries. Because 
compressive stresses supposedly play an important role 
in the impact pressure [8], we perform axial compression 
tests with the same cohesionless and cohesive granular 
material to assess how the compressed material state in 
the MD is linked to the stress inside the material and on 
the obstacle.

We organize the article as follows. In Sect.  2 we 
describe our numerical model and the setup of our simu-
lations. In Sect. 3 we present the results of our simulations 
of granular flows interacting with obstacles of various 

geometries. Thereafter, we discuss the presented method, 
the results and the method’s limitations in Sect. 4. Finally, 
we summarize the most important points of the paper with 
our conclusions in Sect. 5.

2  Materials and methods

In this section we describe the methods and parameters used 
to simulate the interaction of granular flows and obstacles 
of various geometries and sizes. First, we present in detail 
the numerical setup and the simulation procedure. Second, 
we present the obstacle geometries for which we simulate 
the interaction with the granular flow. Third, we define the 
contact model, as well as the material and flow properties of 
the granular material used in our study. Fourth, we present 
axial compression tests showing how this material behaves 
under compressive loading. Finally, we present how we can 
distinguish the domain where the granular material flows 
freely from the domain where the flow is affected by the 
presence of the obstacle.

2.1  Simulation setup and procedure

The present model is implemented in the PFC Discrete Ele-
ment Method (DEM) software from Itasca (Minneapolis, 
MN, USA), which is based on the soft-contact algorithm for 
the interaction of discrete spherical particles [19].

In this study, we simulate granular flows with and with-
out cohesion (Sect. 2.3) interacting with obstacles of dif-
ferent geometries and sizes (Sect. 2.2). As input for the 
simulation we want to impose the same boundary velocity 
of the granular material independently of the properties of 
the granular material and the obstacle geometry. Assuming 
that the free boundaries of large granular avalanches are 
far from the obstacle, we only simulate an isolated volume 
confined within the surrounding granular material in the 
flow. We therefore impose the motion of the granular mate-
rial at the up- and downstream boundaries of the isolated 
volume. In the streamwise x direction the granular mate-
rial is confined between either fixed particles or boundary 
walls, as shown in Fig. 1. In the simulations with obstacle 
widths w ≤ 1.0 m, we use a domain length of Dx = 11 m 
in the x direction. For wider obstacles we use Dx = 22 m. 
In the y direction transverse to the flow, the domain is lim-
ited by a periodic boundary condition and has a width of 
Dy = 28 m. We check that these domain sizes are sufficient 
to avoid strong force chains, and thus the MD originating 
from the obstacle, reaching the domain boundaries.

In the vertical, z direction the domain is Dz = 28 m tall. 
Because the granular material is subjected to gravity acting 
in the −z direction, there is only a bottom boundary wall to 
confine the particles in the vertical direction.
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When the flow first impacts the obstacle at the beginning 
of a simulation, the flowing material has yet to form the 
MD. Hence, to investigate how the impact pressure on an 
obstacle is physically linked to the flow around it, we need 
to obtain a continuous flow with a MD around the obstacle. 
In order to achieve this while minimizing the computational 
effort, we split the simulation procedure into two phases 
which we describe below. The first and the second phase 
are shown schematically in the upper and the lower half of 
Fig. 1, respectively. While the particles can flow around the 
obstacle in our 3D setup, Fig. 1 shows in sectional a view in 
the x-z plane in the middle of the flow domain.

In the first phase we establish the flow of the granular 
material around the obstacle. In the beginning all particles 
are assigned an initial or boundary velocity in the stream-
wise x direction (particles with a red outline in Fig. 1). Dur-
ing a simulation period �t1 the velocity of the particles at the 
up- and downstream boundary (particles with a red outline 
and fill) is fixed at the boundary velocity in the x direction, 
and at zero in the y and z directions. The rest of the parti-
cles are free to move according to the interaction with other 
particles or the obstacle (particles with blue fill). Hence, the 
boundary particles push the freely moving particles in the 
flow direction past the obstacle.

After the simulation period �t1 the simulation is paused 
and the fixed velocity condition is released for all particles. 
Particles beyond the downstream boundary are deleted (red 
outline). At the upstream boundary the domain is filled with 
newly generated particles (green outline). The newly gener-
ated particles are again assigned the initial velocity. Again, the 
velocities of the particles at the up- and downstream bounda-
ries are fixed (particles with red outline and fill), while the 
particles further from the boundary move freely. Subsequently 
another period �t1 is simulated. To develop the MD around the 

obstacle, we repeat this procedure three times. However, the 
generation of new particles in the first phase causes fluctua-
tions in the system. Because we want to obtain a continuous 
force on the obstacle, we simulate a second phase where the 
granular material is moving continuously.

In the second phase we implement boundary walls up- 
and downstream of the granular material to push it continu-
ously past the obstacle. In this configuration the fixed bound-
ary velocity is only prescribed at the boundary walls (orange 
walls in Fig. 1), while all particles are moving completely 
freely (particles with blue outline and fill). To avoid a situa-
tion where the upstream boundary influences the mobilized 
domain around the obstacle, we stop the simulation after 
�t2 when the boundary walls have travelled half the domain 
length Dx in the streamwise direction.

While the impact pressures shown in Fig. 5 are calculated 
as the mean value of the pressure on the obstacle during the 
second phase (Supplementary Material S.1), for the results 
in Fig. 7 we consider the instantaneous impact pressure val-
ues in this phase. In Figs. 8 and 9, we report the instanta-
neous impact pressure values of the last time step of the 
simulations, as we relate the pressure to the MD properties 
extracted at this last time step (Sect. 2.5).

In [20] we implemented a similar setup consisting only 
of the second simulation phase described above. There we 
showed that the presented numerical procedure is able to 
reproduce impact pressure of snow avalanches measured in 
full-scale field experiments.

2.2  Obstacle geometries

To study the influence of the obstacle geometry on the MD 
and the impact pressure, we implement prism shaped obsta-
cles with rectangular, circular and triangular cross-sections, 

Fig. 1  Simulation procedure in two phases. First phase (top) with continuous particle generation and deletion at the boundaries. Second phase 
(bottom) where the flow is imposed by the boundary walls
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as shown in Fig. 2. In all simulations the obstacles are fixed 
in place and are rigid, consequentially not deforming under 
the experienced forces. All of these prismatic obstacles have 
a height of 5.7 m, which prevents the granular mass from 
overflowing the obstacle. We consider obstacles with widths 
w of 0.24 m, 0.6 m, 1.0 m, 3.0 m and 6.0 m. We select these 
widths based on the dimensions of already existing obsta-
cles measuring the impact pressure of avalanches in field 
experiments [21], which are 0.24 m, 0.6 m and 1 m wide. 
In our setup the obstacle widths are limited by our current 
computational resources, which do not allow the simula-
tion of larger domains needed to avoid boundary effects for 
obstacles w > 6 m.

