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ABSTRACT: The avalanche-dynamics approach has a long history in avalanche prediction. In the ab-
sence of computers, scientists and engineers focused on idealized models in which avalanches were 
seen as rigid sliding blocks. Although the resulting governing equation was very simple, the use of 
empirical rules made the model outcomes quite realistic, the errors being counterbalanced by common 
sense and experience of practitioners. To improve the earliest models, scientists explored two com-
plementary paths. The first was to provide a more physical framework for avalanches. In the 1960s, 
Bruno Salm suggested that flowing snow can be regarded as a continuum, an idea which has encoun-
tered great success, but which, at that time, faced considerable computational difficulties. A second 
path was the development of analytical and numerical models to solve the governing equations of con-
tinuum models. In the 1970s, French and Soviet scientists played a key role in the development of the 
Saint-Venant models for flowing avalanches. Since the 1990s, these models have been made availa-
ble worldwide. 
Paradoxically, the substantial increase in model complexity can lead us to lose sight of the empirical 
nature of the assumptions used to build the models. Human expertise should still be of paramount im-
portance when evaluating the relevance of numerical outputs. In 2004, Salm sounded an alarm, stat-
ing that excessive confidence was placed in the accuracy of model outputs. The problem of predicta-
bility and accuracy of models used for environmental purposes has attracted growing attention in re-
cent years, but the debate seems an endless story as it is extremely difficult to determine the source 
of errors and remove them. 
In this talk, I will present the conclusions of experimental campaigns conducted in the laboratory to 
study avalanches of fluid. In this setting, an avalanche of fluid results from the sudden release of a 
fixed volume of fluid down a sloping bed. Both fluid properties and flow geometry are imposed. Using 
high-resolution flow-visualization techniques, we are also able to monitor the internal evolution of the 
avalanche from release to runout. The experimental data can then be compared with models of vary-
ing complexity.  
For Newtonian fluids (i.e., fluids whose rheological behavior is linear), we have found that the model 
accuracy increases with its degree of complexity. Surprisingly, for viscoplastic fluids (non-linear rheol-
ogy), simple models perform much better than sophisticated models (such as the Saint-Venant equa-
tions). Our conclusions do not differ from the lessons learnt in other fields, such as atmospheric sci-
ences, in which small nonlinearities in the governing equations are known to produce large errors, 
which accumulate to give false predictions. 
There is no feasible reason why governing equations such as the Saint-Venant equations, which are 
unable to provide accurate predictions in well-controlled experiments should miraculously outperform 
other methods when applied to complex natural phenomena such as snow avalanches. Such models 
are certainly valuable in avalanche expertise as they provide a precise conceptual framework that link 
physical processes to universal principles such as conservation of mass and momentum. But, in 
agreement with Salm’s warning, our experiments show that the returns from using sophisticated mod-
els may be minimal or diminishing unless we take notice of the errors and biases introduced by these 
models. 
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1 INTRODUCTION 

Natural flows such as torrential floods, de-
bris flows, and snow avalanches are a major 
threat to human activities in the Alps. Today, 
most safe terrains are settled and to host new 
populations and equipment, local authorities 
have to urbanize areas, which are exposed to 

natural hazards to a varying degree. At the 
same time, the Alps start to experience the ef-
fects of global warning, which are more pro-
nounced and spectacular than in the rest of con-
tinental Europe. 