For the rectangular cross-sections, two sides are normal 
and two sides are parallel to the flow direction. The sides 
normal to the flow are of varying width w, while the sides 
parallel to the flow are 1.6 m in all simulations. A compari-
son of two simulations with obstacle lengths of 0.1 m and 
1.6 m in the streamwise direction shows that the pressure 
only deviates by 0.3 % between the two cases. Hence, we 
expect that using a length of 1.6 m for all rectangular obsta-
cles does not affect the results considerably.

For the circular cross-sections the width w corresponds to 
the diameter. For the triangular cross-sections we define the 
angle of the wedge facing the flow as � = 60◦ . Hence, the 
width w of the triangular obstacles is given by the length of 
the downstream side of the triangle.

The force exerted by the granular flow on the obstacle is 
calculated by summing the contact forces of all particles in 
contact with a surface. Because we simulate symmetrical 

obstacles and flow conditions, the force Fy in the y direction 
on the obstacles is < 1% of the total force in all simula-
tions. The force Fz in the vertical direction is < 5% of the 
total force in all simulations. We therefore neglect Fy and Fz 
for the analysis of this study and only consider the force Fx 
exerted on the obstacle in the streamwise x direction.

To obtain a measure of the force exerted by the granu-
lar flow that is independent from the surface area and the 
geometry, we define the projected impact pressure px . It is 
equal to the impact force in flow direction Fx divided by the 
obstacle’s area Ayz = wh facing the flow projected on the 
y − z plane normal to the flow direction px = Fx∕Ayz.

2.3  Granular flow and material properties

The formulation of the Discrete Element Method and the 
model setup we use for this study are generic. If suitable 
particle and contact properties are chosen, the model can 
be used to simulate the interaction of a variety of cohesive 
granular materials and obstacles. However, in the context 
of snow avalanches, we choose suitable material properties 
for avalanche modeling. The most important contact and 
particle properties are summarized in Table 1. A more in-
depth description of the parameter choices and the contact 
model can be found in [20] and its supplementary material.

In our model all particles are subjected to a gravitational 
acceleration of g = 9.81 m/s2 in the negative z direction. The 
mean diameter dp of the particles is 0.08 m with a polydis-
persity of 20 % to avoid crystallization. The particles have 
a density of �p = 500 kg/m3 and a restitution coefficient of 

Fig. 2  Prismatic obstacles with a rectangular (a), circular (b) or triangular cross-sections (c). The top row shows obstacles with w = 1 m interact-
ing with the granular flow. The particles are colored according to their streamwise velocity, where red corresponds to 3 m/s and blue to 0 m/s. 
The bottom row shows the cross-sections with the most important geometric measurements (color figure online)

a b c
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er = 0.05 . As we want to model a compressible granular 
material, which is relevant for snow avalanches and other 
geophysical flows, we set the particles’ Young’s modulus to 
E = 105Pa. This Young’s modulus E allows for substantial 
overlap of particles in the simulation if they are subject to a 
compressive load and thus mimics the material’s compress-
ibility. We discuss our approach to model soft particles with 
a low particles’ Young’s modulus E in Sect. 4.4 and further 
analyze how varying E influences the results of our study in 
the Supplementary Material S.2 .

In DEM the material behavior is governed not only by the 
particle properties but also by the contact model, which is 
applied whenever particles interact. To simulate a cohesive 
granular material we use the parallel-bond model, originally 
developed for rock modeling [22]. This contact model has 
also proven to be suitable to simulate other cohesive geoma-
terials, such as sand [23], debris [24] and snow [20, 25–27].

The contact model consists of a linear and a cohesive 
component in parallel. The linear viscoelastic component 
consists of a spring and a dashpot in the normal direction 
and a spring and a coulomb friction limit in the tangential 
direction. The cohesive component is a bond connecting the 
particles in parallel to the linear component. The bond acts 
mechanically like a beam and can sustain tensile, bending, 
shear and torsional forces. In our simulations a new bond 
is formed whenever two unbonded particles make contact.

In order to assess the influence of cohesion in the pressure 
build-up processes, we perform simulations of a cohesive and 
a cohesionless scenario. In the cohesionless and the cohesive 
case we implement a cohesive strength of �coh = 0.0 kN/m2 and 
�coh = 10.0 kN/m2 , respectively. This value corresponds to the 
tensile and pure shear strength of the cohesive bond.

2.4  Compression tests of the granular material

One of this study’s main objectives is to physically link the 
properties of the MD to the impact pressure on the obstacle. 
Hence, we need to bridge the gap between the relevant pro-
cesses at the micro scale of the particles, such as the force 
chains and particle densification [12, 14], and the forces on 
the obstacle at the macroscopic scale in which we are inter-
ested. To achieve this, in this section we characterize the 
behavior of the granular material presented in the previous 
section under compressive loading by performing displace-
ment-controlled axial compression tests.

We visualize the setup of the compression tests in Fig. 3a. 
For the compression test we use a material sample with a 
rectangular cross-section of equal side length of s0 = 6.0 m, 
which corresponds to the maximum considered obstacle 
width w. A sensitivity analysis (Supplementary Material S.3) 
on the sample size shows that the compression tests’ results 
converge towards the results obtained with s0 = 6.0 m.

In the normal direction the granular material is com-
pressed between a wall and a collection of rigidly connected 
particles, referred to as a clump. In the lateral directions 
the tested material sample is confined by periodic bounda-
ries. We perform the compression tests in a zero gravity 
environment.

On the macroscopic scale the compressive strain 
�n = (l0 − l)∕l0 evokes a stress �n in the compression direc-
tion on the boundary wall, on the boundary clump and inside 
the granular material.

At the micro scale the rigid particles in contact typically 
interpenetrate each other due to compressive loading. The 
particle interpenetration � visualized in Fig. 3b evokes a 
force at the contact according to the contact law. In the fol-
lowing we express the compression of the granular material 
at the micro scale as the particle interpenetration normalized 
by the particle radius � = �∕rp.

Figure 3c shows the normal stress �n inside the granular 
material, on the clump and on the wall as a function of the 
particle interpenetration in the cohesionless case. Figure 3d 
shows a comparison of �n as a function of � in the cohesion-
less and the cohesive case. To distinguish between the test 
with the cohesive and cohesionless granular material, we use 
an asterisk for the quantities in the cohesive scenario, e.g. �∗

n
.

Panel c in Fig. 3 shows that the normal stress inside the 
granular material increases monotonically with increasing 
compression of the granular material. The concave shape 
of the �n-�n curve indicates that the normal stress �n in the 
material increases at a higher rate than the interpenetration � 
for large compressive strains. The stresses inside the granu-
lar material, on the wall and on the clump are almost identi-
cal. Hence, in the following sections we always refer to the 
normal stress �n inside the granular material, which also acts 
on an obstacle wall in the case where there is one.

Table 1  Granular material properties (a) and simulation setup param-
eters (b)

Parameter Symbol Unit Value

a) Particle and contact properties
Particle density �p kg/m3 500
Particle diameter dp m 0.08 ± 0.008

Young’s modulus E Pa 105

Friction coefficient � − 0.5
Restitution coefficient er − 0.05
Cohesive strength �coh N/m2 0.0, 104

b) Simulation setup parameters
Domain length Dx m 11, 22
Domain width Dy m 28
Domain height Dz m 28
Flow velocity v m/s 3
Flow height h m 2.5
Obstacle width w m 0.24 − 6.0
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Panel d in Fig. 3 reveals that the cohesive granular mate-
rial transmits a ∼ 1.5 times greater normal stress �∗

n
 than 

the cohesionless material �n for the same interpenetration 
� . We use the results of these compression tests to relate 
the particle interpenetration � to the internal stress �n in 
the material. In the following sections we use the notation 
�n (�) when relating the two quantities on the basis of the 
graphs in Fig. 3.

2.5  Definition of the mobilized domain

When a flow interacts with an obstacle we can generally 
distinguish between two domains. One, at a distance to the 
obstacle where the flow is not influenced, and another, in 
the vicinity of the obstacle where the flow is affected by the 
presence of the obstacle [28]. For the latter we use the term 
mobilized domain (MD).

We systematically identify the MD by analyzing the nor-
mal contact forces Fn between the particles. Because the 
contacts between the particles are at random locations in the 
flow field, we discretize the flow domain with a regular grid 
to obtain a definition of the MD, which is consistent for all 
simulations. We use the average of the normal contact forces 
Fn located inside the grid cell as the representative value for 
the whole cell. A grid cell typically contains more than 15 
contacts and is 0.1 m, 0.1 m and 0.3 m in size in the x, y and 
z direction, respectively.

We choose the normal component of the contact force 
because the impact pressure on the obstacle physically origi-
nates from the force chains [7]. Thus, we consider the nor-
mal component to be the most relevant for the transmission 

of the pressure to the obstacle. Indeed, the analysis can also 
be performed using the shear component, leading to similar 
results [29]. Finally, we obtain the threshold value by defin-
ing a fixed percentile value of the averaged normal contact 
forces Fn in the discretized grid. More in-depth details of 
how we define the threshold value are provided in Supple-
mentary Material S.4.

Once the threshold value is obtained, we can define flow 
regions. The region where Fn is greater than the threshold is 
considered to be within the MD. Anywhere that Fn is lower 
is outside of the MD. Therefore, for very low percentile val-
ues the whole flow domain is considered the MD, while 
for very high percentile values the MD vanishes altogether. 
Hence, a physically relevant threshold value must be in 
between the extreme values.

For the present study we choose the 80th percentile of 
the normal contact forces as the threshold value. A sensitiv-
ity analysis is provided in Supplementary Material S.5 of 
this article. The analysis reveals that our results only weakly 
depend on the choice of the threshold in the range of the 
70th to 90th percentile. Moreover, in Supplementary Mate-
rial S.5 we visualize the change in MD for a sample simula-
tion for the 70th, 80th and 90th percentile threshold values.

In Fig. 4 we show a horizontal section through the flow 
visualizing the definition of the MD schematically (panel 
a) and for the example of a 3 m-wide rectangular obstacle 
(panel b). For our analysis we use four quantities of the MD: 
(1) the mean streamwise velocity vMD inside the MD, (2) the 
volume VMD of the MD, (3) the length LMD of the MD extent 
in the streamwise direction, and (4) the averaged interpen-
etration �MD of the particles inside the MD.

a c d

b

Fig. 3  Panel  a shows the setup of the compression test, where the 
material (blue particles and contact network) is compressed between 
a wall (red) at the bottom and a clump (gray) at the top. For better 
visibility the particles are not to scale with the sample size. Panel b 
shows two spherical particles with radius rp and interpenetration � . 
Panel c shows a comparison between �n measured at the wall (red), 
at the clump (gray) and inside the granular material (blue), as well 

as the resulting � (green, right y-axis) in the cohesionless case as a 
function of the strain �n . Panel d shows the dependency between the 
normal stress �n in the granular material and the relative interpen-
etration � (bottom x-axis), as well as the macroscopic strain �n (top 
x-axis) for the cohesionless ( �coh = 0.0  kN/m2 , blue) and the cohe-
sive ( �coh = 10.0 kN/m2 , red) case (color figure online)
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As mentioned in Sect. 2.1, we only analyze MD proper-
ties at the last time step of the simulation. This is necessary 
because the vast number of particles and contacts in the sys-
tem lead to large amounts of data, which cannot be stored 
for many time steps for all simulations. In Figs. 8 and 9, 
where we link the impact pressure to the MD properties, we 
consistently report the impact pressure value of the last time 
step of the simulation.

3  Results

In the following section we first show how the impact pres-
sure depends on the obstacle width and geometry, as well as 
on the cohesion of the granular material. In the same section 
we also compare the extent and the properties of the MD in 
cohesionless flows for different obstacle geometries. There-
after, we show how cohesion affects the granular material 
in the MD and how this is linked to the change in impact 
pressure. Finally, we estimate the impact pressure exerted by 
the cohesionless flow on the obstacles based on the physi-
cal properties of the MD and compare the result with the 
simulated impact pressure.

3.1  Influence of the obstacle width and geometry 
on the impact pressure and the MD

As described in Sect. 2.2, we study the pressure px contribut-
ing to the impact force in the flow direction. Fig. 5 shows px 
as a function of the obstacle width w for the obstacles with 
a rectangular, circular or triangular cross-section. On the top 
x-axis we indicate the ratio of obstacle width w to particle 
diameter dp . This ratio may be critical for the interaction 

processes when the size of the particle is of the same order 
as the width of the obstacle [1, 30].