Scientific expertise is of paramount im-
portance to face these new challenges. The last 
century saw the emergence of: (i) qualitative 
descriptions of how natural flows occur in Alpine 
settings, (ii) statistical tools, (iii) simple fluid-
mechanics models that make it possible to com-
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pute the salient flow features. The earliest ava-
lanche-dynamics model date back to the 1920s, 
with the sliding block model developed by 
Mougin. The Voellmy-based sliding block model 
has formed a simple, but consistent framework 
that has been extensively used by scientists and 
engineers for several decades (Salm, 2004). 
Current models are usually based on depth-
averaged (Saint-Venant) equations of mass and 
momentum conservation equations. As regards 
snow avalanches, we can trace the Saint-
Venant approach to the 1960s with the work 
done by Salm (1966) and Soviet researchers 
(Bozhinskiy and Losev, 1998), but it was not 
until the late 1980s that special numerical meth-
ods made it possible to solve the governing 
equations (Brugnot and Pochat, 1981; Vila, 
1986). With the advent of personal computers 
and improvement of numerical, academic ava-
lanche-dynamics codes have been increasingly 
used in France and Italy for solving engineering 
problems (Ancey, 1994; Barbolini et al., 2000). 
As these codes have opened new directions for 
more realistic predictions, commercial ava-
lanche-dynamics codes such as RAMMS and 
ELBA+ have been made available in the 2000s 
(Rudolf-Miklau and Sauermoser, 2011) and en-
counter considerable success even though their 
use must be framed and the range of applicabil-
ity is limited (Jamieson et al., 2008). 

Yet, our physical understanding and thereby 
the predictive power of models remain quite 
poor. The reasons are various. In part, even 
when vigorously debated, most theories are 
speculative and for lack of experimental and 
field data, little consensus has been reached, 
especially for some hot topics such as the rhe-
ology of snow. This explains why the gain in ac-
curacy for land management and engineering 
applications appears much more limited than 
believed, as pointed out by the Swiss avalanche 
expert Bruno Salm (2004): “An increase of com-
plexity of models does not necessarily mean an 
increase of accuracy or a better hazard mitiga-
tion strategy.” Indeed, a number of problems 
(such as model calibration and values of input 
parameters) that already existed in the earliest 
generation of models have not been fixed and 
persist, often hidden by the level of complexity 
of current models, but sometimes exacerbated 
by the growing differences between variants of 
the same original model. In many models, the 
rheological parameters could not be measured 
and were thus adjusted on field data. There is 
clear evidence that these parameters are more 
conceptual than physical in that they do not rep-
resent a physical process, but amalgamate 
many different physical processes (Meunier et 
al., 2004). There is still a vivid debate about the 
rheological law to be used in the depth-

averaged equations. For instance, a number of 
models use a Coulomb or a Voellmy empirical 
law to model bed resistance and internal energy 
dissipation, which amounts to positing that the 
rheological behavior can be described using a 
simple, single-valued expression of the bottom 
shear stress as a function of the depth-averaged 
velocity and flow depth (Ancey, 2012a). 

Over the last 20 years, I have been a partic-
ular witness of the development of avalanche-
dynamics models. Following Daniel Stokes’ 
classification (Dudley, 2013), I am a member of 
Pasteur’s quadrant, i.e. by doing consulting (av-
alanches) and working in basic science (flows 
out of equilibrium), I have one foot in applica-
tions and the other in pure sciences. As science 
and engineering go increasingly specialized, 
working in both of these fields leads to an un-
comfortable position, which attracts neither peo-
ple nor recognition. However, this is the right 
place to bring into the consciousness of the 
general public the added-value as well as the 
obvious but often neglected limitations of the 
fluid-mechanics approach. The fact that models 
are limited to some degree is not really new, and 
recent conferences are rife with critical assess-
ments of their merits and shortcomings (Ja-
mieson et al., 2008; Gauer et al., 2010). Since 
the very beginning of practice-oriented models, 
the practitioners have been warned against 
computational delusion. As hammered by ava-
lanche expert such as André Roch (1980) and 
André Burkard (1992), avalanches are not suit-
able for exact calculations. Unfortunately, there 
is some ground for concern as in recent years a 
new generation of practitioners has arrived on 
the market. For lack of experience, they find se-
curity in models that seem absolute to them and 
that protect them from all contradiction. They are 
infatuated with science-looking techniques, and 
pathologically underestimate, or forget, that all 
model simplifies reality. This is a general trend 
that concerns all natural hazards, e.g. floods 
(Goutx and Narcy, 2013). A recent report issued 
by the French central administration recom-
mends the systematic use of numerical models 
to increase accuracy and objectivity of ava-
lanche maps (Le Gallou and Guignard, 2011), 
illustrating that at the highest level of national 
authorities, model outcomes are taken at face 
values, whereas they should be seen as parts 
and parcels of a wider process of risk analysis, 
in which historical evidence and hands-on 
knowledge are essential. 