In Fig. 5, we observe that the impact pressure px on all 
geometries decreases in a non-linear fashion for increasing 
obstacle width w. The impact pressure is highest on the 
obstacles with the rectangular and circular cross-sections, 
while it is significantly lower on the triangular obstacle. 
In the cohesionless cases the maximum pressure on the 
rectangular and cylindrical obstacles is ∼ 1.3 times higher 
than the pressure on the triangular obstacle. The average 
impact pressure exerted by the v = 3 m/s and h = 2.5 m 
cohesionless flow on all considered obstacle geometries 
lies between 15 kPa and 37 kPa. In the cohesive case 
the pressures on the narrowest w = 0.24 m and the wid-
est w = 6 m obstacle vary considerably: 61 − 137  kPa, 
44 − 116 kPa and 26 − 47 kPa for the rectangular, circu-
lar and triangular cross-sections, respectively. Hence, as 
visualized in Fig. 5d–f for our cohesive scenario where 
�coh = 10.0 kN/m2 , the impact pressure is approximately 
3.7, 3.1 and 1.7 times higher than in the cohesionless case 
for the rectangular, circular and triangular cross-sections, 
respectively. Similarly, the maximum pressure on the rec-
tangular and cylindrical obstacles is ∼ 2.5 times higher 
than the pressure on the triangular obstacle, which is 
higher than the pressure differences between the different 
geometries in the cohesionless case. It is important to note 
that these are approximate average values which vary for 
the different widths, as Fig. 5 clearly shows.

In Fig. 6a–f we visualize the mobilized domains in 
the cohesionless case for all geometries by shadowing 
the region outside the MD with a semi-transparent over-
lay. The white area trailing the black and white hatched 
obstacle cross-section is a particle-free region caused by 

a b

Fn 0 N        40 N       80 N structure  MD outline

x

y

particle    structure   MD outline    LMD

Fig. 4  Panel  a shows a schematic representation of particles (blue) 
interacting with an obstacle (hatched black, not to scale) and the MD 
(red dashed outline and shading). The red arrow shows the length 
LMD of the MD extent in the streamwise direction. Panel b shows the 

MD (red dashed outline) extracted from a simulation of an obstacle 
with a rectangular cross-section of w = 3 m. The coloring of the field 
scales with the normal contact force Fn , which we use to define the 
MD (color figure online)
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the detachment of the flow from the obstacle contour. 
The colored plots show the velocity field (upper half of 
plots) and the contact forces (lower half) in the vicinity 
of the obstacle in a horizontal section at mid-flow depth. 
Panels  a–f therefore show that the MD has a distinct 
shape for all three geometries. The size of the MD scales 
approximately proportionately to the width of the obstacle. 
Moreover, in Fig. 6a–f we demonstrate that the extent of 
the zone influenced by the obstacle is mostly consistent 
between the contact forces and the velocity field.

In the panels g–i of Fig. 6, we show how the physical 
parameters �MD and VMD∕LMD of the MD depend on the 
obstacle width w. We use these quantities in Sect. 3.3 to 
estimate the impact pressure on the obstacle in the cohe-
sionless case.

Figure 6g–i shows that the average particle interpenetration 
�MD inside the MD decreases with increasing obstacle width 
w, similarly to the impact pressure in Fig. 5. Because �MD 
reflects the interpenetration of the particles at the micro scale, 
we use it as an indicator of the compression of the material 
inside the MD. �MD ranges from 0.15 to 0.26 for the rectan-
gular and cylindrical obstacles and from 0.15 to 0.21 for the 
triangular obstacle. Hence, similar to px , �MD is mostly high-
est for the rectangular obstacles, followed by the cylindrical 
obstacles, and is lowest for the triangular obstacles.

The volume-to-length ratio VMD∕LMD is a measure of 
the size of the MD and how far upstream the MD extends 
from the obstacle. VMD∕LMD increases almost linearly with 
obstacle width and levels off slightly for the obstacles 
with w ≥ 3 m. For the 6 m-wide cylindrical and triangular 

obstacles VMD∕LMD is considerably lower than the linear 
trend. The deviation from the linear trend may be a conse-
quence of the MD occupying a large portion of the simula-
tion domain for the widest obstacles with w = 6 m.

The question arises as to whether the simulated MD, as 
well as the link between the MD properties and the pressure 
in the last time step is representative of the temporal evolution 
of these quantities during the simulated time. To that end, we 
compare the temporal evolution of VMD∕LMD and �MD with px 
in Fig. 7. Figure 7 shows the data for the examples of obsta-
cles with w = 1 m impacted by cohesionless flows. For these 
plots we select the same time window as used to average the 
impact pressure for the data shown in Fig. 5.

Although all quantities shown in Fig. 7 exhibit tempo-
ral fluctuations, there is a striking similarity between the 
qualitative temporal evolution of �MD (blue curves) in the 
upper plots and the black curves for px in the lower plots. 
VMD∕LMD , which we interpret as a measure of the spatial 
extent of the MD, also shows mostly good agreement with 
px , except in Fig. 7c and f. There the qualitative behavior 
of �MD and VMD∕LMD are almost inverted, indicating—in 
agreement with Fig. 6g–i—that VMD∕LMD probably plays a 
subordinate role in the impact pressure compared with �MD.

3.2  Influence of cohesion on the impact pressure 
and the MD

In this section we investigate the difference between 
the MD in the cohesionless ( �coh = 0.0 kN/m2 ) and the 
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Fig. 5  Panels   a, b and c show the impact pressure on obstacles of 
varying widths w with rectangular, circular and triangular cross-sec-
tions, respectively. The blue and red curves show the impact pressure 
exerted by a cohesionless and a cohesive flow, respectively. The top 
x-axis shows the width of the obstacle relative to the particle diam-

eter w∕dp . The error bars indicate the standard deviation from the 
mean value of the pressure. Panels  d, e and f show the impact pres-
sure ratio of cohesive and cohesionless flows on obstacles of vary-
ing widths w with rectangular, circular and triangular cross-sections, 
respectively
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cohesive ( �coh = 10.0 kN/m2 ) case in order to understand 
the pressure difference observed between the two cases. 
In order to investigate the origin of the impact pressure 
increase due to cohesion, here we consider �MD to reflect 
the material compression inside the MD.

Figure 8a–c shows that the relative interpenetrations 
�MD in the cohesive case decrease for obstacles of increas-
ing width, similarly to the cohesionless case already shown 
in Fig. 6g–i. The difference in �MD between the cohesion-
less and the cohesive case is ∼ 4 times larger for the rec-
tangular and cylindrical obstacles than for the triangular 
obstacles and is larger for narrow obstacles w ≤ 1 m than 
for wider obstacles.

In order to estimate how much more stress is trans-
mitted by the cohesive granular material compared with 
the cohesionless flow, we convert the interpenetration in 
the MD to normal stresses �∗

n
(�∗

MD
) and �n(�MD) based on 

the results of the compression tests in Fig. 3d. The pan-
els d–f in Fig. 8 show the ratio of the normal stresses 
�∗
n
(�∗

MD
)∕�n(�MD) . This ratio reflects the stress level inside 

the MD in the cohesive material relative to the cohesion-
less case. While �∗

n
(�∗

MD
)∕�n(�MD) shows a decreasing ten-

dency for obstacles of increasing width, the mean values 
are 3.5, 3.2 and 2.1 for the rectangular, circular and trian-
gular geometries, respectively.

To test how the relative change in the normal stress in 
the MD between the cohesionless and the cohesive case is 

Fig. 6  Analysis of the velocity field, the contact forces and the MD 
in cohesionless flows around the obstacle. The left, middle and right 
columns show the results for the rectangular, circular and triangular 
cross-sections (hatched areas), respectively. Panels a–c and d–f show 
obstacles with width w = 1 m and w = 3 m, respectively. Panels a–f 

show the velocity field in the upper half and the contact forces in the 
lower half. The region outside the MD is shadowed with a semi-trans-
parent overlay. Panels g–i show the physical properties �MD (filled 
symbols, left y-axis) and VMD∕LMD (open symbols, right y-axis) of 
the MD for different obstacle widths w (color figure online)
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Fig. 7  Comparison between time series of VMD∕LMD (red), �MD (blue) (panels a–c) and px (panels d–f). The first, second and third columns show 
the data for the obstacles with rectangular, circular and triangular cross-sections, respectively (color figure online)
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Fig. 8  Influence of cohesion on the contact network inside the 
MD. The open blue symbols and red filled symbols represent data 
from the cohesionless and cohesive cases, respectively. Data for 
the obstacles with rectangular, circular and triangular cross-sec-
tions are shown in the left, middle and right columns, respectively. 
All panels show how the respective quantities vary with the obsta-
cle width w. Panels a–c show the relative particle interpenetrations 

� . Panels d–f show the ratio of the normal stresses in the cohesive 
and cohesionless case �∗

n
(�∗

MD
)∕�n(�MD) . Panels  g–i show a com-

parison between the simulated impact pressure exerted by the cohe-
sive flow and the pressure estimation calculated from the impact 
pressure in the cohesionless case multiplied by the normal stress 
ratio p∗

x,calc
= px �

∗
n
(�∗

MD
)∕�n(�MD) (open red symbols) (color figure 

online)
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related to the difference in impact pressure, we multiply 
the pressure of the cohesionless case px by the normal 
stress ratio �∗

n
(�∗

MD
)∕�n(�MD) . Hence, we calculate the 

estimated impact pressure p∗
x,calc

 of the cohesive scenario 
according to equation (1).

Figure 8g–i shows the estimated impact pressures p∗
x,calc

 for 
all obstacle geometries. From these panels we observe that 
the stress ratios �∗

n
(�∗

MD
)∕�n(�MD) agree well with the impact 

pressure increase due to cohesion.

3.3  Analytical model to quantitatively link the MD 
properties to the impact pressure

In this section we use the principle of force balance to esti-
mate the impact pressure exerted by cohesionless flows on 
obstacles. To that end, the simulation outcomes (e.g., the 
MD size) are used as inputs to the analytical model. Note 
that for this reason, this model has no predictive capacity. 
The purpose is to highlight the physical link between the 
properties of the MD and the impact pressure.

Similarly to in other studies [16, 17], we divide the impact 
force into a kinetic Fx,k and a gravitational Fx,g contribution. 
Hence, the calculated pressure px is the sum of the two con-
tributions divided by the frontal area Ayz:

The individual contributions are calculated as follows: 

1. Kinetic contribution: 

(1)p∗
x,calc

= px �
∗
n
(�∗

MD
)∕�n(�MD)

(2)px,calc = (Fx,k + Fx,g)∕Ayz = px,k + px,g

(3)Fx,k =
1

2
(v2 − v2

MD
)
mMD

LMD

=
�

2
(v2 − v2

MD
)
VMD

LMD

We calculate the kinetic contribution based on 
the change in kinetic energy of the granular mass 
mMD = �VMD , initially travelling at the free flow velocity 
v, which is decelerated to the mean velocity of the par-
ticles in the MD vMD within the streamwise extent LMD 
of the MD, due to the obstacle’s resistance to the flow.

2. Gravitational contribution: 

The gravitational contribution is calculated as a hydro-
static-like force increasing with the flow depth squared 
[7]. The factor � = �n(�MD)∕�z reflects the stress con-
centration inside the MD due to the densification of the 
contact network �n(�MD) with respect to the hydrostatic 
stress �z = �gh.

Figure 9a–c shows a comparison of the impact pressures calcu-
lated with equations (3) to (4) and the simulated pressures in the 
cohesionless scenario for all obstacle geometries and widths. 
The shaded areas represent the calculated contributions px,g 
(dark shade of blue) and px,k (light shade of blue), respectively. 
The calculated pressure is the sum of the gravitational and the 
kinetic contribution and is shown by the filled blue symbols.

The calculated impact pressure px,calc shown in Fig. 9 
decreases non-linearly for obstacles of increasing width. 
Hence, it agrees well with the qualitative trend of the simu-
lated impact pressure px,DEM . For all cross-sections the cal-
culation overestimates the simulated impact pressure for the 
narrowest ( w = 0.24 m) and widest obstacles ( w = 6 m). 
The impact pressure on the obstacles of intermediate width 
(0.6 m≤ w ≤ 3 m) is slightly underestimated. For the rec-
tangular and the cylindrical obstacles px,calc is lower than 
px,DEM for the narrow obstacles ( w ≤ 1 m), while it is larger 
for the wide obstacles ( w ≥ 3 m). The average relative error 

(4)Fx,g = �
1

2
�gh2w

Fig. 9  The blue symbols in panels a, b and c show the comparison of 
the calculated impact pressure according to equations (2) to (4) with 
the simulated impact pressure of a cohesionless flow on obstacles of 
varying widths w with a rectangular, circular and triangular cross-

sections, respectively. The top x-axis shows the width of the obstacle 
relative to the particle diameter w∕dp . The dark and light blue shaded 
areas represent the calculated gravitational and kinetic contributions, 
respectively (color figure online)
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between the calculated and the simulated impact pressure is 
7% for all cross-sections.