To cut to the heart of the matter, I will tackle 
the difficult issue of uncertainties and accuracy 
in numerical modelling of avalanches in the la-
boratory, an environment in which we have the 
priceless luxury to control and measure almost 
all parameters ranging from the rheological 
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properties to slope inclination. Modern visualiza-
tion techniques allow us to track the front of the 
avalanche and probe the velocities within the 
leading edge and body without disturbing the 
flow. In this paper, I have picked up some of our 
recent results to illustrate why numerical models 
may fail to provide the right solution (Ancey et 
al., 2009a, b; Ancey et al. 2012b; 2013a, b; An-
dreini et al., 2012). 

2 EXPERIMENTAL FACILITY 

Experiments were conducted in a PMMA-
bottomed flume with aluminium sidewalls. Figure 
1 shows a sketch of the facility. The flume was 
3.5 m long and 10 cm wide. It could be inclined 
from 0° to 35°. The upper part of flume was 
equipped with a sluice gate mounted on a 
pneumatic jack and was used as a reservoir.  

 
Figure 1. Flume used for the experiments. We defined 
a two-dimensional Cartesian coordinate system in 
which the x-axis points down the flume, the y-axis is 
in the direction of the upward pointing normal, and the 
z-axis is the cross-stream direction. 

 
We took the following measurements: (i) the 

velocity profile throughout the experiment at x = 
255 cm in a vertical plane Oxy passing through 
the centerline of the flume (z = 5 cm) and normal 
to the flume bottom, (ii) the position of the front 
as a function of time, and (iii) the flow depth evo-
lution at x = 255 cm. To that end, we used a du-
al head, diode pumped, Q-switched Nd:YLF La-
ser (Litron LDY 303). The laser emitted a 527-
nm beam (green) exciting fluorescent particles. 
Velocities were measured using high-speed 
cameras and particle image velocimetry (PIV) 
techniques. For PIV measurements, we used a 
Basler A504k camera (working in the 200–1000 
Hz range), mounted with a Nikkor 105 mm mac-
ro lens and an orange filter. The images were 
then processed using classic PIV techniques. 
Velocity fields were computed using the open 
source software, MatPIV. The front position was 
monitored using two Basler A403kc cameras. 

 

3 MATERIALS 

Different fluids were used a substitute of 
snow in the laboratory: high-viscosity Newtonian 
liquids, viscoplastic gels, and neutrally buoyant 
particle suspensions. I do not claim that these 
industrial products mimicked snow in some way 
or that our experiments were in full or partial 
similarity with real snow avalanches, but the on-
ly way to make progress in our understanding of 
avalanches is by simplifying the picture of the 
real system to the point of absurdity.  

As Newtonian fluids, we used 98.5% glycer-
ol solutions (density ρ = 1260 kg m-3, dynamic 
viscosity μ = 1.11 Pa s at a temperature of 
20 °C). 

As viscoplastic fluids, we used Carbopol ul-
trez 10 at a mass concentration of 0.15%. Given 
the low concentration in Carbopol, the density 
was that of water: ρ = 1000 kg m-3. The pH was 
adjusted to 7.70 ± 0.5 by adding a sodium hy-
droxide solution. We measured the rheological 
properties using a parallel plate geometry (with 
serrated plates, diameter 60 mm and gap 2 mm) 
mounted on a Bohlin CVOR rheometer. Serrat-
ed surfaces were needed to avoid/limit wall slip. 
A Herschel-Bulkley model was fitted on the data. 
On average, we had: yield stress σc = 33 Pa, 
shear-thinning index n = 0.33, and consistency 
index κ = 26 Pa sn. The relative uncertainty on 
these parameters ranged from 6% to 15%. Addi-
tional tests showed that Carbopol ultrez 10 was 
negligibly viscoelastic and thixotropic. 