For all calculations px,g contributes 95% and px,k 5 % to 
the total impact pressure px,calc . This highlights that, for the 
present case where Fr = 0.61 , both contributions are present 
and the gravitational contribution is considerably larger than 
the kinetic contribution. While px,k is almost constant for all 
widths and geometries, px,g varies similarly to the simulated 
impact pressure px,DEM.

4  Discussion

4.1  Physical processes governing the flow–obstacle 
interaction and impact pressure for varying 
obstacle geometries

The simulated impact pressure shown in sSect. 3.1 is in 
agreement with previous research showing that the pressure 
on obstacles offering high resistance to the flow is higher 
than for pointed obstacles [18, 31]. In [20], we performed a 
study on the avalanche pressure on a particular geometry of 
an existing instrumented steel pylon [32], and we concluded 
that the size of the MD and the resulting impact pressure 
build-up depends on the obstacle geometry. The evident 
variation in MD size in Fig. 6 and the impact pressure in 
Fig. 5 for the differing obstacle geometries and widths con-
firms this dependency. The linearly increasing trend of the 
MD size parameter VMD∕LMD for obstacles with increasing 
width for w < 6 m is consistent with the result in Fig. 8a in 
[16]. Faug [16] reports that a linear increase of the MD’s 
typical length scale is a robust feature appearing in a num-
ber of experimental and numerical studies on the impact of 
granular flows on obstacles.

Interestingly, we find that the average pressure px on the 
obstacle decreases non-linearly for obstacles of increasing 
width w. This phenomenon is known to occur with creeping 
snow and granular snow avalanches [28, 33]. Studies on the 
relative motion of intruders in dense granular materials at 
low Fr often report the drag force on the intruder. In these 
cases the drag force increases with the size of the intruder 
[10, 30, 34]. However, if the data from these studies is ana-
lyzed with respect to the pressure rather than the force, the 
trend of decreasing impact pressure for increasing intruder 
size is confirmed (Supplementary Material S.6).

A tentative explanation for the decreasing pressure on 
obstacles of increasing width can be given for the obstacles 
with rectangular cross-sections. Figure 4 b demonstrates 
shows that an arch of strong contact forces forms upstream 
of the edge facing the flow, especially for wide obstacles 
w ≳ 1 m with rectangular cross-sections. Hence, the middle 
part of the obstacle is largely sheltered from the impact of 
the incoming flow by the arch. However, this fails to explain 

the decrease in impact pressure on the circular and triangular 
cross-sections of increasing width, because the formation of 
the arch is not evident, e.g. in Fig. 6e–f.

More comprehensively, for varying obstacle widths of 
all cross-sections, the particle interpenetrations in MD 
(Fig. 6g–i) and the impact pressure (Fig. 5) qualitatively 
show a high degree of similarity. This suggests that the 
impact pressure is governed by the compression state of the 
granular material inside the MD. In the MD of the narrow 
obstacles the particles are jammed closer together than in 
the MD of the wider obstacles. From the compression test 
in Fig. 3d we learn that increasing �MD leads to an increased 
stress level in the granular material, resulting in a higher 
pressure on the obstacle. In the absence of rigorous evi-
dence, we speculate that �MD is lower for wide obstacles 
because of the higher shearing of the material, which is 
necessary for the particles to travel around the obstacle. 
This causes higher shear dilation and leads to a looser pack-
ing of the particles in the MD of wide obstacles. This is 
consistent with the finding of Seguin et al. [29], who show 
that although the material inside the MD is almost stagnant, 
zones of high shear and dilation are located in the vicinity 
of the upstream boundary of the obstacle.

As shown in Fig. 6g–i, we identify the varying degrees 
of material compression in the MD �MD as the predominant 
origin of the differing impact pressure on the three geom-
etries. Obstacles offering high resistance to the flow, such as 
the rectangular and circular cross-section in Fig. 6g and h, 
cause the granular material to jam upstream, which leads to 
high �MD . Pointed obstacles, such as the triangular cross-
section in Fig. 6i, tend to deflect the flowing material with-
out causing particle jamming. This leads to lower �MD and 
consequentially to lower impact pressure.

Hence, in our results we can consistently correlate �MD 
to the impact pressure on obstacles of varying geometry 
and width. This provides further evidence supporting the 
assumption of Chehata et al. [8] that the “granular drag must 
result from the compressive stresses acting on the upstream 
stagnation region”.

As shown in Figs. 6, 8 and 9, we are able to show that 
the instantaneous impact pressure and MD properties at 
the last simulation time step correlate for various obstacle 
geometries, for cohesive and cohesionless flows. Figure 7 
confirms for three example simulations that the instantane-
ous impact pressure and MD properties also correlate for 
most points in time in the simulated flow. Hence, as the flow 
characteristics of real avalanches and other gravity-driven 
granular flows evolve over time, we are confident that the 
link between the instantaneous MD properties and impact 
pressure is still valid for subcritical granular dense flows 
interacting with obstacles. When considering applications 
to structural engineering, note that real-world scenarios 
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may deviate substantially from the steady subcritical granu-
lar dense flow considered here. Among other things initial 
impact or large material accumulations upstream of the 
obstacles may critically damage the obstacle.

4.2  Influence of cohesion on the flow–obstacle 
interaction processes

The results displayed in Fig. 5 confirm previous research 
that a cohesive flowing granular material exerts significantly 
more pressure than the same material without cohesion [14, 
20]. Indeed, in a previous study we found a scaling (see 
Supplementary Material S.7) for the pressure increase due 
to cohesion, relating the impact pressure increase to the ratio 
of Fr and the Bond number Bo, where Bo is the cohesive 
strength �coh normalized by the vertical stress inside the 
granular material [20]. When evaluating the scaling for the 
Froude and Bond numbers in the present study, we calcu-
late a pressure increase factor of ∼ 2.3 . Considering that 
the impact pressure increase due to cohesion may vary as a 
result of differing obstacle geometries, this is in the range 
of impact pressure increase factors of 1.7–3.7, as observed 
in Fig. 5.

In Fig. 8a–c, we observe that in the cohesive case the 
particle interpenetration �MD in the MD is larger than in 
the cohesionless case. We assume that a higher �MD arises 
because the cohesive granular material sustains more load-
ing from the upstream flow before rearrangements of the 
force chains within the granular material allow the parti-
cles to flow around the obstacle. On the particle scale the 
force chain rearrangement is inhibited by the cohesive bonds 
connecting the particles. Similarly to the increase in impact 
pressure (Fig. 5) due to cohesion, we also observe a greater 
increase in particle interpenetration �MD for the rectangular 
and cylindrical obstacles than for the triangular obstacle.

Using �MD and the compression tests (Fig. 3d), we cal-
culate the ratio of the stress inside the granular material in 
the cohesive and cohesionless cases (Fig. 8d–f). Based on 
the analysis of the cohesionless flows (Sect. 4.1), we suspect 
that the pressure increase due to cohesion also originates 
from the jammed material state inside the MD. Hence, mul-
tiplying this ratio by the impact pressure of the cohesionless 
scenario according to equation (1) gives us an estimate of 
the impact pressure increase due to cohesion. A compari-
son between the simulated impact pressure p∗

x
 and p∗

x,calc
 in 

Fig. 8g–i shows that the factor �∗
n
(�∗

MD
)∕�n(�MD) mostly 

reproduces the pressure increase due to cohesion for most 
of the obstacles of differing widths and geometries. The 
small deviations between the simulated and the estimated 
cohesive impact pressure may be caused by secondary pro-
cesses which do not scale proportionally with the width of 
the obstacle, such as the arch formation for the rectangular 
obstacles mentioned in Sect. 4.

Nevertheless, the good agreement between p∗
x
 and p∗

x,calc
 

indicates that the pressure increase is a direct consequence 
of the enhanced stress transmission between cohesive parti-
cles compared with cohesionless particles.

The fact that �∗
n
(�∗

MD
)∕�n(�MD) varies for the different 

geometries highlights that the pressure increase due to cohe-
sion depends not only on cohesion itself, but also on the 
obstacle geometry. We conclude that, the force transmission 
through the cohesive force chains is more efficient if the 
cohesion increases and, similar to the cohesionless case, if 
the flow impacts the obstacle surface at a right angle.

4.3  Analytical model to quantitatively link the MD 
properties to the impact pressure

In order to establish a quantitative link between the MD 
and the impact pressure, we estimate the pressure based 
on the MD properties using an analytical model. Because 
estimating the MD properties is no less complex than deter-
mining the impact pressure itself, the model is descriptive 
rather than predictive. We model the impact pressure in the 
cohesionless case as the sum of a kinetic and a gravitational 
contribution, as suggested by previous studies [16, 17]. The 
results of Sect. 3.3 show that the pressure estimated with the 
two contributions (equations (2) to (4)) mostly reproduces 
the simulated impact pressure of the cohesionless scenario. 
The average relative error of the calculated pressure is 7% 
compared with the simulated pressure px,DEM . Hence, the 
qualitative agreement of the calculated and the simulated 
impact pressure highlights again that the geometrical prop-
erties of the MD and the physical material properties within 
the domain govern the pressure on the obstacle. Further-
more, the agreement also indicates that a model consid-
ering a kinetic Fx,k and a gravitational Fx,g contribution is 
able to capture the main physical processes involved in the 
flow–obstacle interaction.

In literature the kinetic contribution Fx,k of the drag 
force is often calculated using the empirical drag coeffi-
cient CD . Previous studies suggest that CD can be divided 
into a flow regime and a part that is dependent on structure 
geometry [18, 35, 36]. In equation (3) it is the material’s 
deceleration v2 − v2

MD
 that accounts for the influence of 

geometry. For example, due to its shape with the wedge 
facing the flow, the flowing material is more deflected 
than decelerated in the case of the triangular obstacle 
compared with e.g. the rectangular cross-sections. This 
leads to a smaller velocity difference v2 − v2

MD
 for the tri-

angular cross-section. This trend is analogous to the CD 
values usually reported in the literature, which are higher 
for the rectangular cross-section than for the triangular 
cross-section [37, 38].
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The ratio of the MD volume and length, VMD∕LMD , has 
the dimensions of an area and accounts for the size and the 
shape of the MD. In [20] we show that the shape and size 
of the MD is mainly controlled by Fr. Hence, we interpret 
the factor VMD∕LMD as the part of the drag coefficient that 
is dependent on the flow regime.

For the gravitational Fx,g contribution, in their seminal 
article Albert et al. [7] introduce a proportionality factor 
that accounts for the particle properties. In equation (4) we 
define an analogous factor � . In our formulation, however, 
the factor is defined as the ratio of the normal contact 
stresses derived from the particle interpenetration �n(�MD) 
and the theoretical hydrostatic stress �z . � therefore con-
siders the compressive behavior of the material inside the 
MD, which governs the impact pressure due to build-up 
of the MD.

In our flow scenario with Fr = 0.61 , we find that the 
calculated pressure is composed of 95 % gravitational and 
5 % kinetic contributions. This agrees with the observa-
tion of Faug [16] that for a wide range of Froude num-
bers, 0.1 ≲ Fr ≲ 10 , both the kinetic and the gravitational 
contribution of the impact pressure are present. At low 
velocities the dominance of the gravitational pressure 
contribution is probably responsible for the fact that the 
pressure is often observed to be independent of the veloc-
ity in this range of low Fr [2, 7]. The kinetic contribution 
increases quadratically with increasing speed and conse-
quentially outweighs the gravitational contribution only at 
higher velocities. When Fr becomes supercritical, the MD 
changes substantially from the rounded shapes in Fig. 6 to 
a bow shock [20, 39, 40]. Hence, it is not clear whether the 
interaction processes and the analytical model presented 
in this study still hold in the supercritical regime. Similar 
to what is observed in real experiments, the impact pres-
sure contributions in DEM simulations cannot be identi-
fied individually. Simulations with higher flow velocities, 
where the kinetic contribution is dominant, could help to 
determine whether the kinetic contribution is adequately 
accounted for in our model.

Figure  9 shows that the calculated impact pressure 
px,calc overestimates the simulated impact pressure of the 
obstacles with w = 0.24 m and w = 6 m, while the pressure 
on the obstacles of intermediate width 0.6 m ≤ w ≤ 3 m is 
underestimated. This difference probably arises because 
of the varying proportion between the size of the whole 
simulation domain and the area occupied by the obstacle. 
Although we only consider a fraction of the domain for 
the MD threshold calculation, to keep the ratio between 
the considered domain size and varying obstacle sizes 
constant (Supplementary Material S.4), the error persists. 
The error could probably be reduced more efficiently by 
increasing the size of the simulation domain, which is 

currently not possible with the computational resources 
available.