All of our fluids were seeded with polyamide 
particles for particle imaging velocimetry. The 
particles were marked with rhodamine by leav-
ing them in a concentrated rhodamine solution. 
For particle suspensions, please refer to our 
recent papers (Ancey et al., 2013a, b; Andreini 
2013). 

4 MODELS 

We investigated the dam-break problem for 
Newtonian and viscoplastic fluids: a fixed vol-
ume of a fluid was released and flowed down an 
inclined flume (see Fig. 1). Using Particle Image 
Velocimetry techniques, we measured the veloc-
ity profiles far from the sidewalls, the front posi-
tion as a function of time, and the flow depth 
evolution at a given place. The experimental 
data were compared to three models of increas-
ing complexity: the kinematic wave model, an 
advection diffusion model (lubrication theory), 
and the one-layer Saint-Venant equations. 

3.1 Kinematic wave model 

The kinematic wave approximation is a 
common approach to describing slightly nonuni-
form flow for which the depth-averaged velocity 
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adapts instantaneously to any change in the 
flow depth. Surprisingly, the approximation is 
sufficiently robust to provide fairly good results 
for strong time-dependent flows such as dam-
break waves for turbulent water flows and lami-
nar Newtonian flows (Hunt, 1994; Ancey, 
2009b). For this reason, it has been used to 
model dam-break waves for Bingham and Her-
schel-Bulkley fluids (Huang and García, 1998). 
In the framework of the kinematic wave approx-
imation, the flow is assumed to be locally uni-
form. The variations in the depth-averaged ve-
locity are then dictated by the flow depth alone: 
തݑ ൌ  തሺ݄ሻ.The bulk mass balanceݑ

డ

డ௧


డ௨ഥ

డ௫
ൌ 0    (1) 

provides the governing equation for ݄. The 
depth averaged velocity is 

തݑ ൌ 	


ሺାଵሻሺଶାଵሻ

ሺଵାሻା
 ܻ

ଵାଵ/  (2) 

with the parameters 

ܣ ൌ ቀ
ఘ ୱ୧୬ఏ


ቁ
ଵ/

, ݄ ൌ
ఙ

ఘ ୱ୧୬ఏ
, ܻ ൌ ݄ െ ݄. (3) 

For Newtonian fluids, ݊ ൌ 1, ݄ ൌ 0, ܻ ൌ 0, ߢ ൌ  .ߤ
The nonlinear advection equation (1) can be 
solved easily using the method of characteris-
tics. For the Newtonian case, linearity makes it 
possible to find an explicit solution, but for Her-
schel-Bulkley fluids, the final solution is implicit. 

A shortcoming of the kinematic wave approx-
imation lies in the front behavior. The key as-
sumption that underpins the derivation of the 
governing equation (1) is that for the bulk of the 
flow, the depth varies uniformly and slowly so 
that inertia and pressure gradient terms can be 
neglected in the momentum balance equation 
(the gravitational forces are then counterbal-
anced by the shear-stress gradient). This as-
sumption should break down in the tip region. 
Indeed the flow depth drops to zero at the front 
and therefore, the pressure gradient can no 
longer be neglected in the momentum balance 
equation. It can be shown that a boundary layer 
correction at the front can fix this issue, but at 
the cost of more complicated calculations 
(Ancey et al., 2009a, b). As this correction goes 
beyond the scope of the present paper, I will not 
use it. 

Figure 2 and 3 show the evolution of the front 
position ݔሺݐሻ and the time variations in the flow 
depth cm for Carbopol and inclination ߠ ൌ
25°.	Both experimental and theoretical results 
have been reported. There was excellent 
agreement between theory and experiment for 
this slope. The main difference concerned the 
shape of the ݄ሺݔ, -ሻ curves: since theory preݐ
dicted that the front was a shock wave while the 
body was a rarefaction wave, there was a sud-
den increase of the flow depth followed by a 
slow decrease. Experimentally, the passage of 
the front was smoother; in particular, there was 

no kink point at the front (this slight shortcoming 
can be remedied by using the boundary layer 
correction mentioned above). Another difference 
was the front behavior at short times (t < 1 s), 
but since the assumptions underpinning the kin-
ematic wave approximation (shallow flow close 
to a steady uniform flow) were violated, this 
shortcoming could be anticipated. 

 

 
Figure 2. Front position as a function of time for a 6-
liter volume of Carbopol, flume inclination ߠ ൌ 25°. 
Comparison between analytical solution to (1) 
(dashed line) and experiments (solid line). 
 

 
Figure 3. Flow depth profile for a 6-liter volume of 
Carbopol, flume inclination ߠ ൌ 25°. Comparison be-
tween analytical solution to (1) (dashed line) and ex-
periments (solid line). 
 

For Newtonian fluids, comparison between 
theory and experiment is even better. I refer the 
reader to our papers for further information. 

3.2 Advection diffusion model 

One can elaborate on the kinematic wave 
model by considering that in elongating flows, 
the depth averaged velocity should depend on 
the free-surface gradient. The following govern-
ing equation is obtained for h 
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ሺ݄ሻܨ ൌ nK ቀtan θ െ
డ

డ௫
ቁ
ሺଵାሻା
ሺଶାଵሻሺାଵሻ

, (5) 

ܭ ൌ ቀ
ఘୡ୭ୱఏ


ቁ
ଵ/

,   (6) 

ܻ ൌ max ൬0, ݄ െ ݄ 	ቚ1 െ cos θ	
డ

డ௫
ቚ
ିଵ
൰. (7) 

As far as I am aware, this equation was first 
obtained by Liu and Mei (1990) for Bingham flu-
ids, then used and/or extended to Herschel-
Bulkley fluids and three-dimensional problems. 
When the dependence on the free-surface gra-
dient is taken into account, a diffusive term ap-
pears in the governing equation, which is likely 
to play a key role in regions with a marked cur-
vature of the free surface (e.g., the head). 

There is no analytical method available to 
solve, even approximately, this parabolic partial 
differential equation. There are a few solvers 
available, which are well-suited to computing 
numerical solutions to parabolic-elliptic equa-
tions in one space variable. We used the Matlab 
built-in routine called pdepe. 

Figures 4 and 5 show the front position over 
time and the evolution in the flow depth for Car-
bopol at an inclination of 25°. Surprisingly, this 
model, which was more sophisticated than the 
kinematic wave model seen above, provided 
less satisfactory results. In particular the differ-
ence between the theoretical and experimental 
front position was increased. Note that the long-
term trend was preserved, which shows that the 
deviation mainly resulted from the short-time 
behavior of the numerical solution. In short, the 
model overestimated initial acceleration. Figure 
6 shows the measured profiles and theoretical 
velocity profiles for a flume inclination of 25°. 
Each subplot corresponds to a different time, but 
rather than providing the time at which the ve-
locity measurements were taken, I gave the po-
sition of the front relative the point of measure-
ment. The flow was from left to right. As detailed 
below, there was clearly a difference between 
the velocity field within the head (|Δݔ| ൏ 3	cm) 
and the velocity field within the body |Δݔ| 
3	cm). When the front was far away from the 
point of measurement at x = 255 cm, i.e. when 
the distance to the front was large Δݔ ൏ െ73.2 
mm, there was good agreement between the 
theoretical velocity profile (for nonuniform flow 
conditions) and the experimental data. In con-
trast, close to the front (Δݔ  െ32.8 mm), this 
agreement became poorer and poorer: the theo-
retical velocities were significantly higher than 
those observed. The discrepancy near the con-
tact line was expected since the theoretical pro-
file was derived for flow conditions slightly de-
parted from the steady uniform regime; within 

the tip region, the assumption of slightly nonuni-
form should break down because of the curva-
ture of the surface. Another interesting feature 
was the existence of a pseudo-plug far from the 
front whereas the leading edge was entirely 
sheared across the depth. From a quantitative 
viewpoint, however, the discrepancy between 
theoretical and experimental velocity profiles 
may indicate that the flow conditions within the 
head could not be described within the frame-
work of lubrication theory and/or the rheological 
behavior could not be fully captured by the Her-
schel-Bulkley equation. 