4.4  Limitations

Although we are able to find good agreement between the 
simulated and the estimated pressure using the MD prop-
erties, we identify three main limitations of the present 
analysis.

First, as described in Sect. 2.5, we use a percentile thresh-
old of the normal contact forces to identify the MD, which 
is the basis for our results. We perform a sensitivity analysis 
(Supplementary Material S.4) and show that our results do 
not crucially depend on the threshold value within the range 
of the 70th to 90th percentile. Nevertheless, the deviations 
between the simulated and calculated impact pressure, as 
well as the deviation from the linear trend of VMD∕LMD for 
w = 6 m in Fig. 6g–i show the limitations of our approach, 
as the MD identification is delicate. Hence, in the future it 
would be preferable to establish a threshold based on the 
physical properties of the material surrounding the MD to 
distinguish the MD from the rest of the flow domain. In 
order to achieve this, various variables can be considered 
potential candidates for identifying the MD or may be linked 
to the impact pressure, such as shear force, shear rate, bulk 
density, coordination number, velocity [8, 18], and stress 
anisotropy [41]. After testing a number of variables, we con-
clude that, among these variables, � allows us to make the 
most comprehensive analysis.

Second, the computational resources needed for the DEM 
simulations are considerable. We cut computational costs 
by only simulating an isolated volume of granular material 
interacting with the obstacle for a relatively short period of 
a few seconds (Sect. 2.1). This implies that: (1) we neglect 
small perturbations in the far-field and only consider strong 
disturbances in the flow close to the obstacle, and (2) we 
work on mesoscopic timescales, which are longer than the 
time of readjustment of particle network, but potentially 
shorter than the time of evolution of the granular avalanche. 
The time scales of the granular flow vary because real geo-
physical flows vary in size and are highly non-stationary 
processes, where often the flow height, flow velocity, the 
material composition etc, changes before a steady-state is 
reached. Hence, while at the mesoscopic timescales of our 
simulations we can neglect acceleration terms in the force 
balance because the flow is almost in a steady state, this does 
not imply that the whole flow has reached a steady state. The 
simulations show that the MD of wide obstacles in cohesive 
flows takes longer to establish compared with the MD of 
narrow obstacles in cohesionless flows. Hence, in the case 
of narrow obstacles with w ≤ 1 m, we are confident that a 
steady state impact force is reached within our simulations. 
For the interaction of wide obstacles and cohesive flows, 
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even longer simulations are needed to confirm that the pres-
sure does not change significantly anymore. Therefore, the 
pressure difference between the narrow and wide obstacles 
may be slightly overestimated here. However, the trend of 
decreasing average impact pressure on obstacles of increas-
ing width has also been found in other studies (Supplemen-
tary Material S.6) and is therefore not an artefact of our 
numerical procedure. Moreover, in Sect. 3.3 we estimate the 
impact pressure based on the instantaneous MD properties 
and compare it to the impact pressure at the same time step. 
Hence, even when a steady state is not reached, the good 
agreement of the estimated and simulated pressure in the 
last simulation time step in Fig. 9 highlights once more how 
crucially the impact pressure is linked to the instantaneous 
physical properties of the MD.

Third, in the present analysis we simulate a granular 
material consisting of soft grains by using a low particle 
Young’s modulus E. Using a low E allows for large par-
ticle compression and thereby makes it possible to mimic 
the characteristics of snow aggregates in avalanches. The 
relevance of the model parameters and contact properties, 
such as the particle Young’s modulus E, have to be reviewed 
carefully when considering different granular materials or 
applications.

In snow avalanches the characteristics of the aggregates 
are assumed to depend on changing snow quality and inter-
actions between aggregates leading to fracturing or fur-
ther aggregation (e.g., [26, 42]). This may suggest that the 
Young’s modulus of the aggregates strongly depends on the 
snow type. However, in the absence of rigorous measure-
ments of the aggregates’ mechanical properties in flowing 
avalanches, we chose a value of E = 105 Pa, which is at the 
lower range of measured values for snow. Using this fixed 
value for E, we calibrated the other model parameters and 
successfully validated the model [20]. Moreover, in the Sup-
plementary Material S.2, we present a detailed analysis of 
how varying E influences the results of our study. It is noted 
in particular that the choice of the elastic modulus has very 
little influence on the impact pressure, which further sup-
ports our choice.

5  Conclusions

In this study, we demonstrate that the non-linear decrease 
in the impact pressure on obstacles of increasing width is 
linked to the compression of the granular material consist-
ing of soft particles. Our results indicate that the particle 
interpenetration �MD inside the MD decreases in a similar 
fashion as the impact pressure on obstacles for increasing w. 
Furthermore, we show that the stress ratio of the cohesive to 
the cohesionless case �∗

n
(�MD)∕�n(�MD) agrees well with the 

increase in the average impact pressure due to cohesion for 

different obstacle geometries. Hence, we identify two main 
mechanisms causing the pressure increase due to cohesion. 
First, the particle interpenetration �MD and thus the material 
compression in the MD is higher than in the cohesionless 
case, probably because the cohesive bonds inhibit the rear-
rangement of force chains and thus the particle flow around 
the obstacle. Second, the force transmission between the 
particles is higher than in the cohesionless case because the 
particles are connected more rigidly through the cohesive 
bond (Fig. 3). The analysis also shows that further processes 
might be present but play a subordinate role to the two pro-
cesses mentioned above.

Finally, we estimate the impact pressure in the cohe-
sionless case based on the MD properties and considering 
a kinetic and a gravitational contribution. The agreement 
of the calculated and the simulated impact pressure values 
provides a further indication that the MD fundamentally 
governs the pressure on the obstacle [8, 16].

By calculating the pressure of a cohesionless and cohe-
sive granular flow impacting an obstacle using the physi-
cal properties of the MD, we show that the impact pressure 
exerted by a subcritical flow on an obstacle is quantitatively 
linked to the physical properties of the MD. The calculations 
highlight that the jamming and compression of the material 
inside the MD govern the pressure build-up on the obstacle.

We identify limitations of our model linked to the com-
putational cost of the simulations and the MD identification. 
Nonetheless, in the future the presented method could help 
to estimate impact pressures on obstacles based on the jam-
ming of the granular material predicted for specific geom-
etries and using compression tests.
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