In contrast, Fig. 7 reveals that lubrication 
theory performs with Newtonian liquids. This 
shows that the discrepancy between theory and 
experiments results mainly from the nonlineari-
ties in the constitutive equation. 

 
Figure 4. Front position as a function of time for a 6-
liter volume of Carbopol, flume inclination ߠ ൌ 25°. 
Comparison between analytical solution to (4) 
(dashed line) and experiments (solid line). 

 
 

 
Figure 5. Flow depth profile for a 6-liter volume of 
Carbopol, flume inclination ߠ ൌ 25°. Comparison be-
tween analytical solution (dashed line) and experi-
ments (solid line). 
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Figure 6. Velocity profiles for Carbopol at ߠ ൌ 25° and an initial volume of 6 liters. Dots: experimental values; (red) 
curves: theoretical. I also report the distance ∆ݔ	between the front position and the point of measurement 
ݔ ൌ 255 cm together with the time at which the data were recorded (∆ݔ ൏ 0 because the front is on the right of 
the point of measurement) together with the time at which the profile was measured.  
 

 
Figure 7. Velocity profiles for (Newtonian) glycerol solutions. Dots: experimental values; (red) curves: theoretical 
profiles. We also report the distance ∆ݔ	between the front position and the point of measurement ݔ ൌ 255 cm 
together with the time at which the data were recorded. 

 

3.3 Depth-averaged model 

The next step in our analysis of model per-
formance is to consider that the depth-averaged 
velocity is not related to the flow depth through 
closed-form relations, but must be computed by 
solving the momentum balance equation. To 
that end, I will use the conservative form of the 
Saint-Venant equations 

డ

డ௧


డ௨ഥ

డ௫
ൌ 0    (8) 

డ௨ഥ

డ௧


డ௨ഥమ

డ௫
 ݄݃ cos ߠ ൌ ݄݃ sin ߠ െ

ఛ್
ఘ

 (9) 

where ߬ is the bottom shear stress. Equations 
(8) and (9) are hyperbolic partial differential 
equations that call for special numerical meth-
ods. A high-resolution wave-propagation algo-
rithm developed by LeVeque (2002) was used. 
This algorithm is a Godunov-type scheme that 

employs the solution to local Riemann problems. 
It is part of an open-source library called 
CLAWPACK. More specifically, I used an approx-
imate Riemann solver developed by David 
George (2008), which provides a well-balanced 
scheme that preserves balanced steady states, 
properly captures shock waves and fronts over 
dry surfaces, and maintains depth non-
negativity. The source term in the momentum 
balance equation includes two contributions: the 
gravitational acceleration forces (also referred to 
as the topography source term) and a dissipa-
tion term. The augmented Riemann solver in-
corporates topography into the momentum flux 
on the left-hand side of (9). The remaining 
source term is then the dissipative contribution 
߬/߷.	I used a fractional-step approach, with a 
backwards Euler scheme, to deal with this 
source term. Comparison with similarity solu-
tions to the viscous dam break problem also 
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shows that this model performs well with New-
tonian fluids and available analytical solutions 

As previously, I have plotted the front posi-
tion and depth evolution (see Figs. 8 and 9). A 
striking feature is the lack of concordance with 
experimental data. For both slopes, the numeri-
cal model overestimated the front position and 
contrary to the advection diffusion model, the 
theoretical ݔሺݐሻ curve was not parallel to the 
experimental curve at long times, which means 
that the model failed to find the pseudo-
equilibrium regime reached by the flow. Striking-
ly, the kinematic wave model, which can be 
seen as a simplification of the Saint-Venant 
equations when the assumption of near-
equilibrium flow is made, was able to provide the 
correct trend for ݔሺݐሻ at any time. The one-layer 
Saint-Venant model was also unable to provide 
accurate predictions for the depth evolution 
(even though the order of magnitude was cor-
rect). 

 
Figure 8. Front position as a function of time for a 6-
liter volume of Carbopol, flume inclination ߠ ൌ 25°. 
Comparison between analytical solution to (8-9) 
(dashed line) and experiments (solid line). 
 
 

 
Figure 9. Flow depth profile for a 6-liter volume of 
Carbopol, flume inclination ߠ ൌ 25°. Comparison be-
tween analytical solution to (8-9) (dashed line) and 
experiments (solid line). 

4  CONCLUDING REMARKS 

Strikingly, the best agreement with data was 
obtained with the simplest model: the kinematic 
wave model, which consists of a nonlinear ad-
vection equation. This model performed well for 
predicting the front position at steep slopes, but 
as it was slightly less efficient for predicting the 
depth evolution in the tip region (the front was 
indeed merely a shock wave). At longer times, 
the model gave satisfactory predictions of depth 
evolution. In an earlier paper (Ancey et al., 
2009b) in which experimental data obtained with 
more concentrated Carbopol gels and a wider 
flume (30 cm instead of 10 cm) were presented, 
we came to similar conclusions about the good 
performance of the kinematic wave model. 

In contrast, the results provided by the Saint-
Venant equations were in poor concordance 
with experimental data. This was quite astonish-
ing since, firstly, the kinematic wave model re-
sults from a simplification of the Saint-Venant 
equations and, secondly, this model is of greater 
complexity and generality. Taking a closer look 
at the front position curves reveals that the 
Saint-Venant equations significantly overesti-
mated velocities at short times (t <2 s), i.e. just 
after the slumping phase. This overestimation 
might not seem so surprising since, for nonlinear 
rheologies, the Saint-Venant equations are 
known to run into difficulty for the following rea-
sons: (i) the assumption of a small aspect ratio 
(thin flow) breaks down at short times, (ii) when 
a mass collapses, part of the momentum is di-
rected downwards whereas in the derivation of 
the Saint-Venant equations, it is assumed that 
the momentum flux is predominantly in the 
streamwise direction, (iii) for the initial stages of 
the flow, the assumption of simple shear flow is 
not realistic and thus (iv) simplified expressions 
of bottom shear stress are unlikely to be of suffi-
cient generality for computing energy dissipation 
in strongly nonuniform flows. Although these 
limitations provide explanation of the model fail-
ure at the shortest times, they do not explain 
why (i) the results provided by the Saint-Venant 
equations were much poorer than those yielded 
by the other models and (ii) why the model pre-
dictions were in good agreement with experi-
mental data for Newtonian fluids. Note also that 
taking sidewall friction into account did not 
change the model performance, but because of 
the limitations of the available empirical relations 
for computing sidewall drag, it was difficult to be 
conclusive on this. 

To us, the failure of the Saint-Venant equa-
tions in the present context comes from the 
oversimplified expression used for computing 
the bottom shear stress, rather than from flaws 
in the numerical methods (although these could 
be optimized to cope with specificities intro-
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duced by viscoplastic materials such as yielding 
deposition). Testing the performance of more 
complete governing equations is another path to 
explore. This series of experiments has shown 
that even under well-controlled experimental 
conditions, numerical solutions to the Saint-
Venant equations failed to predict the experi-
mental observations for nonlinear rheologies. A 
possible explanation is the ripple-through effect 
of errors: noise is amplified rather than dissipat-
ed by nonlinearities, leading to accumulating 
computational errors.  

Numerical models are double-edge. It takes 
a real jolt to make see that everything is not ok. 
From the vantage point of this work, one can set 
that at best, they are a rough approximations; at 
worst, one can say that they are simply wrong 
when the rheological behaviour is nonlinear. 
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